Zielsetzung: Seit 15-20 Jahren wird in Fachkreisen an freibewitterten Baudenkmalen und Skulpturen eine intensivere biogene Besiedelung beobachtet. Grund ist einerseits die seit dem Beginn der 1990er Jahre extrem reduzierte SO2-Belastung der Luft. Dadurch hat sich der pH-Wert des Niederschlags in Richtung neutrales Milieu verschoben, was sich offensichtlich günstig auf Mikroorganismen und den Lebensraum Gesteinsoberfläche auswirkt. Die anthropogen verursachte Belastung der Luft mit Stickstoff befördert die Entwicklung der Mikroorgansimen wiederum deutlich. Biogene Besiedelungen können, neben der optischen Beeinträchtigung, sowohl physikalische als auch chemische Verwitterungsprozesse auslösen und damit zum Informationsverlust am Denkmal führen. Die Erfahrung zeigt, dass einmalig durchgeführte Reinigungsmaßnahmen bezogen auf die Wiederbesiedelungsneigung langfristig meistens wenig erfolgsversprechend sind. Zum Teil ist sogar eine massive Entwicklung biogener Besiedlungen an zuvor gereinigten Oberflächen zu beobachten. Eine Wiederbesiedlung kann in der Regel nur durch ein implementiertes Pflegekonzept begrenzt werden, die jedoch aufgrund damit verbundener regelmäßiger Kosten nur selten anzutreffen sind. Ein Anreiz, solche Pflegekonzepte zu etablieren, könnte beispielsweise eine Verlängerung des Zeitraums zwischen notwendigen Pflegeintervallen sein, die mit einer Steigerung der nachhaltigen Wirksamkeit von Reinigungsmaßnahmen einhergehen würde. Hauptsächlicher Fokus der Untersuchungen im Rahmen des Forschungsprojekts liegt auf Ökobioziden auf Basis verschiedener Phytochemikalien und darauf, inwieweit sie praxistauglich als biozide Wirkstoffdepots auf gereinigten Oberflächen und als Desinfektions- und Reinigungsmittel auf besiedelten Flächen eingesetzt werden können. Die Untersuchungen verfolgen auch den ökologischen Aspekt, praxistaugliche Alternativen zum Einsatz von synthetischen Bioziden herauszuarbeiten. Neben der Wirksamkeit werden auch mögliche Auswirkungen auf das Gestein mitbetrachtet. Es soll geprüft werden, inwieweit es durch den Einsatz von Ökobioziden praxistauglich gelingen kann, Oberflächen von biogener Besiedelung zu reinigen und diese nachhaltig zu vergrämen. Dadurch könnte es gelingen, Intervalle zwischen erforderlichen Reinigungsmaßnahmen deutlich zu verlängern, wodurch demzufolge weniger Eingriffe am Kulturgut erforderlich wären. Der Erhalt der historischen Substanz sowie die Schonung von Umwelt und finanzieller Ressourcen wären die Vorteile.
Der Schlüssel zu Verständnis und Projektion des künftigen Stickstoffinventars des Ozeans und der Veränderung der Biologischen Pumpe im globalen Klimawandel liegt in der Frage, wie und wie stark die Fixierung von atmosphärischem Stickstoff und die Denitrifizierung im Ozean gekoppelt sind. Während in bisherigen Modellstudien Stickstofffixierung und Denitrifizierung eng gekoppelt sind, zeigt ein neu entwickeltes optimalitätsbasiertes Ökosystemmodell mit flexibler Stöchiometrie (OPEM) im globalen UVic-ESCM eine deutlich schwächere Kopplung. In diesem Projekt sollen die Faktoren und Mechanismen, die die Kopplung steuern, identifiziert und ihre Veränderung in ver- schiedenen Klimaszenarien untersucht werden. Hierzu wird OPEM in einem vorindustriellen Szenario, einem Szenario der Maximalphase der letzen Eiszeit und einem heutigen Szenario angewendet und die Sensitivität der Modellergebnisse in Bezug auf das ozeanische Stickstoffinventar und die biolo- gische Kohlenstoffpumpe bewertet. Das Ziel des Projekts ist es, die Steuerungsprozesse des marinen Stickstoffinventars genauer abzubilden, um bessere Projektionen der biogeochemischen Kreisläufe im Ozean und ihrer Auswirkungen auf den CO2-Gehalt der Atmosphäre zu ermöglichen.
