PlumeBaSe beschäftigt sich mit der detaillierten Analyse der Zusammensetzung organischer Aerosole, freigesetzt während der Verbrennung fossiler Treibstoffe durch Schiffe, und deren weiterem Weg in der marinen Umwelt. Durch die hochaufgelöste Beprobung der Aerosole und ihrer Transformationsprodukte vom Schiffsschornstein bis in die Ostsee wird eine Brücke zwischen Atmosphären- und Meeresforschung geschlagen. Der zunehmende globale Warentransport auf dem Wasserweg erhöht den Druck auf marine Ökosysteme. Große Schiffe emittieren, zusätzlich zu gasförmigen Schadstoffen, große Mengen an Partikeln reich an Spurenmetallen und organischen Schadstoffen zunächst in die Atmosphäre von wo aus die Schadstoffe ins Meer gelangen. Negative Auswirkungen saurer Oxide und organischer Schadstoffe sind bekannt, weniger hingegen wurde bisher die Deposition der Schiffsaerosole und deren Beitrag zur Meeresverschmutzung untersucht. Besonders lückenhaft ist das Verständnis für die Alterungsprozesse während des atmosphärischen Transports sowie in der Wassersäule, beispielweise durch UV-Strahlung oder reaktive Sauerstoffspezies, obwohl die Transformationsprodukte sehr unterschiedliche Auswirkungen auf Biota haben und die Molekülstruktur den weiteren Weg in der Umwelt maßgeblich beeinflussen können.Um diese Wissenslücken zu schließen, soll in PlumeBaSe durch eine vielschichtige Umweltbeprobung eine neuartige, umfassende Erhebung des Emissionstransports und der Aerosolalterung erreicht werden. Die Projektpartner des Leibniz Instituts für Ostseeforschung Warnemünde (IOW), der Universität Rostock (UR) und der Karls-Universität Prag (CU) befassen sich mit den folgenden zentralen Hypothesen: (H1) Schiffsemissionen tragen signifikant zur Verschmutzung des Oberflächenwassers bei, der Eintrag ist besonders hoch entlang der Hauptschifffahrtsrouten. (H2) Während des atmosphärischen und marinen Transports ändern sich die physikalischen (Partikelgrößenverteilung) und chemischen (molekulare Profile) Eigenschaften der emittierten Aerosole, was ihren weiteren Weg in der Umwelt beeinflusst. (H3) Die Veränderungen auf molekularer Ebene können verfolgt und genutzt werden um Schadstoffeinträge über die Atmosphäre von den über Nassabscheider eingebrachte Verschmutzungen zu unterscheiden.Diese angestrebten Zielsetzungen werden in drei Arbeitspaketen adressiert via I. Zeitlich und räumlich hochaufgelöster Analyse von Partikelgrößenverteilungen direkt in den Abgasfahnen der Schiffe unter Nutzung eines unbemannten Luftschiffes, kombiniert mit hochsensitiven gerichteten und ungerichteten chemischen Analysen der II. atmosphärischen Schadstoffe in Partikeln unterschiedlicher Größe, sowie der III. Schadstoffe im Meerwasser. Die Ostsee stellt durch die hohe Schiffsverkehrsdichte, gute Erreichbarkeit und Regulation der Schiffsemissionen ein ideales Untersuchungsgebiet dar, welches sich auch als Modellsystem für die Beeinflussung küstennaher Ozeane durch Schiffsverkehr weltweit eignet.
