API src

Found 147 results.

Entwicklung einer Feststoffsäure-Brennstoffzelle mit Magneli-geträgerter, oxidationsresistenter Kathode mit Eignung für kombinierte Ammoniak-Cracker-Brennstoffzellen-Systeme

Bodenkarte von Niedersachsen 1 : 50 000 - Denitrifizierungspotential des Bodens

Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen für den Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenkarte (BK50, Gehrt et al 2021) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Die Methodik ist im Geobericht 19 (Bug et al. 2020) dargestellt. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Solche Raten sind vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008). Referenzen: BUG, J., HEUMANN, S., MÜLLER, U. & WALDECK, A. (2020): Auswertungsmethoden im Bodenschutz - Dokumentation zur Methodenbank des Niedersächsischen Bodeninformationssystems (NIBIS®). – GeoBerichte 19: 383 S. Hannover: LBEG GEHRT, E., BENNE, I., EVERTSBUSCH, S., KRÜGER, K. & LANGNER, S. (2021): Erläuterung zur BK 50 von Niedersachsen. – GeoBerichte 40: 282 S., 125 Abb., 100 Tab.; Hannover (LBEG). WIENHAUS, S.,HÖPER, H., EISELE, M.,MEESENBURG, H. & SCHÄFER,W. (2008): Nutzung bodenkundlich- hydrogeologischer Informationen zur Ausweisung von Zielgebieten für den Grundwasserschutz - Ergebnisse eines Modellprojektes (NOLIMP) zur Umsetzung der EG-Wasserrahmenrichtlinie. – GeoBerichte 9: 56 S., 13 Abb., 5 Tab., Anh.; Hannover (LBEG).

Denitrifikationspotenzial des Bodens

Das Denitrifikationspotenzial beschreibt die Fähigkeit des Bodens durch mikrobielle Umsetzungen und unter anaeroben Bedingungen einen Teil des Nitrats wieder in Luftstickstoff (z.T. Lachgas) umzusetzen. Voraussetzungen des Nitratabbau sind die Präsenz von Nitrat, die Abwesenheit von Sauerstoff und die Anwesenheit von oxidierbarer organischer Materie. Das Denitrifikationspotenzial wird auf Grundlage der niedersachsenweiten Bodenübersichtskarte (BÜK50) abgeleitet und gilt bis zu einer Tiefe von zwei Metern. Jedem Bodentyp ist in Abhängigkeit vom Grund- bzw. Stauwassereinfluss eine Denitrifikationsstufe mit einer mittleren, jährlichen Rate zugeordnet. Insgesamt gibt es fünf Denitrifikationsstufen, die durch mittlere Denitrifikationsraten von 5, 20, 40, 60 und 100 kg N/ha*a (in torfhaltigen Substraten bei hohem Grundwasserstand 150 kg N/ha*a) gekennzeichnet sind. Die niedrigsten Denitrifikationsraten weisen gering humose Standorte auf, bei denen ganzjährig eine Wassersättigung des Bodenkörpers ausgeschlossen wird. Mit Zunahme des Humusgehalts oder durch das Auftreten von temporärer Nässe bei Grund- oder Stauwassereinfluss steigt das Denitrifikationspotenzial der Böden. Die zweite Denitrifikationsstufe steht für eine mittlere Denitrifikationsrate von 20 kg N/ha*a. Grundsätzlich ist mit den höchsten Denitrifikationsraten zu rechnen, sobald Grundwasser in humus- oder schwefelhaltigen Bodenschichten steht. Bei der Denitrifikationsstufe 5 (>> 150 kg N/ha*a) kann die Denitrifikationsrate bis 3 000 kg N/ha*a betragen. Nach WELL et al. (1999, 2005) sind solche Raten vor allem in Niedermooren und humusreichen Böden zu finden, bei denen die Grundwasseroberfläche ganzjährig bei = 6 dm u. GOK im Torfkörper ansteht. Da bei der Denitrifikation organische Substanz in wassergesättigten Bodenschichten abgebaut wird, ist vor allem für mineralische Horizonte anzunehmen, dass die Denitrifikationsrate im Laufe der Jahrzehnte und Jahrhunderte abnimmt. Auch Grundwasserabsenkungen können die Denitrifikationsleistung in der Bodenzone eines Standortes deutlich herabsetzen (Wienhaus et al., 2008).

