API src

Found 284 results.

Related terms

Abruf der Feinstaubwerte in der Neujahrsnacht für Baden-Württemberg

null Abruf der Feinstaubwerte in der Neujahrsnacht für Baden-Württemberg Sehr geehrte Kolleginnen und Kollegen der baden-württembergischen Redaktionen, wenn Sie sich für die Entwicklung der Feinstaubwerte in der Silvesternacht interessieren und aktuell am 01.01.2025 oder 02.01.2025 berichten möchten, erinnern wir Sie daran, dass Sie die Werte auf unserer Webseite Immissionsdaten Baden-Württemberg selbst abrufen können, und zwar für alle Messstellen, an denen wir Feinstaub PM10 kontinuierlich messen. Dies betrifft Standorte im städtischen und ländlichen Hintergrund sowie einige verkehrsnahe Standorte. Anleitung: Abruf von gemessenen Werten für Feinstaub PM10 auf den Webseiten der LUBW Landesanstalt für Umwelt Baden-Württemberg Möchten Sie die Entwicklung der Feinstaubwerte verfolgen, rufen Sie unsere Webseite: Themen/Luft/Aktuelle Messwerte/Tabelle auf. Um eine Übersicht über die höchsten Werte des Tages zu erlangen, wählen Sie die Funktion „Tabelle“ sowie den Luftschadstoff „Feinstaub PM10“. Hier können Sie den höchsten Wert des Tages und des Vortages ablesen. Die Tabelle ist sortierbar. Um den zeitlichen Verlauf und die Konzentration zu einer bestimmten Uhrzeit ablesen zu können, wechseln Sie zur Funktion Diagramm , wählen die entsprechende Station aus und fahren mit Ihrem Maus-Cursor entlang der Kurve im Diagramm zur höchsten Stelle am entsprechenden Tag. So können Sie die Uhrzeit ermitteln, zu der der höchste 24h-Mittelwert (in µg/m³) ermittelt wurde. In der Grafik darunter finden Sie die Stundenmittelwerte. Auch hier fahren Sie mit Ihrem Maus-Cursor an der Kurve im Diagramm entlang zur höchsten Stelle am entsprechenden Tag. So können Sie sich den höchsten Stundenmittelwert (in µg/m³) des Tages anzeigen lassen. Rückblick: Feinstaubwerte in der Silvesternacht in den vergangenen Jahren Erhöhte Werte meist kurz nach Mitternacht In den vergangenen Jahren kam es in der Silvesternacht meist kurz nach Mitternacht zum Anstieg der Feinstaubwerte an den wohnortnahen LUBW-Messstellen zur Überwachung der Luftqualität. Der Rauch von gezündeten Böllern und Raketen besteht zum großen Teil aus Feinstaub und führt häufig zu einer erhöhten Feinstaubbelastung in der Luft. Dauer und Höhe der Belastung hängen von den Emissionen und den Witterungsverhältnissen ab. Aber auch in den vergangenen Jahren war die Belastung der Luft mit Feinstaub unterschiedlich stark ausgeprägt. Die meteorologischen Größen Wind, Temperatur und Niederschlag haben Auswirkungen auf die Austauschbedingungen in der Luft. Im Winter bestehen während ausgeprägten Hochdruckwetterlagen häufig schlechte Ausbreitungsbedingungen mit geringen Windgeschwindigkeiten und einer stabilen Schichtung der Atmosphäre (Inversionswetterlage). Vereinfacht gesagt: Ist es windig, wird die Feinstaubbelastung meist innerhalb von wenigen Stunden verweht; haben wir eine Inversionswetterlage, kann sich eine erhöhte Belastung auch über einen Tag und mehr in der Luft halten. Informationen zu den meteorologischen Bedingungen während der Silvesternacht finden Sie nun neu unter https://www.lubw.baden-wuerttemberg.de/luft/messwerte-meteorologie#karte . Es handelt sich um aktuelle meteorologische Messwerte des Luftmessnetzes Baden-Württemberg. Wichtiger Hinweis : Die meteorologischen Daten der LUBW durchlaufen keine qualitätssichernde Beurteilung, dennoch vervollständigen sie zusammen mit den Schadstoffdaten das Angebot und geben einen Einblick in die meteorologische Situation vor Ort. Weitere Informationen können Sie unseren Pressemitteilungen zur Neujahrsnacht aus den Jahren 2020 und 2018 entnehmen. Diese Meldungen geben die entsprechenden Entwicklungen für die beiden unterschiedlichen Wetterlagen sehr gut wieder: Inversionswetterlage 02.01.2020 Hohe Belastung der Luft mit Feinstaub am Neujahrstag Feinstaub: Vom Winde verweht 01.01.2018 Baden-Württemberg nach der Silvesternacht Nachfolgend finden Sie die verlinkte Liste der LUBW-Messstationen zur Überwachung der Luftqualität in Baden-Württemberg, an denen Feinstaub-PM10 erfasst wird: Messstelle Aalen Baden-Baden Bernhausen Biberach Eggenstein Freiburg Freiburg Schwarzwaldstraße Friedrichshafen Gärtringen Heidelberg Heilbronn Heilbronn Weinsberger Straße-Ost Karlsruhe Reinhold-Frank-Straße Karlsruhe-Nordwest Kehl Konstanz Ludwigsburg Mannheim Friedrichsring Mannheim-Nord Neuenburg Pfinztal Karlsruher Straße Pforzheim Reutlingen Reutlingen Lederstraße-Ost Schramberg Oberndorfer Straße Schwarzwald-Süd Schwäbische Alb Schwäbisch Hall Stuttgart Am Neckartor Stuttgart Arnulf-Klett-Platz Stuttgart Hohenheimer Straße Stuttgart-Bad Cannstatt Tauberbischofsheim Tübingen Tübingen Mühlstraße Ulm Villingen-Schwenningen Weil am Rhein Wiesloch Bei Rückfragen wenden Sie sich bitte an die Pressestelle der LUBW. Telefon: +49(0)721/5600-1387 E-Mail: pressestelle@lubw.bwl.de

