Vorkommen, Häufigkeit, chemische Zusammensetzung und Mischungszustand jener Aerosolpartikel in der Erdatmosphäre, an denen sich durch heterogene Nukleation in unterkühlten Wolken Eis bilden kann (Ice Nucleating Particles = INP), werden experimentell untersucht. Diese Informationen sind wichtig für das Verständnis der Niederschlagsbildung, und finden in parametrisierter Form Eingang in meteorologische Modelle zur Vorhersage des Niederschlages. Das Projekt verwendet hierbei im Wesentlichen physikalische Methoden zur Identifikation und Isolation der Partikel aus der Atmosphäre, und nachfolgend elektronenmikroskopische Methoden zur mineralogischen Analyse einzelner Partikel. Die Identifikation jener wenigen Aerosolpartikel (ca. 1 von 10.000 bis 1 von 100.000), die Eisbildungsfähigkeit besitzen, erfolgt, indem eine Aerosolprobe einer Unterkühlung unter 0°C und Wasserdampfübersättigung ausgesetzt wird, und die an INP entstehenden Eiskristalle fotografiert und gezählt werden. Es werden sowohl Aerosolpartikel aus luftgetragenem Aerosol untersucht (aus dem Eiskeimzähler FINCH) wie auch Partikel, die aus einer Luftprobe auf einem Silizium-Probenträger niedergeschlagen und danach als INP identifiziert wurden (Eiskeimzähler FRIDGE). Eine dritte und vierte Methode (Ice-CVI und ISI) isolieren eisbildungsfähige Partikel, indem aus einer angesaugten Probe von Wolkenluft die Eiskristalle strömungstechnisch von den übrigen Luftbestandteilen getrennt werden. Alle Eiskeimproben werden im Rasterelektronenmikroskop auf Größe, Morphologie, Mischungszustand und chemische Zusammensetzung untersucht und die Ergebnisse der verschiedenen Ansätze verglichen. In Feldexperimenten werden Atmosphärenproben verschiedener geographischer Provenienz (Mitteleuropa, Forschungsstation Jungfraujoch, Wüstenstaub, Vulkanstaub) erhalten. In Laborexperimenten wird mit vorher gesammelt und charakterisierten Modellsubstanzen gearbeitet. Weiterhin wird durch tägliche Messungen der Anzahl-Konzentration und Zusammensetzung von Eiskeimen am Taunus Observatorium nahe Frankfurt über einen längeren Zeitraum untersucht, ob es Saisonalitäten, bevorzugte Quellgebiete (z.B. Wüsten, Industrie, etc.) und biologische Einflussfaktoren (z.B. Pollen, Pflanzenabrieb, Bakterien) für das Vorkommen von Eisnuklei gibt.
Aufgrund der fortschreitenden Klimaerwärmung drohen sich Neophyten wie die Ambrosia in Deutschland auszubreiten und sesshaft zu werden. Seit dem Jahr 2006 wurde deshalb in Berlin die Verbreitung der hochallergenen Ambrosia detaillierter betrachtet. Ausgelöst wurde dies durch Analysen innerstädtischer Luftstaubproben, die eine erhöhte Ambrosiapollenkonzentration aufwiesen. Ziel: Um die Emissionsquellen zu ermitteln, die Einschlepp- und Ausbreitungswege der Pflanze in Berlin zu erforschen und Strategien zur Bekämpfung in der Stadt zu erarbeiten, wurde unter Federführung des Instituts für Meteorologie der Freien Universität Berlin im Frühsommer 2009 mit den Senatsverwaltungen für Stadtentwicklung sowie für Gesundheit, Umwelt und Verbraucherschutz das 'Berliner Aktionsprogramm gegen Ambrosia' initiiert. Methode: Die Initiatoren haben im Jahr 2009 damit begonnen, mit der Hilfe von Beschäftigungsträgern ein Verbreitungskataster für Berlin zu erstellen, alle relevanten Metadaten zu den Funden zu erfassen und möglichst viele Ambrosiabestände zu vernichten.