Potenzielle Nitratkonzentration im Sickerwasser – Basis-Emissionsmonitoring 2023

Die potenzielle Nitratkonzentration im Sickerwasser in [mg NO3/l] ist eine wichtige Kenngröße zur Abschätzung und Bewertung der Sickerwassergüte an der Untergrenze des Wurzelraumes. Im Rahmen des landesweiten Basis-Emissionsmonitorings erfolgt die Abschätzung der potenziellen Nitratkonzentration auf Grundlage des Stickstoff-Flächenbilanzsaldos aus der Landwirtschaft auf Gemeindeebene, der atmosphärischen Stickstoff-Deposition, der Landnutzung nach ATKIS-DLM, dem Nitratabbau im Boden (Denitrifikation) sowie der Sickerwassermenge. Die berechnete potenzielle Nitratkonzentration im Sickerwasser wird neben den gemessenen Nitratkonzentrationen in den Grundwassermessstellen zur Gefährdungsabschätzung und Bewertung des chemischen Zustands der Grundwasserkörper gemäß EG-WRRL herangezogen. Bei der landesweit ermittelten potenziellen Nitratkonzentration im Sickerwasser ist zu beachten, dass die Werte aufgrund der räumlichen Auflösung der verfügbaren Eingangsdaten nicht für eine schlaggenaue Bewertung geeignet sind. Detaillierte Methodenbeschreibung siehe: Erläuterung_Basis-Emissionsmonitoring_LBEG_2023.pdf

Einsatz von Ökobioziden auf unterschiedlichen Gesteinen zur Reinigung biogener Besiedlung vor dem Hintergrund der Steigerung der Wirksamkeit der Maßnahmen und zur Verlängerung der Reinigungsintervalle

Zielsetzung: Seit 15-20 Jahren wird in Fachkreisen an freibewitterten Baudenkmalen und Skulpturen eine intensivere biogene Besiedelung beobachtet. Grund ist einerseits die seit dem Beginn der 1990er Jahre extrem reduzierte SO2-Belastung der Luft. Dadurch hat sich der pH-Wert des Niederschlags in Richtung neutrales Milieu verschoben, was sich offensichtlich günstig auf Mikroorganismen und den Lebensraum Gesteinsoberfläche auswirkt. Die anthropogen verursachte Belastung der Luft mit Stickstoff befördert die Entwicklung der Mikroorgansimen wiederum deutlich. Biogene Besiedelungen können, neben der optischen Beeinträchtigung, sowohl physikalische als auch chemische Verwitterungsprozesse auslösen und damit zum Informationsverlust am Denkmal führen. Die Erfahrung zeigt, dass einmalig durchgeführte Reinigungsmaßnahmen bezogen auf die Wiederbesiedelungsneigung langfristig meistens wenig erfolgsversprechend sind. Zum Teil ist sogar eine massive Entwicklung biogener Besiedlungen an zuvor gereinigten Oberflächen zu beobachten. Eine Wiederbesiedlung kann in der Regel nur durch ein implementiertes Pflegekonzept begrenzt werden, die jedoch aufgrund damit verbundener regelmäßiger Kosten nur selten anzutreffen sind. Ein Anreiz, solche Pflegekonzepte zu etablieren, könnte beispielsweise eine Verlängerung des Zeitraums zwischen notwendigen Pflegeintervallen sein, die mit einer Steigerung der nachhaltigen Wirksamkeit von Reinigungsmaßnahmen einhergehen würde. Hauptsächlicher Fokus der Untersuchungen im Rahmen des Forschungsprojekts liegt auf Ökobioziden auf Basis verschiedener Phytochemikalien und darauf, inwieweit sie praxistauglich als biozide Wirkstoffdepots auf gereinigten Oberflächen und als Desinfektions- und Reinigungsmittel auf besiedelten Flächen eingesetzt werden können. Die Untersuchungen verfolgen auch den ökologischen Aspekt, praxistaugliche Alternativen zum Einsatz von synthetischen Bioziden herauszuarbeiten. Neben der Wirksamkeit werden auch mögliche Auswirkungen auf das Gestein mitbetrachtet. Es soll geprüft werden, inwieweit es durch den Einsatz von Ökobioziden praxistauglich gelingen kann, Oberflächen von biogener Besiedelung zu reinigen und diese nachhaltig zu vergrämen. Dadurch könnte es gelingen, Intervalle zwischen erforderlichen Reinigungsmaßnahmen deutlich zu verlängern, wodurch demzufolge weniger Eingriffe am Kulturgut erforderlich wären. Der Erhalt der historischen Substanz sowie die Schonung von Umwelt und finanzieller Ressourcen wären die Vorteile.