Ressortforschungsplan 2023, Mikroplastik in der Außenluft: Erfassung, Quantifizierung, Identifizierung und Quellen von luftgetragenem Mikroplastik

Mikroplastik (Partikel im µm Bereich) entsteht durch verschiedenste Prozesse, insbesondere jedoch durch Abrieb und Erosion von Plastik. Dabei ist ein Eintrag über den Wasser- und Bodenpfad mittlerweile unbestritten. Jedoch weiterhin ungeklärt ist der tatsächliche Eintrag über den Luftpfad. Zwar belegen Studien das Vorkommen von Mikroplastik an weitentfernten Orten und lassen auch den Schluss eines zumindest teilweisen Transportes über die Luft zu, aber wie hoch dieser Beitrag tatsächlich ist bleibt zurzeit ungeklärt. Darüber hinaus spielt die Identifikation der Polymere und somit die Erfassung der Quellbeiträge eine entscheidende Rolle. Ziel des Projektes ist es den luftgetragenen Eintrag von Mikroplastik und deren Quellen an Hintergrundstationen des Luftmessnetzes zu bestimmen. Dafür sollen an ausgewählten Messstationen des Luftmessnetzes des Umweltbundesamts (UBA) plastikfreie Niederschlagssammler sowie Vorrichtungen zur Feinstaubprobenahme installiert und über den Projektzeitraum repräsentativ PM10 Feinstaub- und Niederschlagsproben gesammelt und deren chemische Zusammensetzung analysiert werden. Zusätzlich sind Analysen von Niederschlagsproben zu Vergleichszwecken vorzusehen. In der Studie soll zudem die Ergebnisse statistisch (deskriptiv und beurteilend) ausgewertet und eine mögliche Quellenidentifikation über die Inhaltsstoffe erarbeitet werden.

Air Quality e-Reporting: Attainments of (air quality) environmental objectives reported by countries (data flow G)

European air quality information reported by EEA member countries, including all EU Member States, as well as EEA cooperating and other reporting countries. The EEA’s air quality database consists of a multi-annual time series of air quality measurement data and calculated statistics for a number of air pollutants. It also contains meta-information on the monitoring networks involved, their stations and measurements, air quality modelling techniques, as well as air quality zones, assessment regimes, compliance attainments and air quality plans and programmes reported by the EU Member States and European Economic Area countries.