Eine der wissenschaftlichen Herausforderungen unserer Zeit ist ein besseres Verständnis des Klimas auf der Erde. Zum Beispiel sind der Einfluß einer 'variablen' Sonne und die Wechselwirkungen in großen Bereichen unserer Erde (Atmosphäre, Biosphäre, Ozean, Land) noch weitgehend offene Fragestellungen. Zum besseren Verständnis dieser Prozesse, welches für zuverläßliche Klimamodelle unumgänglich ist, bedarf es vor allem einer umfassenden Datenerhebung. Hierbei gewinnen in jüngster Zeit die Messungen von kosmogenen Radionukliden mit Hilfe der ultra-sensitiven Nachweismethode der Beschleunigermassenspektrometrie eine immer größere Bedeutung. Wir beabsichtigen, die Liste der für die Atmosphären- und Klimaforschung bereits verwendeten kosmogenen Radionuklide (Be-10, C-14, Cl-36), um das bisher kaum erforschte Isotop Al-26 (Halbwertszeit = 0.72 Millionen Jahre) zu erweitern. Wir erwarten dadurch einen Beitrag zum besseres Verständnis von Klimaprozessen. Insbesondere bietet sich eine Kombination von Al-26 mit Be-10 (Halbwertszeit = 1.5 Millionen Jahre) zur Datierung alter Klimaarchive (z.B. tiefer Eisbohrkerne) an. Bevor jedoch Al-26 als ein sogenannter 'Proxy' für Klimaprozesse verwendet werden kann, muss Grundlagenarbeit geleistet werden. Im speziellen müssen die Quellen und Transportvorgänge von Al-26 in der Atmosphäre studiert werden. Damit verbunden ist die Entwicklung geeigneter Verfahren für die Messung von Luft- und Eisproben. Ein wichtige Voraussetzung für dieses Projekt ist die Existenz einer modernen Anlage für Beschleunigermassenspektrometrie. Der Vienna Environmental Research Accelerator (VERA) am Institut für Isotopenforschung und Kernphysik der Universität Wien bietet ideale Bedingungen für Messungen von Al-26. Mit dieser Anlage wurde kürzlich das weltweit niedrigste Isotopenverhältnis von Al-26/Al-27 (ca5e-16) gemessen. Das vorgeschlagene Projekt soll in enger Zusammenarbeit mit der 'Eisgruppe' des Instituts für Umweltphysik (IUP) der Universität Heidelberg durchgeführt werden. Das IUP wird nicht nur Proben von Luftfiltern und Eis aus der Atarktis und anderen Bereichen der Erde zur Verfügung stellen, sondern auch seine langjährige Erfahrung in Atmosphären- und Klimaforschung einbringen. Wir sind der Überzeugung, daß sich die verschiedenen Erfahrungsbereiche der zwei Gruppen für dieses multidisziplinäre Projekt optimal ergänzen.
Von Feinstaub können erhebliche Gesundheitsrisiken ausgehen: Er kann beim Menschen in die Atemwege und sogar bis in die Lungenbläschen oder den Blutkreislauf eindringen. Dort kann er Zellen schädigen oder auch andere toxische Stoffe tief in den Körper bringen. Die Feinstaubbelastung in Städten wird heute durch teure, statische Messstationen mit schlechter räumlicher und zeitlicher Auflösung überwacht. Um feingranulare dynamische Belastungskarten und reaktive Systeme in Szenarien zukünftiger Smart Cities zu ermöglichen, müssten dichte, verteilte Messungen vorgenommen werden. Eine Möglichkeit dafür sind partizipatorische Messungen auf Basis von Sensorik in Smartphones. Beim sogenannten 'Participatory Sensing' werden Privatpersonen mit kostengünstigen mobilen Sensoren ausgestattet, etwa integriert in bereits vorhandene Smartphones oder als eigenständige Geräte. Durch die Mobilität der einzelnen Teilnehmer kann eine höhere räumliche Auflösung erreicht werden. Beispiele für die erfolgreiche Umsetzung solcher Ansätze sind etwa Systeme zur Erstellung von Geräuschbelastungskarten oder zur Erfassung von Schlaglöchern, kaputten Ampeln und Verschmutzungen in Städten. Während solche Projekte meist auf regulären Smartphones und der darin verbauten Sensorik basieren, existieren integrierte Sensoren zur Messung von Feinstäuben in Smartphones noch nicht. Vergangene Arbeiten haben jedoch gezeigt, dass die Hintergrund-Feinstaubbelastung selbst mit äußerst einfachen, bereits relativ kleinen Staubsensoren erfasst werden kann. Prinzipiell ist es auch möglich das Messprinzip dieser Sensoren (Lichtstreuung) an Smartphones mit integrierter Kamera zu adaptieren. Das Projekt FeinPhone hat das Ziel, eine solche neuartige Sensorkomponente für Smartphones zur Messung von Feinstaub zu entwickeln und zu evaluieren und im Zuge der Evaluation ggf. einen Referenzdatensatz für die zukünftige Algorithmenentwicklung zu schaffen. Dies schließt das Design der externen Sensorhardware sowie geeigneter Algorithmen zur Verarbeitung der aufgenommenen Daten ein.