Wechselwirkungen zwischen N2-Fixierung und Denitrifizierung in einem Erdsystem-Modell mit flexibler Stöchiometrie und deren Einfluss auf das marine Stickstoffinventar in einem sich wandelnden Klima

Der Schlüssel zu Verständnis und Projektion des künftigen Stickstoffinventars des Ozeans und der Veränderung der Biologischen Pumpe im globalen Klimawandel liegt in der Frage, wie und wie stark die Fixierung von atmosphärischem Stickstoff und die Denitrifizierung im Ozean gekoppelt sind. Während in bisherigen Modellstudien Stickstofffixierung und Denitrifizierung eng gekoppelt sind, zeigt ein neu entwickeltes optimalitätsbasiertes Ökosystemmodell mit flexibler Stöchiometrie (OPEM) im globalen UVic-ESCM eine deutlich schwächere Kopplung. In diesem Projekt sollen die Faktoren und Mechanismen, die die Kopplung steuern, identifiziert und ihre Veränderung in ver- schiedenen Klimaszenarien untersucht werden. Hierzu wird OPEM in einem vorindustriellen Szenario, einem Szenario der Maximalphase der letzen Eiszeit und einem heutigen Szenario angewendet und die Sensitivität der Modellergebnisse in Bezug auf das ozeanische Stickstoffinventar und die biolo- gische Kohlenstoffpumpe bewertet. Das Ziel des Projekts ist es, die Steuerungsprozesse des marinen Stickstoffinventars genauer abzubilden, um bessere Projektionen der biogeochemischen Kreisläufe im Ozean und ihrer Auswirkungen auf den CO2-Gehalt der Atmosphäre zu ermöglichen.

Nutzung eisenbasierter Module zur Versorgung mit hochreinem Wasserstoff unter Druck auf der Basis der Luftvergasung biogener Reststoffe, Teilvorhaben: Reinigung wasserstoffhaltiger Gase aus der Biomassevergasung, Speicherung und Generierung hochreinen Wasserstoffes

Pyrolyse dickwandiger Faserverbundwerkstoffe als Schlüsselinnovation im Recyclingprozess für Rotorblätter von Windenergieanlagen, Teilvorhaben: Atmosphärendruck-Plasmaanlage und Prozessentwicklung für die trockenchemische Aktivierung und Beschichtung von Fasergelegen