Langfristige Entwicklung der Luftqualität

Durch eine Vielzahl von Maßnahmen ist die Berliner Luft in den letzten drei Jahrzehnten deutlich besser geworden und die Konzentration von Luftschadstoffen langsam aber über den langen Zeitraum doch deutlich zurückgegangen. Dadurch konnten die Immissionsgrenzwerte für Partikel-PM 10 (Feinstaub) in Berlin schon seit einigen Jahren flächendeckend eingehalten werden und auch die flächendeckende Einhaltung des Grenzwertes für das Jahresmittel von Stickstoffdioxid von 40 µg/m³ wird 2020 voraussichtlich erreicht werden. Die folgenden Abbildungen zeigen den langjährigen Verlauf der mittleren Luftbelastung einzelner Schadstoffe in den drei Belastungsregimen Verkehr (Hauptverkehrsstraßen), innerstädtischer Hintergrund und Stadtrand. Für die Luftschadstoffe Stickstoffdioxid, Partikel PM 10 und Ozon werden die langzeitlichen Entwicklungen auf Basis eines Differenzenmodels analog zum Jahresbericht 2019 ermittelt. Die Methodik ist im Jahresbericht 2019 genauer erklärt. Die Langzeittrends der weiteren Luftschadstoffe werden durch arithmetische Mittelwertbildung bestimmt. Stickstoffdioxid Schwebstaub / Partikel PM 10 Partikel PM 2,5 Ozon Polyzyklische aromatische Kohlenwasserstoffe (PAK) Schwefeldioxid Benzol Kohlenmonoxid Stickstoffdioxid gehört zu den Luftschadstoffen, die überwiegend vom Straßenverkehr verursacht werden. Die nebenstehende Grafik zeigt die langjährige Entwicklung der NO 2 -Belastung der automatischen Messstellen am Stadtrand, im innerstädtischen Hintergrund und an Hauptverkehrsstraßen sowie der acht beurteilungsrelevanten Passivsammlerstandorte (Passivsammler = PS) (weiter Informationen finden sich im Jahresbericht 2019. Bis Mitte der neunziger Jahre konnte durch die Ausrüstung der Berliner Kraftwerke mit Entstickungsanlagen und die Einführung des geregelten Katalysators für Ottomotoren ein Rückgang der NO 2 -Belastung erreicht werden. Durch eine zunehmende Anzahl an Dieselfahrzeugen wurde dieser Trend jedoch weitestgehend aufgehoben, so dass bis 2014 nur eine sehr langsame Abnahme der NO 2 -Belastung verzeichnet wurde. Auffällig sind die erhöhten Jahresmittelwerte von 2006. Vor allem für die Straßenmessstellen zeigen diese hohen Jahresmittelwerte eindrucksvoll den Einfluss von meteorologischen Bedingungen auf die Konzentration von Luftschadstoffen, denn das Jahr 2006 war geprägt durch eine hohe Anzahl windschwacher Hochdruckwetterlagen und ungünstigen meteorologischen Ausbreitungsbedingungen. In den Jahren zwischen 2008 und 2015 blieben die NO 2 -Jahresmittelwerte auf einem annähernd gleichbleibenden Niveau, da Emissionsminderungen nicht in dem gesetzlich vorgeschriebenen Maß erfolgten. Besonders Diesel-Pkw der Schadstoffklasse Euro 5 stießen durch Software-Manipulation im realen Betrieb sehr viel mehr NOx aus, als von den Herstellern angegeben wurde bzw. als sich auf dem Prüfstand ergab. Auffällig ist, dass seit 2016 die NO 2 -Belastung an Straßenmessstellen stark sank, am Stadtrand und im innerstädtischen Hintergrund aber keine bzw. nur eine sehr geringe Veränderung zu beobachten war. Dies unterstreicht nochmals den starken Einfluss der Verkehrsemissionen auf die an den verkehrsnahen Stationen gemessenen Immissionen. Von 2013 bis 2019 ergab sich für die sechs automatischen Straßenmessstellen ein Rückgang um 24 %, wobei mit einem absoluten Rückgang von 5 µg/m³ die Belastung von 2018 auf 2019 am stärksten gesunken ist. Ähnlich verhält es sich mit den Messergebnissen der Passivsammler, für welche von 2018 auf 2019 ebenfalls ein absoluter Rückgang von etwa 5 µg/m³ ermittelt wurde. Erzielt wurden diese bemerkenswert rückläufige Entwicklung der NO 2 -Belastung durch zielgerichtete und wirkungsvolle Maßnahmen der Berliner Luftreinhaltung (Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, 2019). Dabei lag und liegt der Fokus darauf, den motorisierten Verkehr in der Berliner Innenstadt zu verringern und die Stärkung des Umweltverbundes aus öffentlichem Personennahverkehr (ÖPNV), Rad- und Fußverkehr voranzutreiben. Neben Maßnahmen wie der Modernisierung der BVG-Busflotte – 2030 soll diese zu 100 % aus elektrisch angetriebenen Fahrzeugen bestehen –, Tempo-30-Anordnungen und Durchfahrverboten für Diesel-Pkw bis einschließlich Euro 5/V hat aber auch die generelle Erneuerung der Kfz-Flotten, mit einem steigenden Anteil von Euro VI und 6d-TEMP Fahrzeugen, einen Anteil an dieser positiven Entwicklung. Deshalb lässt sich dieser Trend auch unabhängig von einzelnen Maßnahmen der Berliner Luftreinhaltung in ganz Deutschland beobachten. Modellergebnissen zu Folge sind etwa ein bis zwei µg/m³ des NO 2 -Rückgangs 2019 in Deutschland auf Softwareupdates und die Flottenerneuerung zurückzuführen (Umweltbundesamt, Luftqualität 2018, 2019). Einen Überblick über die verkehrsbedingte Luftbelastung im Straßenraum 2015 und 2020 finden Sie im Umweltatlas unter Verkehrsbedingte Luftbelastung im Straßenraum . Ende der 1990er Jahre wurde mit der Messung von PM 10 , also von besonders gesundheitsschädlichen Teilchen kleiner als 10 Mikrometer (µm), begonnen. Sie ersetzte die Gesamtstaubmessung, bei der auch grobe Teilchen > 10 µm erfasst wurden. Deshalb sind beide Reihen nicht direkt miteinander vergleichbar. Seit den 1980er Jahren ist die Gesamtstaub-Belastung in Berlin deutlich gesunken. Auch die PM 10 -Belastung zeigt über den dargestellten Zeitraum eine deutliche Abnahme um rund 30 % im innerstädtischen Hintergrund und am Stadtrand sowie eine Abnahme um etwa 40% an Straßenmessstellen. Seit 2004 wird in Berlin der für das Jahresmittel gültige Immissionsgrenzwert von 40 µg/m³ (siehe auch Grenz- und Zielwerte) durchgängig und an allen Stationen eingehalten. Auch die Anzahl der Überschreitungen des Tagesmittels von 50 µg/m³ ist im dargestellten Zeitraum rückläufig. Im Jahr 2015 wurden letztmals mehr als die zulässigen 35 Überschreitungen des Tagesmittels von 50 µg/m³ beobachtet (Station MC174, 36 Überschreitungen). Die PM 10 -Belastung in Berlin und ihre langjährige Entwicklung wird maßgeblich durch emissionsmindernde Maßnahmen und meteorologische Bedingungen geprägt. Die jährlichen Schwankungen der PM 10 -Jahresmittelwerte von bis zu 20 % und insbesondere die Variabilität der Anzahl der Überschreitungen des Tagesmittels von 50 µg/m³ von bis zu einem Faktor zwei spiegeln die Abhängigkeit der PM 10 -Belastung von den Witterungsbedingungen wider. Besonders der Ferntransport von Partikeln bei südlichen bis östlichen Anströmungen, vermehrtes Heizen bei tiefen Temperaturen und die Häufigkeit von