Das Teilprojekt beschäftigt sich mit der Konzeptionierung, der Entwicklung und dem Aufbau einer unter Atmosphärendruck arbeitenden Plasmaanlage zur Reinigung und Beschichtung von Glas- und Kohlenstofffasergelegen sowie der Entwicklung einer geeigneten Haftvermittlerschicht zur späteren erneuten Einbindung der Faser in eine Duromerharz-Matrix. Ziel ist es, die mit Hilfe der Pyrolyse (thermisch und Mikrowelle) freigelegten Fasergelege mit der inlinefähigen Plasmatechnik ohne Beschädigung der Fasern zu reinigen, zu aktivieren und anschließend zu beschichten, damit eine Wiederverwendung der Fasergelege mit einer sehr guten Faser/Matrixhaftung ermöglicht wird. Dazu wird ein zweistufiges Verfahren bestehend aus Plasmareinigung mit anschließender Plasmabeschichtung untersucht und eine geeignete Plasmaanlage aufgebaut und an die Anforderungen des Prozesses angepasst. Im ersten Schritt wird die Oberfläche von Restkontaminationen befreit und aktiviert und im zweiten Schritt wird eine haftvermittelnde plasmapolymere Schicht unter Eingabe von Präkursoren (chemischen Zusatzstoffen) in das Plasma auf den Fasergelegen abgeschieden. Die zu verwendende Anlagentechnik, bestehend aus Plasmagenerator, Transformator und Plasmaerzeuger wird in diversen Iterationsschleifen weiterentwickelt. Die umweltfreundliche Technik wird ausschließlich mit elektrischer Energie und Luft oder ggf. Stickstoff als Prozessgas betrieben. Die Beschichtung erfolgt trockenchemisch, lösungsmittelfrei und damit besonders umweltschonend unter Verwendung geringster Präkursormengen.
Im Jahr 2018 wurden in Deutschland rund 866 Millionen Tonnen Treibhausgase produziert, wobei weltweit 10-12 % der anthropogenen Treibhausemissionen der Landwirtschaft zuzuordnen sind. Während der Austausch an CO2 durch die gleichzeitige CO2 Fixierung in organische Masse fast ausgeglichen ist, beträgt der Anteil der Landwirtschaft bei Methan 50 % und Lachgas sogar 60 % aller Emissionen. Dies ist vor allem auf den Einsatz mineralischer und organischer Düngemittel zurückzuführen. Ohne ein aktives Gegensteuern wird eine Steigerung der Lachgasemissionen um 30-65 % bis 2030 in der Agrarwirtschaft erwartet. Um das gesetzte klimapolitische Ziel einer weitgehenden Treibhausgas-Neutralität bis 2050 zu erreichen, stellt ein klimaschonender Anbau von nachwachsenden Rohstoffen in der Landwirtschaft eine wichtige Strategie dar. Ein zentraler Teilaspekt dieser Strategie könnte die Ansiedlung der gegenüber biotischen und abiotischen Bedingungen toleranten terrestrischen Cyanobakterien sein, die in der Lage sind Luftstickstoff zu fixieren und in - für andere Organismen verwertbaren - Stickstoff umzuwandeln und an die Umgebung abzugeben. Zusätzlich dazu wachsen terrestrische Cyanobakterien eingebettet in einer Matrix aus extrazellulären polymeren Substanzen was zu einer wünschenswerten Bodenstabilisierung und damit zum Schutz vor Bodenerosion sowie zur Förderung der Wasserspeicherung im Boden beitragen könnte. Hierzu sollen stickstofffixierende Cyanobakterien, die aus der kühlgemäßigten Klimazone isoliert wurden, eingesetzt werden. Geeignete Stämme müssen die Stickstofffixierung räumlich durch die Ausbildung von Heterozysten vom Photosyntheseapparat getrennt haben und den bioverfügbaren Stickstoff an die Umgebung abgeben. Co-Kultivierungen von Cyanobakterien mit Arabidopsis thaliana (Acker-Schmalwand) sowie Triticum aestivum (Weizen) sollen zeigen, ob eine künstlich induzierte Symbiose möglich ist. Neben der Agrarpflanze Weizen wurde A. thaliana ausgewählt, da es sich hierbei um eine schnellwachsende und gut charakterisierte Modellpflanze handelt und sie zur selben Familie wie die Nutzpflanzen Kohl, Brokkoli und Meerrettich zählt. Zur Ausbringung der Biofilme in die Agrarwirtschaft sollen diese auf einem biologisch abbaubaren Trägermaterial immobilisiert werden. Hierfür soll ein Aerosolreaktor konzipiert und charakterisiert sowie ein Animpf- und Ernteverfahren etabliert werden. Zusätzlich dazu soll der Wasserrückhalt der Biofilme durch Variation der Prozessparameter optimiert werden. Abschließend soll die Co-Kultivierung von immobilisierten Cyanobakterien auf dem Trägermaterial und Pflanzen in Pflanzsubstraten in Abhängigkeit der Temperatur untersucht werden. Hier soll die Frage beantwortet werden, ob ein periodisches Ausbringen der Cyanobakterien notwendig ist, oder ob eine dauerhafte Implementierung von Biofilmen im Boden möglich ist.
Die Stickstoffbelastung der Gewässer ist eine globale Bedrohung für die Meeres- und Süßwasserökosysteme. Aktuelle Schätzungen deuten darauf hin, dass etwa 13% aller landbasierten Nitratquellen, von denen 52% anthropogenen Ursprungs sind, durch Denitrifikation in Fließgewässern in atmosphärischen Stickstoff umgewandelt werden. Obwohl die Fähigkeit von Gewässerökosystemen Nährstoffe aus der Wassersäule zu entfernen, gut dokumentiert ist, stammen die meisten vorhandenen Felddaten aus kleinen Bächen. Die Extrapolation auf Flusssysteme und größerskalige Schätzungen zur Nitratentretention in Fließgewässern basieren auf Skalierungsbeziehungen, deren mechanistische Grundlage kaum verstanden wird und für die eine experimentelle Validierung weitgehend fehlt. Hierzu planen wir die physikalischen Prozesse zu untersuchen, die die Nitrataufnahme in Bächen und Flüssen steuern. Wir gehen von der Hypothese aus, dass für anthropogen beeinflusste Fließgewässer und ihre Nitratkonzentrationen die effektive biogeochemische Reaktionsrate für die Nitratretention sowohl von der Gewässertiefe, als auch von der morphologischen Komplexität des Gewässers abhängt. Erhöhte Rauhigkeit des Flussbettes und der Ufer fördert einen erhöhten turbulenten Transport durch die Grenzschicht an der Gewässersohle, verbessert den hyporheischen Austausch und führt zu höheren Denitrifikationsraten in morphologisch komplexen Gewässerabschnitten im Vergleich zu gleichförmigen Gewässerbereichen. Wir werden diese Hypothese zum ersten Mal im Freiland validieren, indem wir Messungen von Nitratumsätzen im Gewässer und dessen Interstitial mit detaillierten Messungen zur Gewässermorphologie und des turbulenten Strömungsfeldes kombinieren. Die Anwendung neu verfügbarer Messinstrumente und -technologien, einschließlich des Hyporheic Flux Meters, autonome Sensoren und Laser-Scanning, ermöglicht eine neue Qualität für die integrale Erfassung von Stoffflüssen und Umsätzen in Fließgewässern. Die aus den neuartigen Messungen abgeleiteten Erkenntnisse werden genutzt, um mechanistische Beziehungen zwischen physikalischen Transportprozessen und Nitratumsätzen im Wasser und im Sediment von Fließgewässern zu ermitteln. Sie tragen potentiell zur Verbesserung von Gewässermanagement und Renaturierungsmaßnahmen bei und ermöglichen verbesserte Abschätzungen von Nitratumsätzen in größeren Flussgebieten.