Im Klimasystem der Arktis spielen Aerosolpartikel eine bedeutende Rolle für das Verständnis der schnellen Erwärmung. Durch die niedrige Hintergrundkonzentration sind lokale Neubildungs-Ereignisse eine wichtige Quelle, und können signifikant zu Wolkenkondensationskeimen beitragen. Aufgrund der schweren Erreichbarkeit gibt es insbesondere wenig Messungen zur vertikalen Verteilung von Aerosolpartikeln in der Arktis. Die Aerosol-Konzentration ist stark variabel in Raum und Zeit, und daher schwierig in Modellen abzubilden. Räumliche Verteilung und zeitliche Variabilität auf kleinen Skalen hängen von den Umgebungsbedingungen ab, wie der Stabilität der Atmosphäre, Wolken, Orographie und Oberflächeneigenschaften. Daher untersucht das Projekt AIDA (Aerosol-Variabilität und Interaktion mit Umgebungsbedingungen basierend auf der kleinskaligen vertikalen und horizontalen Verteilung bei Messungen in der Arktis) die kleinskalige Variabilität am Standort Ny-Alesund in Spitzbergen, einem natürlichen Labor von kleinskaligen Kontrasten in den Umgebungsbedingungen, mit einer Kombination von zeitgleichen Fesselballon- und Drohnen-Messungen, die in die bestehenden, kontinuierlich messenden Observatorien in Ny-Alesund und auf dem Zeppelinberg eingebettet werden. Die Messungen sind für die Übergangszeit zwischen Arktischem Dunst mit überwiegend Ferntransport im Frühling und überwiegend lokal gebildeten Aerosolpartikeln im Sommer geplant. Drohne und Fesselballon sind mit ähnlichen Aerosol-Sensoren ausgerüstet: Die wichtigsten Messgeräte sind dabei jeweils zwei parallel betriebene Kondensationskernzähler mit unterschiedlicher unterer Nachweisgrenze im Größenbereich 3-20 nm, um neu gebildete Aerosolpartikel nachzuweisen. Ein leichtes Aerosol-Größenspektrometer kommt zum ersten Mal auf dem Ballon zum Einsatz, um die Aerosol-Größenverteilung zwischen 8 und 300 nm zu messen. Außerdem sind Sensoren für größere Aerosolpartikel implementiert, um die Neubildung von Aerosolpartikeln in Abhängigkeit von bereits existierendem Aerosol und dem Beitrag von Ferntransport zu untersuchen. Temperatur und Feuchte werden mit hoher zeitlicher Auflösung gemessen, um den Einfluss von Stabilität und vertikaler Durchmischung zu charakterisieren. Der dreidimensionale Windvektor wird gemessen, da das lokale Windfeld sehr stark von der lokalen Orographie geprägt ist. Es wird erwartet, dass die kleinskalige Variabilität der thermodynamischen Bedingungen einen signifikanten Einfluss auf die Neubildung und das Wachstum von neu gebildeten Aerosolpartikeln hat. Die Daten der horizontalen und vertikalen Verteilung der Aerosol-Partikel werden anschließend analysiert in Zusammenarbeit mit den Partnern, die komplementäre Mess-Systeme in Ny-Alesund, auf dem Zeppelin-Berg und an anderen arktischen Standorten betreiben. Die Ergebnisse tragen bei zu einem besseren Verständnis der kleinskaligen Verteilung von Aerosolpartikeln, deren Entstehung, Wachstum und vertikalen Transportprozesse.
ENavi betrachtet die Energiewende als einen gesamtgesellschaftlichen Transformationsprozess. Ziel des vorliegenden Vorhabens ist es, die systemischen Erkenntnisse an Modellregionen und Reallaboren praktisch zu erproben und eine enge Verbindung zwischen wissenschaftlicher Erkenntnis und deren Umsetzung in die Praxis zu schaffen. Der 'Wandel von Werten und Lebensstilen', ein Hauptziel des AP6, soll im Teilprojekt der Zeppelin Universität anhand der Frage untersucht werden, wie Verbraucher befähigt und motiviert werden können, ihre Energienachfrage nachhaltiger zu gestalten sowie die Nachfrage nach erneuerbaren Energien zu erhöhen. Dazu wird auf ausgewählte Elemente einer verhaltensbasierten Energienachfragepolitik fokussiert, insbesondere auf 'grüne Defaults' im Rahmen der Grundversorgung sowie der 'aktiven Wahl' von Stromkunden. Im Rahmen der Teilstudie soll untersucht werden, wie Energieanbieter in Deutschland bisher mit Voreinstellungen und aktiver Wahl umgehen und welches Potential für die Umsetzung der Energiewende in der Anwendung von grünen Defaults liegt: Wo werden welche Art von Defaults eingesetzt? Welche Vor- und Nachteile gibt es, welche Chancen entstehen speziell für die Energiewende? Welche ökonomischen und juristischen Herausforderungen stellen sich? Wie müssen diese Nudges designed werden, um effektiv zu sein? Welche praktischen Konsequenzen ergeben sich daraus für die Politik auf Bundes- und Länderebene?