austauscharmen, in der Regel durch Hochdruck geprägten Wetterlagen, beeinflussen die PM 10 -Belastung stark. Ein großer Teil der Überschreitungstage des Tagesgrenzwerts wird auf Ferntransport aus östlichen und südöstlichen Richtungen zurückgeführt. In Jahren mit vergleichsweise geringer PM 10 -Belastung, beispielsweise 2007, 2008, 2012, 2013 und 2017, herrschten stets günstige meteorologische Bedingungen. Auch im Jahr 2019 trugen die Witterungsbedingungen maßgeblich zu einer geringen PM 10 -Belastung bei. So führten einerseits hohe Temperaturen der Wintermonate im Jahr 2019 zu einem geringen Heizbedarf, was niedrige lokale Partikelemissionen mit sich bringt. Weiterhin ist das geringe Auftreten von Ost- und Südwinden in den 2019er Wintermonaten ein Indiz für wenig Hochdruckeinfluss und den damit zusammenhängenden geringen Ferntransport von vorbelasteten Luftmassen aus Süd-Osteuropa. Der langjährige Rückgang der PM 10 -Belastung ist hingegen auf emissionsmindernde Maßnahmen zurückzuführen. Eine sehr wichtige Maßnahme zur Minderung der PM 10 -Belastung war die Einführung der Umweltzone in zwei Stufen zum 01.01.2008 und 01.01.2010. Nach einer Untersuchung zur Wirkung der Stufe 2 der Umweltzone von 2011 ( Wirkungsanalyse; 2. Stufe Umweltzone ), verhinderte die Einführung der Umweltzone eine um etwa 7 % höhere PM 10 -Belastung und 10 Überschreitungstage mit Tagesmitteln über 50 µg/m³. Zur vereinfachten Ermittlung des lokalen Verkehrsbeitrages kann die Differenz der PM 10 -Konzentration an Straßen und im innerstädtischen Hintergrund hergezogen werden. Die Annäherung der roten Linie an die gelbe Linie verdeutlicht, dass der lokale Verkehrsbeitrag durch den Straßenverkehr im dargestellten Zeitraum deutlich abgenommen hat. Der mit dieser Methode ermittelte Verkehrsbeitrag konnte seit Ende der 1990er Jahre um etwa 70 % reduziert werden. Weitere wichtige Maßnahmen zur Verringerung der PM 10 -Belastung waren die Einführung wirksamer Rauchgasreinigungssysteme bei Kohlekraftwerken und bei der Abfallverbrennung zur Minderung von Staub, Schwefeldioxid und Stickoxiden, der Ersatz von Kohleheizungen durch Fernwärme und Gasheizungen sowie die Einführung von Partikelfiltern für Dieselfahrzeuge und Baumaschinen auf Baustellen der Öffentlichen Hand. Als Partikel PM 2,5 werden kleinere Partikel des Feinstaubs bezeichnet, deren aerodynamischer Durchmesser kleiner als 2,5 µm ist. Sie können nachhaltig die Lunge schädigen, da sie tief in die Atemwege eindringen und länger dort verweilen. Außerdem führen hohe PM 2,5 Belastungen zu Herz- und Kreislauferkrankungen. Der im Feinstaub enthaltene Ruß gilt als stark krebserregend. Zum Schutz der menschlichen Gesundheit wurde ein PM 2,5 -Grenzwert von 25 µg/m³ im Jahresmittel festgelegt. Er muss ab 2015 an allen Luftgütemessstellen eingehalten werden. Zusätzlich gibt es einen deutschlandweiten Indikator für die durchschnittliche PM 2,5 -Exposition der städtischen Wohnbevölkerung (AEI, Average Exposure Indicator). Er wird vom Umweltbundesamt im Durchschnitt über jeweils 3 Kalenderjahre als Mittel über 36 ausgewählte Messstationen in Deutschland bestimmt, die sich ausschließlich in Wohngebieten größerer Städte befinden. Drei dieser Hintergrundmessstellen gehören zum Berliner Luftgütemessnetz. Der AEI-Zielwert von 16,4 µg/m³ für das Jahr 2020 ergibt sich aus der Minderung um 15 % des AEI-Wertes von 2010. In Berlin wird PM 2,5 seit 2004 an der Hauptverkehrsstraße Frankfurter Allee (MC174) und im innerstädtischen Hintergrund an der Station in Neukölln (MC042) gemessen. 2008 kamen noch die innerstädtischen Hintergrund-Stationen in Mitte (MC171) und in Wedding (MC010) hinzu. Alle drei städtischen Hintergrund-Stationen werden vom UBA zur Ermittlung des AEI herangezogen. Die nebenstehende Grafik zeigt die zeitliche Entwicklung von PM 2,5 . Der Grenzwert von 25 µg/m³, der seit 2015 einzuhalten ist, wird bereits seit 2007 unterschritten. Der bundesweite AEI-Zielwert für 2020 wurde bereits seit 2016 unterschritten. Es kann daher angenommen werden, dass 2020 das bundesweite Minderungsziel von 15 % erreicht wird. Tendenziell ist, wie die PM 10 -Belastung, auch die PM 2,5 -Belastung rückläufig. Dies zeigt die Wirkung der Umweltzone, die gezielt den Ausstoß der sehr feinen Dieselrußpartikel reduziert hat. Dadurch hat sich die Belastung an Straßen der niedrigeren Belastung im städtischen Hintergrund angenähert. Die erhöhte PM 2,5 -Belastung in 2006, 2010 und 2014 wird aufgrund schlechter Ausbreitungsbedingungen vor allem auf den Schadstoffausstoß aus Heizungen mit Holzfeuerung und einen hohen Beitrag aus Gebieten außerhalb Berlins zurückgeführt. In einem Projekt zur Holzfeuerung wurden gerade in den Herbst-und Wintermonaten bei Inversionswetterlagen erhöhte Beiträge dieser Partikel zur PM 2,5 -Belastung festgestellt. Dieser dreiatomige Sauerstoff ist ein natürlicher Bestandteil der Luft und wird nur selten direkt emittiert. Die Bildung von bodennahem Ozon geschieht über chemische Reaktionen sogenannter Vorläuferstoffe unter dem Einfluss von UV-Strahlung. Der wichtigste Vorläuferstoff für die Bildung von Ozon ist NO 2 . Aber auch flüchtige organische Verbindungen (VOC, volatile organic compounds) sind für die Ozonbildung von Bedeutung, da diese mit NO zum Ozonvorläuferstoff NO 2 reagieren können. Abgebaut wird Ozon wiederum durch NO. Die Bildung von bodennahem Ozon ist damit eine reversible photochemische Reaktion und stark von der Jahreszeit abhängig. Da zur Bildung UV-Strahlung benötigt wird und bei höheren Temperaturen mehr VOCs von der Vegetation freigesetzt werden, die als Vorläuferstoff fungieren, sind die Ozon-Konzentrationen im Sommer und besonders während sonnigen Schönwetterperioden am höchsten. Im nebenstehenden Diagramm sind für die O 3 -Belastung im innerstädtischen Hintergrund und am Stadtrand unterschiedliche langjährige Entwicklungen zu erkennen. Im innerstädtischen Hintergrund stieg die Belastung seit Ende der 80er Jahre nahezu stetig an; eine Regressionsanalyse ergibt eine Zunahme von etwa 0,4 µg/m³ pro Jahr. Am Stadtrand kam es dagegen zu Beginn der 90er Jahre zu einer Abnahme und seitdem zu einer sehr geringen Zunahme von etwa 0,1 µg/m³ pro Jahr. Diesen langzeitlichen Entwicklungen sind Schwankungen infolge der Witterungssituation des jeweiligen Sommers (Temperaturen, Bewölkung) überlagert, so dass Sprünge in den Jahresmittelwerten von bis zu 7 µg/m³ von einem auf das nächste Jahr nicht unüblich sind. Auf Grund der meteorologischen Bedingungen im Jahr 2018 und 2019 mit hohen Temperaturen und einer sehr hohen