Das Teilprojekt beschäftigt sich mit der Konzeptionierung, der Entwicklung und dem Aufbau einer unter Atmosphärendruck arbeitenden Plasmaanlage zur Reinigung und Beschichtung von Glas- und Kohlenstofffasergelegen sowie der Entwicklung einer geeigneten Haftvermittlerschicht zur späteren erneuten Einbindung der Faser in eine Duromerharz-Matrix. Ziel ist es, die mit Hilfe der Pyrolyse (thermisch und Mikrowelle) freigelegten Fasergelege mit der inlinefähigen Plasmatechnik ohne Beschädigung der Fasern zu reinigen, zu aktivieren und anschließend zu beschichten, damit eine Wiederverwendung der Fasergelege mit einer sehr guten Faser/Matrixhaftung ermöglicht wird. Dazu wird ein zweistufiges Verfahren bestehend aus Plasmareinigung mit anschließender Plasmabeschichtung untersucht und eine geeignete Plasmaanlage aufgebaut und an die Anforderungen des Prozesses angepasst. Im ersten Schritt wird die Oberfläche von Restkontaminationen befreit und aktiviert und im zweiten Schritt wird eine haftvermittelnde plasmapolymere Schicht unter Eingabe von Präkursoren (chemischen Zusatzstoffen) in das Plasma auf den Fasergelegen abgeschieden. Die zu verwendende Anlagentechnik, bestehend aus Plasmagenerator, Transformator und Plasmaerzeuger wird in diversen Iterationsschleifen weiterentwickelt. Die umweltfreundliche Technik wird ausschließlich mit elektrischer Energie und Luft oder ggf. Stickstoff als Prozessgas betrieben. Die Beschichtung erfolgt trockenchemisch, lösungsmittelfrei und damit besonders umweltschonend unter Verwendung geringster Präkursormengen.

Einsatz von phototrophen Biofilmen im Agrarsektor zur Verbesserung des Pflanzenwachstums

Im Jahr 2018 wurden in Deutschland rund 866 Millionen Tonnen Treibhausgase produziert, wobei weltweit 10-12 % der anthropogenen Treibhausemissionen der Landwirtschaft zuzuordnen sind. Während der Austausch an CO2 durch die gleichzeitige CO2 Fixierung in organische Masse fast ausgeglichen ist, beträgt der Anteil der Landwirtschaft bei Methan 50 % und Lachgas sogar 60 % aller Emissionen. Dies ist vor allem auf den Einsatz mineralischer und organischer Düngemittel zurückzuführen. Ohne ein aktives Gegensteuern wird eine Steigerung der Lachgasemissionen um 30-65 % bis 2030 in der Agrarwirtschaft erwartet. Um das gesetzte klimapolitische Ziel einer weitgehenden Treibhausgas-Neutralität bis 2050 zu erreichen, stellt ein klimaschonender Anbau von nachwachsenden Rohstoffen in der Landwirtschaft eine wichtige Strategie dar. Ein zentraler Teilaspekt dieser Strategie könnte die Ansiedlung der gegenüber biotischen und abiotischen Bedingungen toleranten terrestrischen Cyanobakterien sein, die in der Lage sind Luftstickstoff zu fixieren und in - für andere Organismen verwertbaren - Stickstoff umzuwandeln und an die Umgebung abzugeben. Zusätzlich dazu wachsen terrestrische Cyanobakterien eingebettet in einer Matrix aus extrazellulären polymeren Substanzen was zu einer wünschenswerten Bodenstabilisierung und damit zum Schutz vor Bodenerosion sowie zur Förderung der Wasserspeicherung im Boden beitragen könnte. Hierzu sollen stickstofffixierende Cyanobakterien, die aus der kühlgemäßigten Klimazone isoliert wurden, eingesetzt werden. Geeignete Stämme müssen die Stickstofffixierung räumlich durch die Ausbildung von Heterozysten vom Photosyntheseapparat getrennt haben und den bioverfügbaren Stickstoff an die Umgebung abgeben. Co-Kultivierungen von Cyanobakterien mit Arabidopsis thaliana (Acker-Schmalwand) sowie Triticum aestivum (Weizen) sollen zeigen, ob eine künstlich induzierte Symbiose möglich ist. Neben der Agrarpflanze Weizen wurde A. thaliana ausgewählt, da es sich hierbei um eine schnellwachsende und gut charakterisierte Modellpflanze handelt und sie zur selben Familie wie die Nutzpflanzen Kohl, Brokkoli und Meerrettich zählt. Zur Ausbringung der Biofilme in die Agrarwirtschaft sollen diese auf einem biologisch abbaubaren Trägermaterial immobilisiert werden. Hierfür soll ein Aerosolreaktor konzipiert und charakterisiert sowie ein Animpf- und Ernteverfahren etabliert werden. Zusätzlich dazu soll der Wasserrückhalt der Biofilme durch Variation der Prozessparameter optimiert werden. Abschließend soll die Co-Kultivierung von immobilisierten Cyanobakterien auf dem Trägermaterial und Pflanzen in Pflanzsubstraten in Abhängigkeit der Temperatur untersucht werden. Hier soll die Frage beantwortet werden, ob ein periodisches Ausbringen der Cyanobakterien notwendig ist, oder ob eine dauerhafte Implementierung von Biofilmen im Boden möglich ist.