Das transdisziplinäre Verbundprojekt KERNiG zielt darauf, in zwei Städten vergleichbarer Größe und Struktur die nachhaltigere Gestaltung des Ernährungssystems anzustoßen. Dieses Vorhaben umfasst - die interdisziplinäre und multidimensionale Analyse des kommunalen Ernährungssystems; - die Identifikation möglicher Ansätze zur nachhaltigen Gestaltung des Ernährungssystems; - die Initiierung und Erprobung von durch die Kommunen ausgewählten Strategien und Maßnahmen; - die Entwicklung von kontextsensitiven Steuerungsinstrumenten und -ansätzen, die in andere Kommunen übertragen werden können. Das Teilprojekt der Zeppelin Universität Friedrichshafen hat zum Ziel, das Ernährungsverhalten von Verbrauchern in den Kommunen in Richtung nachhaltigere Alternativen zu beeinflussen. Es geht um die Entwicklung und Erprobung von Politikinstrumenten, die stärker lenken als nur Information und Bildung, weniger paternalistisch sind als Verbote und zudem zielgenauer wirken. Die 'verhaltensbasierte Regulierung', häufig Nudging genannt, ist ein solcher Ansatz. In der Umsetzungsphase wird eine kleinere Anzahl von Nudges im Feld gemeinsam mit den Kommunen getestet, inkl. Bewertung und Optimierung der Nudges (im Sinne eines 'test - learn - adapt').
Im Juni 2016 fand nach jahrelanger intensiver Vorbereitung in der Ostsee eine ozeanografische Messkampagne statt, um die Bedeutung kleiner Ozeanwirbel für den Energietransport und das Algenwachstum im Meer besser zu verstehen. Forscher des Helmholtz-Zentrums Geesthacht setzen hochauflösende Spezialkameras in Flugzeugen und Zeppelin ein, um die Wirbel aufzuspüren und dann mit Schiffen zu vermessen. Das Experiment wurde mit Hilfe neuer 360°- Videotechnik aufgezeichnet und als Rohmaterial abgespeichert. Aus den vorliegenden Aufnahmen könnte mit Hilfe der Fördermittel ein Planetariums-Film produziert werden, der die Geschichte der Wirbeljäger anschaulich und spannend erzählt, um Begeisterung und Faszination für die Meeresforschung zu wecken. Die Aufnahmen werden mit einzelnen animierten Sequenzen ergänzt, die nicht als Realbilder dargestellt werden können und fundamentale wissenschaftliche Prozesse wie Strömungen oder Wirbel anschaulich erklären. Einzelne Module mit Aufnahmen von Zeppelin, Forschungsschiffen, aber auch Unterwasseraufnahmen von Ozeangliedern und autonomen Robotern werden durch diese Animationselemente zu einer schlüssigen Geschichte zusammengefasst. Meeresforschung wird so 'erlebbar' und die Zuschauer können direkt erfahren, was es heißt, Wissenschaft zu betreiben und gesellschaftsrelevante Fragestellungen zu bearbeiten. Der Auftakt des neu produzierten Planetariumsfilms wird von publikumswirksamen Veranstaltungen begleitet. So wird die Show im Sommer 2017 während des Wissenschaftsjahres 'Meere und Ozeane' bundesweit in einer Vielzahl von Planetarien gezeigt und mit einer Premierenveranstaltung in Hamburg vorgestellt. Der Planetariumsfilm kann außerdem in der Mobilen Kuppel am Tag der offenen Tür des Bundesministeriums für Bildung und Forschung im August 2017 und beim Tag der Deutschen Einheit 2017 in Mainz präsentiert werden. Titel der Planetariumsproduktion: Die Wirbeljagd - Expedition Uhrwerk Ozean.