Sonneneinstrahlung war die mittlere Ozonbelastung im Vergleich zu den Vorjahren 2016 und 2017 erhöht. Kurzzeitige O 3 -Belastungsspitzen sind gesundheitlich besonders relevant, da erhöhte Ozon-Konzentrationen zu Reizerscheinungen der Augen und Schleimhäute sowie Lungenschäden führen können. Deshalb wurden zum Zweck des Gesundheitsschutzes die Informationsschwelle von 180 µg/m³ und die Alarmschwelle von 240 µg/m³ festgelegt. Diese Belastungsspitzen sind jedoch im Gegensatz zur mittleren O 3 -Belastung seit Jahren rückläufig. Bemerkenswerterweise, war dies auch in den Jahren 2018 und 2019 der Fall (siehe Jahresbericht 2018 und Jahresbericht 2019 ), obwohl die Witterungsbedingungen sehr günstig für die Bildung von Ozon waren. Grund dafür können die besonders in den Sommermonaten niedrigen NO 2 Konzentrationen sein, so dass hohe Ozon-Spitzenkonzentrationen durch ein Fehlen von Vorläuferstoffen verhindert wurden. Zusätzlich kann auch die extreme Trockenheit in den Sommermonaten in 2018 und 2019 ein Grund für diese Beobachtung sein. Es wird vermutet, dass die Emission von VOC durch die Vegetation auf Grund der Trockenheit und Dürrestress geringer war als üblich, so dass auch aus diesem Grund die Spitzenbelastung von Ozon nicht auffällig hoch war. Deutschlandweit wurde im Gegensatz zur Abnahme der Ozon-Spitzenkonzentrationen durch Minderungsmaßnahmen – Ozonvorläuferstoffe (Autoverkehr, Kraftwerke, Industriebetriebe, gewerblicher und privater Gebrauch von Farben, Lacken und Lösemitteln) konnten seit 1990 fast halbiert werden – eine schwache Zunahme der Jahresmittelwerte an städtischen Stationen beobachtet. Im ländlichen Hintergrund wurden bis Ende der 1990er Jahre eine deutschlandweite Zunahme und eine darauffolgende Stagnation der Ozon-Jahresmittelwerte registriert (siehe Luftqualität 2019 – Vorläufige Auswertung vom Umweltbundesamt). Da auch die Berliner Stadtrandstationen im Fall von Ozon maßgeblich von städtischen Emissionen beeinflusst sind, hier besonders die im Lee der Stadt liegenden Stationen MC027 und MC085 , passt der in Berlin im Mittel über alle Stationen festgestellte Anstieg, zum deutschlandweiten Trend. Polyzyklische aromatische Kohlenwasserstoffe (PAK) gelten unter den organischen Verbindungen als krebserregend. Als Leitkomponente für diese Verbindungen wird Benzo(a)pyren verwendet. Mitte der 1990er Jahre wurden an der Messstelle Nansenstraße in Neukölln bereits orientierende Messungen von Benzo(a)pyren B(a)P durchgeführt. Nachdem die 4. Tochterrichtlinie zur europäischen Rahmenrichtlinie 96/62/EG in Kraft trat, wurden die Messungen ab 2006 in erweitertem Umfang an vier Messstandorten (Hauptverkehrsstraßen, städtisches Wohngebiet und städtischer Hintergrund) aufgenommen, um die ab 2013 geforderte Einhaltung des Zielwerts für Benzo(a)pyren B(a)P von 1 ng/m³ zu überwachen. Der Zielwert gilt bis zu einer Konzentration von 1,49 ng/m³ als eingehalten. Einen Überblick über die langfristige Entwicklung der Leitkomponente B(a)P gibt die nebenstehende Abbildung. Für das städtische Wohngebiet hat die Belastung seit den 90er Jahren um den Faktor 5 abgenommen. Im Jahr 2010 wird der Zielwert von 1 ng/m³ sowohl an der Station im innerstädtischen Wohngebiet Neukölln als auch in der Hauptverkehrsstraße, Schildhornstraße, erreicht. Dies wird auf den sehr kalten Winter und auf den gestiegenen Verbrauch an Kohle und Holz bei nicht genehmigungsbedürftigen Feuerungsanlagen (Kohleheizungen, Holzöfen und Kamine) der privaten Haushalte zurückgeführt. Im Bereich des Wohngebiets (MC042) und an den Straßenschluchten Frankfurter Allee (MC174) und Schildhornstraße (MC117) sind solche Öfen noch häufiger vertreten. Seit 2012 liegen die PAK-Konzentrationen aller Stationen eng beieinander und deutlich unter dem Zielwert. Sie bewegen sich um den unteren Schwellenwert von 0,4 ng/m³. Die Luftbelastung durch die meisten direkt emittierten Schadstoffe ist in den letzten 20 Jahren stark gesunken. Beim Schwefeldioxid, das hauptsächlich aus Kraftwerken, Industrie und Kohleöfen stammte, ist dieser Rückgang am deutlichsten. Die Emissionen sind durch die Sanierung oder Stilllegung von Industrieanlagen und die Installation von Rauchgasentschwefelungsanlagen in Kraftwerken Ende der 80er Jahre in West-Berlin und nach 1990 auch in den neuen Bundesländern und osteuropäischen Nachbarländern stark gesunken. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme und der Einsatz von schwefelarmen Kraftstoff haben zur Verbesserung der Luftqualität beigetragen. Seit 2004 hat sich die Schwefeldioxidimmission im gesamten Stadtgebiet, sowohl in der Innenstadt als auch in den Außenbezirken auf Jahresmittelwerte zwischen 1-4 µg/m³ eingependelt. Damit ist die Konzentration von Schwefeldioxid im Vergleich zu 1989 um 96 % zurückgegangen. Benzol gehört zu den krebserregenden Stoffen und kann Leukämie (Blutkrebs) verursachen. Benzol wird vorwiegend von Pkw mit Ottomotor emittiert. Durch den Einsatz des geregelten Katalysators, verbesserter Motortechnik, besserer Kraftstoffe und den Einsatz von Gaspendelsystemen an Tankstellen sowie in Tanklagern konnte die Emission dieses Schadstoffes in den letzten Jahren deutlich verringert werden. Entsprechend hat auch die Immissionsbelastung durch Benzol in den vergangenen Jahren in Berlin stark abgenommen. Die Benzolwerte im Jahr 2010 waren an den Hauptverkehrsstraßen nur ein Fünftel und im innerstädtischen Hintergrund nur noch ein Drittel so hoch wie 1993. Der ab 2010 einzuhaltende Grenzwert von 5 µg/m³ wird bereits seit dem Jahr 2000 unterschritten. In den letzten fünf Jahren lag auch die straßennahe Benzolkonzentration im Jahresmittel unter 1,5 µg/m³. Die nebenstehende Abbildung zeigt die langjährige Entwicklung der Kohlenmonoxid (CO) Konzentration als Jahresmittel an den Hauptverkehrsstraßen, im innerstädtischen Hintergrund und am Stadtrand. In den letzten drei Jahrzehnten nahm die Kohlenmonoxid-Belastung an den Hauptverkehrsstraßen und im innerstädtischen Hintergrund um jeweils ca. 80 % ab. Dadurch wurde auch der seit 2005 einzuhaltende Kohlenmonoxid-Grenzwert zum Schutz der menschlichen Gesundheit von 10 mg/m³ als höchster 8-Stunden-Mittelwert eines Tages an allen Messstationen nie überschritten. Der starke Rückgang der Kohlenmonoxid-Belastung wird auf die Einführung des geregelten Katalysators und effizienterer Motoren zurückgeführt. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme hat dazu beigetragen. Seit 2007 werden die Messungen von CO nur noch an der Schildhornstraße und an der Frankfurter Allee durchgeführt.