Skalierung von biochemischen und hydraulischen Einflüssen auf die Nitrataufnahme und Denitrifizierung in Fließgewässern

Die Stickstoffbelastung der Gewässer ist eine globale Bedrohung für die Meeres- und Süßwasserökosysteme. Aktuelle Schätzungen deuten darauf hin, dass etwa 13% aller landbasierten Nitratquellen, von denen 52% anthropogenen Ursprungs sind, durch Denitrifikation in Fließgewässern in atmosphärischen Stickstoff umgewandelt werden. Obwohl die Fähigkeit von Gewässerökosystemen Nährstoffe aus der Wassersäule zu entfernen, gut dokumentiert ist, stammen die meisten vorhandenen Felddaten aus kleinen Bächen. Die Extrapolation auf Flusssysteme und größerskalige Schätzungen zur Nitratentretention in Fließgewässern basieren auf Skalierungsbeziehungen, deren mechanistische Grundlage kaum verstanden wird und für die eine experimentelle Validierung weitgehend fehlt. Hierzu planen wir die physikalischen Prozesse zu untersuchen, die die Nitrataufnahme in Bächen und Flüssen steuern. Wir gehen von der Hypothese aus, dass für anthropogen beeinflusste Fließgewässer und ihre Nitratkonzentrationen die effektive biogeochemische Reaktionsrate für die Nitratretention sowohl von der Gewässertiefe, als auch von der morphologischen Komplexität des Gewässers abhängt. Erhöhte Rauhigkeit des Flussbettes und der Ufer fördert einen erhöhten turbulenten Transport durch die Grenzschicht an der Gewässersohle, verbessert den hyporheischen Austausch und führt zu höheren Denitrifikationsraten in morphologisch komplexen Gewässerabschnitten im Vergleich zu gleichförmigen Gewässerbereichen. Wir werden diese Hypothese zum ersten Mal im Freiland validieren, indem wir Messungen von Nitratumsätzen im Gewässer und dessen Interstitial mit detaillierten Messungen zur Gewässermorphologie und des turbulenten Strömungsfeldes kombinieren. Die Anwendung neu verfügbarer Messinstrumente und -technologien, einschließlich des Hyporheic Flux Meters, autonome Sensoren und Laser-Scanning, ermöglicht eine neue Qualität für die integrale Erfassung von Stoffflüssen und Umsätzen in Fließgewässern. Die aus den neuartigen Messungen abgeleiteten Erkenntnisse werden genutzt, um mechanistische Beziehungen zwischen physikalischen Transportprozessen und Nitratumsätzen im Wasser und im Sediment von Fließgewässern zu ermitteln. Sie tragen potentiell zur Verbesserung von Gewässermanagement und Renaturierungsmaßnahmen bei und ermöglichen verbesserte Abschätzungen von Nitratumsätzen in größeren Flussgebieten.

1 2 3 4 513 14 15