Am 15. April 2013 starteten Jülicher Wissenschaftler den zweiten Teil ihrer Messkampagne im Rahmen des EU-Großforschungsprojekts PEGASOS, in dem 26 Partner aus 14 europäischen Staaten sowie Israel Zusammenhänge zwischen Atmosphärenchemie und Klimawandel erforschen. Der Zeppelin startete von Friedrichshafen nach Nordeuropa und wird rund um seinen Zielort Hyytiäla in Finnland Messungen durchzuführen.
Am 04. Mai 2012 fiel der offizielle Startschuss für den bisher längsten Einsatz des Zeppelins NT für die Klimaforschung – koordiniert von Jülicher Wissenschaftlern. Insgesamt zwanzig Wochen fliegt das Luftschiff quer durch Europa und misst die Luftzusammensetzung in den Niederlanden, Italien, über der Adria und schließlich 2013 über Finnland. Die Messflüge sind Teil des EU-Großforschungsprojekts „PEGASOS“, in dem 26 Partner aus 14 europäischen Staaten sowie Israel Zusammenhänge zwischen Atmosphärenchemie und Klimawandel erforschen. Bundesforschungsministerin Annette Schavan würdigte beim feierlichen Auftakt der Kampagne in Friedrichshafen das Projekt.
EUROZEP ist ein EU-Projekt, bei welchem ein Zeppelin als Messplattform fuer Turbulenz-, Mikrophysik- und Strahlungsmessungen ueber und innerhalb von verschmutzten Grenzschichtwolken benutzt werden soll. Eines der Ziele dieses Projektes besteht darin, den Einfluss von Verschmutzungen durch anthropogene Aerosolpartikel auf die mikrophysikalischen Eigenschaften der Wolken zu quantifizieren sowie die damit verbundenen Konsequenzen auf die klimarelevanten Strahlungseigenschaften der Wolken zu untersuchen. Der Zeppelin wird u.a. ueber eine in die Wolke absenkbare Plattform verfuegen. Unsere Aerosol- und Wolken-Gruppe ist fuer die Strahlungsmessungen verantwortlich und die Aerosolcharakterisierung zustaendig. Dabei wird das neue spektrale Albedometer (s. unten) des IfT zum Einsatz kommen. Ein Testexperiment ist in der ersten Jahreshaelfte 2000 geplant. Die wesentliche Messkampagne soll im Winter 2000/2001 stattfinden. In einer Abbildung ist die geplante Messgeometrie fuer die Strahlungsmessungen dargestellt. Auf der Topplattform des Zeppelin wird die aufwaertsblickende Komponente des Albedometers installiert. Damit werden die abwaertsgerichteten, spektralen Strahlungsflussdichten ueber der Wolke gemessen. Die abwaertsblickende Komponente des Albedometers wird mit einem Teleskop ausgeruestet, so dass die von der Wolke reflektierten, spektralen Strahldichten in einem engen Winkelbereich (ugf. 1 sr) gemessen werden koennen. Eine abwaertsblickende Videokamera soll visuell die horizontalen Inhomogenitaeten der Wolkenoberflaeche registrieren. Innerhalb der Godola wird die physikalische Aerosolcharakterisierung (Groessenverteilung, Streu- und Absorptionseigenschaften) innerhalb und ueberhalb der Wolke mittels eines TDMPS-Systems, Gesamtpartikelzaehler, einem Optischen Partikelzaehler, einem PSAP und einem Nephelometer durchgefuehrt. Hauptauftragnehmer: Prime Contractor: Institut für Troposphärenforschung e.V.; Leipzig; Germany.
Origin | Count |
---|---|
Bund | 18 |
Land | 6 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 13 |
Taxon | 2 |
Text | 4 |
Umweltprüfung | 1 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 8 |
offen | 15 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 24 |
Englisch | 5 |
Resource type | Count |
---|---|
Datei | 2 |
Dokument | 3 |
Keine | 15 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 13 |
Lebewesen & Lebensräume | 20 |
Luft | 24 |
Mensch & Umwelt | 24 |
Wasser | 11 |
Weitere | 23 |