Hamburger Luftmessnetz (HaLm)

Das Hamburger Luftmessnetz (HaLm) * betreibt 15 Messstationen zur Überwachung der Luftqualität * unterscheidet zwischen Hintergrund-, Ozon- und Verkehrs-Messstationen * misst kontinuierlich gemäß EU-Richtlinien und dem Bundesimmissionsschutzgesetz Die Hintergrund-Messstationen dienen der allgemeinen Luftüberwachung. Sie erfassen die Schadstoffkomponenten Schwefeldioxid (SO2), Stickstoffmonoxid (NO), Stickstoffdioxid (NO2) und Schwebstaub (Feinstaub-PM10: Partikel kleiner als 10 Mikrometer und Feinstaub-PM2,5: Partikel kleiner als 2,5 Mikrometer). Eine Station misst außerdem Kohlenmonoxid (CO). Die Ozon-Messstationen ermitteln neben Ozon (O3) auch die NO2- und NO-Belastungen. An den Verkehrs-Messstationen werden die für den Autoverkehr typischen Schadstoffe NO, NO2 und Feinstaub-PM10 bzw. Feinstaub-PM2,5 sowie z.T. Benzol und CO gemessen. Die Messungen finden gemäß EU-Richtlinien und dem Bundes-Immissionsschutzgesetz kontinuierlich statt und erfüllen folgende Aufgaben/Zwecke: * Messungen nach den EU-Richtlinien für Feinstaub-PM10/PM2,5, Schwefeldioxid (SO2), Stickstoffdioxid (NO2), Benzol, Kohlenmonoxid (CO) und Ozon (O3), umgesetzt in der 39. Verordnung zum Bundes-Immissionsschutzgesetz (39. BImSchV) * Ozonwarn- und -Informationsdienst * Information der Öffentlichkeit * Bereitstellung von Daten für immissionsschutzrechtliche Genehmigungen * Aufstellung von Daten-Zeitreihen zur Ermittlung von Belastungstrends * allgemeine Überwachung der Luftqualität entsprechend der Vierten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz Nach automatischer und manueller Plausibilitätsprüfung werden die Messdaten in einer Datenbank vorgehalten und können in der Zentrale des Hamburger Luftmessnetzes mit verschiedenen Software-Tools ausgewertet werden. Aktuelle Stundenmittelwerte werden über Videotext (Norddeutscher Rundfunk NDR Seite 678, Hamburg1 Seite 155) und Internet (https://luft.hamburg.de) der Öffentlichkeit zur Verfügung gestellt. In dem Internetangebot finden sich darüber hinaus zusammengefasste und historische Daten, Charakterisierungen der Messstationen sowie weitere inhaltliche Erläuterungen.