Daten zur Luftschadstoffbelastung in Form von Immissionskonzentrationen sollen aktualisiert, analysiert und bewertet werden. Bislang wurde die Belastung durch Schwefeldioxid in den Vordergrund gestellt. Verhaeltnismaessig lange Zeitreihen (z.T. 10 Jahre und mehr) und eine raeumlich fast zufriedenstellende Anordnung von Messnetzen ermoeglichen jetzt erste Aussagen ueber die raeumliche und zeitliche Entwicklung der Belastungssituation. Die weiteren wichtigen Schadstoffkomponenten wurden - abgesehen vom Stickstoffdioxid in Reinluftgebieten - noch nicht so gruendlich untersucht wie das Schwefeldioxid. Die Stickoxide sollen daher zusammen mit Schwebstaub in den kuenftigen Analysen ein staerkere Beruecksichtigung finden als bisher. Ueber diese Schadstoffe liegen zwar weniger dichte Messnetze vor; trotzdem werden raeumlich gut differenzierte Aussagen erwartet. Forschungsfragen sind: Entwickelt sich die Belastung durch NO2 und Schwebstaub parallel zu der durch SO2 verursachten Belastung ? Wie sind Schwankungen der Belastung innerhalb der einzelnen Regionstypen zu bewerten ? Lassen sich die Zeitreihen meteorologisch bereinigen, um die Wirkungen von Massnahmen der Luftreinhaltung zu erkennen und zu bewerten ? Koennen mit Hilfe der Belastungsdaten der verschiedenen Schadstoffkomponenten regional differenzierte Belastungstypen herausgearbeitet werden ? Diese Frage ist unter raumplanerischen Aspekten von groesstem Interesse, da sie die Verbindung zur raeumlichen Emissionsstruktur herstellt. Vervollstaendigung und Aktualisierung der Immissionsdaten aus den Laendermessnetzen; Zeitreihenanalysen der NO2- und Schwebstaubbelastung im Vergleich zur SO2-Belastung; ...
Nach langjaehrigen Messungen der Radioaktivitaet des atmosphaerischen Krypton, CO2 und Wasserdampfs sollen jetzt organische Bestandteile mit untersucht werden. Beim C-14 Gehalt des atmosphaerischen Methans ist moeglicherweise der Einfluss von Kernkraftwerken nachweisbar; infolge der zunehmenden Verwendung von Tritium in der biologischen und medizinischen Forschung wurden lokale Ueberhoehungen der Tritium-Konzentration bereits gemessen. Methode: Probennahme teils im Zuge der Luftverfluessigung (Methan, Krypton), teils durch chemische Absorption nach Verbrennung. Aktivitaetsmessung im Fluessigkeitsszintillationsspektrometer.
Die Fuelle der vorliegenden und staendig fortschreibbaren Daten der Luftguetemessstationen des Umweltbundesamtes und der Laender (in Zukunft auch der neuen Bundeslaender) ermoeglicht umfassende raum-zeitliche Analysen. Folgende Forschungsfragen stehen im Mittelpunkt des Interesses: - Welche Schadstoffkomponenten und welche Parameter sind fuer eine Erfassung raeumlicher Unterschiede der Luftbelastung geeignet? - Lassen sich unterschiedliche raeumliche Belastungstypen ausgliedern? Wenn ja, liesse sich die diesbezuegl Umweltberichterstattung auf repraesentative Belastungssituationen reduzieren? - Welche Faktoren erklaeren die raeuml Belastungsunterschiede? - Bestehen Zusammenhaenge zwischen den Belastungssituationen einerseits und sowie natur- und wirtschaftsraeuml Gegebenheiten andererseits? - Welche statistischen Zushaenge bestehen zwischen staedtischen und regionalen Immisionsbelastungen einerseits und den dortigen Emissionen andererseits? - Welche Groessenordnungen besitzen die innerstaedtischen und innerregionalen Belastungsunterschiede im Vergl zu den grossraeumigen, interregionalen Unterschieden? - Welche zeitl Entwicklungstrends lassen sich aus den Immissionsdaten erkennen? In welchem Masse schlagen sich die Effekte der eingeleiteten Massnahmen zur Emissionsreduzierung (zB Grossfeuerungsanlagenverordnung, stufenweise Reduzierung von Kfz-Abgasgrenzwerten) in den Immissionsdaten wieder? - Unterliegen verschieden Schadstoffe moeglweise untersch Entwicklungstrends? Welche Erkenntnisse liegen zur Ozonbelastung der Luft vor? - Wie sind die deutschen Immissionsverhaeltnisse und deren zeitliche Entwicklung im europaeischen Massstab zu beurteilen?
Origin | Count |
---|---|
Bund | 215 |
Land | 5 |
Type | Count |
---|---|
Förderprogramm | 215 |
Text | 3 |
License | Count |
---|---|
geschlossen | 3 |
offen | 215 |
Language | Count |
---|---|
Deutsch | 195 |
Englisch | 31 |
Resource type | Count |
---|---|
Keine | 193 |
Webseite | 25 |
Topic | Count |
---|---|
Boden | 174 |
Lebewesen & Lebensräume | 173 |
Luft | 218 |
Mensch & Umwelt | 218 |
Wasser | 173 |
Weitere | 215 |