Langzeitstudien legen nahe, dass erhöhte atmosphärische CO2 Konzentration und anhaltende Stickstoffdeposition zu einem erhöhten Maß der Phosphorlimitierung von Waldökosystemen führen könnte. Die Prozesse, die die biologische Verfügbarkeit beeinflussen, und ihre Abhängigkeit von der Bodenentwicklung und Verwitterung sind aber nur unzureichend verstanden. In der ersten Phase des SPP 1685 wurde ein einzigartiger Datensatz zum P-Kreislauf in akquirierenden (gekennzeichnet durch hauptsächlich verwitterungsbasierte P Verfügbarkeit) und rezyklierende (P Verfügbarkeit hauptsächlich durch organischen Umsatz) Ökosysteme gesammelt. In unserem Antrag möchten wir ein neues, prozess-basiertes Bodenmodell der biogeochemischen Kohlenstoff- (C), Stickstoff- (N), und P-Kreisläufe entwickeln, um diese Daten mittels numerischer Modellierung der wichtigsten biogeochemischen Prozesse in ein konsistentes Gesamtgefüge einzuordnen. Unsere Grundannahme ist, dass der Umsatz der organischen Substanz im Boden eine wichtige Rolle bei der Aufrechterhaltung der P Verfügbarkeit entlang des Gradienten der geologischen P-Verfügbarkeit spielt. Daher werden wir auch neue Messungen des Kohlenstoffumsatzes mittels der 14C Methode an ausgewählten SPP 1685 Standorten vornehmen, um den Zusammenhang zwischen P-Verfügbarkeit und C-Umsatz besser zu verstehen. Die Prozessbeschreibung des organischen und anorganischen N und P Kreislaufes und der unterschiedlichen Nährstoffaufnahmekapazität von Pflanzen und Mikroorganismen für das neue Modell, wird auf einem existierenden, von uns entwickelten Bodenkohlenstoffmodell aufbauen. Dieses beschreibt Umsätze, Stabilisierung und Transport der organischen Substanz innerhalb des Bodenprofils. Mit diesem neuen Modell werden wir die Auswirkung unterschiedlicher verwitterungsbedingter P Verfügbarkeit auf die biologische P Verfügbarkeit insbesondere unter Berücksichtigung der Rolle des organischen Umsatzes untersuchen. Trotz unseres Bestrebens, das Modell einfach zu halten, sollte es in der Lage sein, die Ökosystemantwort auf die Düngeexperimente des SPP 1685 Phase II korrekt wiederzugeben. Die Modellentwicklung wird zu einem besseren Verständnis der Ursachen für den Übergang von akquirierenden zu rezyklierenden Ökosystemen beitragen. Die Modellentwicklung gibt darüber hinaus die Möglichkeit, die empirisch gewonnenen Erkenntnisse des SPP 1685 zu regionalisieren und auf Studien der Auswirkung von erhöhtem atmosphärischem CO2 und Stickstoffdeposition auf Waldökosysteme anzuwenden.
| Origin | Count |
|---|---|
| Bund | 90 |
| Kommune | 2 |
| Land | 69 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 46 |
| Ereignis | 1 |
| Förderprogramm | 68 |
| Text | 29 |
| Umweltprüfung | 4 |
| unbekannt | 8 |
| License | Count |
|---|---|
| geschlossen | 29 |
| offen | 123 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 157 |
| Englisch | 11 |
| Resource type | Count |
|---|---|
| Archiv | 52 |
| Bild | 4 |
| Datei | 6 |
| Dokument | 16 |
| Keine | 61 |
| Multimedia | 1 |
| Unbekannt | 1 |
| Webdienst | 6 |
| Webseite | 82 |
| Topic | Count |
|---|---|
| Boden | 142 |
| Lebewesen und Lebensräume | 153 |
| Luft | 131 |
| Mensch und Umwelt | 157 |
| Wasser | 123 |
| Weitere | 145 |