Langjährige Entwicklung der Luftqualität - Berliner Luftgütemessnetz - Standorte und Messdaten (Umweltatlas)

Darstellung aller Stationen und Messwerte der BLUME-, RUBIS- und Passivsammler-Messnetze seit 1975 sowie ausgewählter langjährig betriebener Berliner Klimastationen

Magdeburg: Messstation am Citytunnel gehört

Halle (Saale), 01.08.2024 Magdeburg: Messstation am Citytunnel gehört Die Präsidentin jetzt zum europäischen Messnetz Die Kleinmessstation am Magdeburger Citytunnel ist seit heute Teil des europäischen Luftmessnetzes. Sie wurde zunächst als Sondermessstation in Betrieb genommen und misst seit Oktober 2023 kontinuierlich die Luftbelastung mit Stickstoffdioxid. Der Standort und das Messverfahren entsprechen den Europäischen Anforderungen an groß- und kleinräumige Standortbestimmungen. Die Messwerte werden ab sofort wie die der übrigen 25 Messstationen in Sachsen-Anhalt ans Umweltbundesamt übermittelt und sind nun auch in der LÜSA-App für alle abrufbar. Die Landeshauptstadt Magdeburg war im Zusammenhang mit dem Tunnelbau verpflichtet worden, die Stickstoffdioxid-Konzentration zu überwachen. So kann sie drohende Grenzwertüberschreitungen vorab erkennen und verkehrslenkende Maßnahmen zur Absenkung ergreifen. Ein entsprechender Maßnahmenplan sieht im Überschreitungsfall beispielsweise Umleitungen für LKW vor. 1 Pressemitteilung Nr.: 14/2024

Schwermetalldepositionen

<p>Bei den Schwermetallen Blei, Cadmium und Quecksilber ist ein Rückgang der atmosphärischen Einträge (Deposition) zu verzeichnen. Modellrechnungen zeigen: In Deutschland liegen die Schwermetalleinträge aus der Atmosphäre an den UBA Stationen im ländlichen Hintergrund im Jahr 2023 im Bereich von 0,14 – 0.54 kg Blei pro km², 7,4 – 16.1 g Cadmium pro km² und 3,2 – 10,2 g Quecksilber pro km².</p><p>Herkunft der Schwermetalle</p><p>Die Schwermetalle Blei (Pb), Cadmium (Cd) und Quecksilber (Hg) sind gekennzeichnet durch Toxizität und chemische Stabilität. Diese Eigenschaften führen dazu, dass sich diese Stoffe in der Umwelt anreichern, Schäden an Ökosystemen verursachen und auch schädliche Auswirkungen auf die menschliche Gesundheit zeigen können. Sie werden in erheblichem Umfang ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=anthropogen#alphabar">anthropogen</a>⁠ (durch menschliche Tätigkeiten) in die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ ausgestoßen/abgegeben. In der Atmosphäre können sie weiträumig und grenzüberschreitend transportiert werden. Durch Depositionsvorgänge (Ablagerung) gelangen sie aus der Atmosphäre auch in andere Umweltmedien. Ein erheblicher Teil der Schwermetalle gelangt aber auch durch erneute Freisetzung bereits früher deponierter Mengen in die Atmosphäre. Es finden somit eine Resuspension (Blei, Cadmium) und Reemission (Quecksilber) statt. In Deutschland sind im Zeitraum 1990 bis 2023 grundsätzlich rückläufige <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/schwermetall-emissionen">Schwermetallemissionen</a> zu beobachten. Dies zeigt sich auch in den gemessenen und modellierten Depositionsdaten.</p><p>Im Rahmen des europäischen Überwachungsprogramms <a href="http://www.emep.int/">EMEP</a> wird mittels atmosphärischer Chemie-Transportmodelle die gesamte Ablagerung (nasse und trockene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠) ausgewählter Schwermetalle flächendeckend für die EMEP-Region (Europa und Zentralasien) berechnet. Die Daten der Modellrechnungen werden in jährlichen Berichten durch das <a href="https://msc-east.org/publications/">Meteorological Synthesizing Centre - East</a> (⁠<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=MSC#alphabar">MSC</a>⁠-E) veröffentlicht.</p><p> Gesamtdepositionen von Blei</p><p>Die Gesamtdeposition von Blei in der EMEP Region lag 2022 in der Größenordnung von 0,1 bis 1 kg/km²/Jahr mit den höchsten Werten in Zentraleuropa und niedrigsten im nördlichen Teil der EMEP Region. Saisonale Änderungen in der Depositionsrate spiegeln den Einfluss von staubgetragener ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ aus Afrika und Zentralasien wider, die am stärksten auf Südeuropa auswirkt. In Zentral-sowie Südeuropa dominieren außerdem die Depositionen aus EMEP Regionen und primären anthropogenen Quellen, insbesondere in Ländern mit bedeutenden eigenen nationalen Emissionen wie Deutschland oder Polen. In kleineren Nachbarländern hingegen tragen grenzüberschreitende Transporte maßgeblich zu den Depositionen bei. Insgesamt beläuft sich der Anteil der grenzüberschreitenden Deposition in der EMEP Region auf über 50%.</p><p>Innerhalb Deutschlands traten die niedrigsten Pb-Depositionen (&lt; 0,5 kg Pb/km²) vorwiegend im Norden und in der Mitte sowie am Alpenrand auf (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Gesamtdepositionen von Cadmium</p><p>Die Cadmium-Gesamtdepositionen in der EMEP Region variieren im Bereich von 5 bis 60 g Cd/km². In Deutschland traten die höchsten Cd-Depositionen (z. T. &gt;&nbsp;60&nbsp;g Cd/km²) in Westdeutschland (NRW), die niedrigsten Cd-Depositionen (z.&nbsp;T. &lt;&nbsp;15&nbsp;g Cd/km²) vorwiegend in Teilen Nord-, Süd und Mitteldeutschlands (MV, TH, BY) auf (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Gesamtdepositionen von Quecksilber </p><p>Die Quecksilber-Gesamtdepositionen im EMEP Gebiet lagen in 2022 größtenteils im Bereich von bis zu 25 g Hg/km² mit einzelnen Hotspots im Osten Europas. Die höchsten Hg-Depositionen in Deutschland traten großräumig in Westdeutschland (NRW), die niedrigsten Hg-Depositionen (&lt; 10 g Hg/km²) großräumig vorwiegend in der Mitte Süd- und Norddeutschlands (siehe Karte „Modellierte geographische Verteilung der Gesamtdepositionen in der EMEP-Region, 2022“).</p><p>Messungen des Luftmessnetzes des Umweltbundesamtes</p><p>Schwermetalldepositionen werden auch im <a href="https://www.umweltbundesamt.de/luft/luftmessnetze/ubamessnetz.htm">Luftmessnetz des Umweltbundesamtes</a> (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) bestimmt. Dabei wird die nasse ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ erfasst, d. h. die mit Regen und Schnee eingetragenen Schwermetalle. Die nasse Deposition trägt ca. ¾ zur Gesamtdeposition bei.</p><p>Die <a href="https://ebas-data.nilu.no/">„EBAS“ Datenbank</a> enthält unter anderem auch Schwermetalldepositions-Daten aller deutschen Messstationen. Die nasse Schwermetalldepositionen an sechs UBA-Luftmessstationen im Jahr 2023 sind in der Tabelle „Nasse Jahresdepositionssummen von Schwermetallen und Halbmetallen im Luftmessnetz des Umweltbundesamtes 2023“ zusammengefasst. Die nassen Depositionen von Blei (0,14 – 0.54 kg/km²), Cadmium (7,4 – 16.1 g/km²) und Quecksilber (3,2 – 10,2 g/km²) liegen meist unter den mit dem EMEP-Modell für Deutschland berechneten Gesamtdepositionen, welche zusätzlich die trockenen Depositionen beinhalten..</p>

Daten des Hamburger Luftmessnetzes (Halm)

Das Hamburger Luftmessnetz (HaLm) * betreibt 15 Messstationen zur Überwachung der Luftqualität * unterscheidet zwischen Hintergrund-, Ozon- und Verkehrs-Messstationen * misst kontinuierlich gemäß EU-Richtlinien und dem Bundesimmissionsschutzgesetz Die Hintergrund-Messstationen dienen der allgemeinen Luftüberwachung. Sie erfassen die Schadstoffkomponenten Schwefeldioxid (SO2), Stickstoffmonoxid (NO), Stickstoffdioxid (NO2) und Staub (Feinstaub/PM10: Partikel kleiner als 10 Mikrometer). Einige Stationen messen außerdem Kohlenmonoxid (CO). Die Ozon-Messstationen ermitteln neben Ozon (O3) auch die NO2- und NO-Belastungen. An den Verkehrs-Messstationen werden die für den Autoverkehr typischen Schadstoffe Benzol, NO, NO2, CO und Feinstaub gemessen. Die Messungen finden gemäß EU-Richtlinien und dem Bundes-Immissionsschutzgesetz kontinuierlich statt und erfüllen folgende Aufgaben/Zwecke: * Messungen nach den EU-Richtlinien für Schwebstaub PM10 / PM2,5, Schwefeldioxid (SO2), Stickstoffdioxid (NO2), Benzol, Kohlenmonoxid (CO) und Ozon (O3), umgesetzt in der 39. Verordnung zum Bundes-Immissionsschutzgesetz (39. BImSchV) * Ozonwarn- und -Informationsdienst * Information der Öffentlichkeit * Bereitstellung von Daten für immissionsschutzrechtliche Genehmigungen * Aufstellung von Daten-Zeitreihen zur Ermittlung von Belastungstrends * allgemeine Überwachung der Luftqualität entsprechend der Vierten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz Nach automatischer und manueller Plausibilitätsprüfung werden die Messdaten in einer Datenbank vorgehalten und können in der Zentrale des Hamburger Luftmessnetzes mit verschiedenen Software-Tools ausgewertet werden. Aktuelle Stundenmittelwerte werden über Videotext (Norddeutscher Rundfunk NDR Seite 678, Hamburg1 Seite 155), Ansagetelefon (040 42845-2424) und Internet der Öffentlichkeit zur Verfügung gestellt.

Luftreinhaltung, Atomrechtliche Aufgaben

Zu den Aufgaben des Referats Luftreinhaltung/ Atomrechtliche Aufgaben gehören: im Bereich Luftreinhaltung > die Bearbeitung von planerischen und grundsätzlichen Fragen der Luftreinhaltung, > die Zuständigkeit für - die Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39. BImSchV), - die Verordnung über Emissionsgrenzwerte für Verbrennungsmotoren (28. BImSchV), - das Hamburgisches Gesetz zur Umsetzung der europäischen Schwefel-Richtlinie 2005/33/EG, > die Steuerung der Luftqualitätsüberwachung (Luftmessnetz), > die Bewertung der Luftqualität, > die Aufstellung und Fortschreibung von Luftreinhalteplänen, > die Entwicklung und Begleitung von Luftreinhaltemaßnahmen, > die Bewertung von Luftreinhaltungsaspekten im Rahmen der Bauleitplanung, > die Mitwirkung an Rechtsetzungsverfahren, > die Vertretung Hamburger Interessen in Bund-Länder-Gremien, im Bereich Atomrechtlicher Aufgaben > die Wahrnehmung atomrechtlicher Aufgaben für das Land Hamburg in der Zusammenarbeit zwischen Bund und Ländern, > die Risikovorsorge und Gefahrenabwehr beim legalen und illegalen Umgang mit Kernbrennstoffen, > die Bearbeitung von Grundsatzfragen beim Schutz der Bevölkerung vor der schädlichen Einwirkung ionisierender Strahlung, > die Optimierung der nuklearen Katastrophenschutzvorsorge für die hamburgische Bevölkerung, im Bereich Emissionskataster > das Führung des Emissionskatasters Luft und die Erteilung von Auskünften, > die Organisation und Durchführung der Datenerhebungen in Hamburg für das Emissionskataster sowie für das nationale und das europäische PRTR (Pollutant Release and Transfer Register, Schadstofffreisetzungs- und -verbringungsregister), > die Erfüllung weiterer nationaler und europäischer Berichtspflichten, > das Verfassen von Stellungnahmen zur Bauleitplanung > die Aufbereitung und Bereitstellung der Informationen für diese Aufgaben in GIS-Systemen, sowie der Immissionsschutz vor elektromagnetischen Feldern bei Anlagen der Energie- und Kommunikationstechnik.

1 2 3 4 527 28 29