Der Schutz und die nachhaltige Nutzung der städtischen Natur und Landschaft können nur gelingen, wenn ausreichendes Wissen über deren Zustand vorhanden ist. Eine solide und aktuelle Bestandsaufnahme ist daher unverzichtbar, wenn Konzepte zur Entwicklung der Stadt im Sinne des Nachhaltigkeitsprinzips mit dem Schutz von Natur und Landschaft verbunden werden sollen. In diesem Sinne ist das Wissen über die Ausstattung und räumliche Verteilung der naturnahen und kulturbestimmten Biotope Berlins eine essenzielle Grundlage für die Stadt- und Regionalplanung, die Landschaftsplanung und für die naturverträgliche Entwicklung von Flächennutzungen wie der Forstwirtschaft. Die Biotopkartierung ist eine wichtige Grundlage u.a. zur Aktualisierung des Landschaftsprogramms, zur Beurteilung von Eingriffen in Natur und Landschaft, zur Erarbeitung von Pflege- und Entwicklungsplänen, für das Monitoring naturschutzfachlich wertvoller Flächen, zur Erfüllung gesetzlicher Verpflichtungen im Rahmen von Natura 2000 und zur Bereitstellung von Datengrundlagen für Vorhabenträger. Ziel der Biotopkartierung ist es, die Ausstattung der Landschaft an Hand von abgrenzbaren Biotoptypen zu beschreiben. Die dabei angewandten Methoden lassen sich drei Kategorien zuordnen (SUKOPP & WITTIG 1993, S. 361). Die selektive Kartierung erfasst nur geschützte oder schutzwürdige Biotope. Sie erfordert einen Bewertungsrahmen, der bereits während der Kartierung angewandt wird. Bei der repräsentativen Kartierung werden exemplarisch Flächen von allen flächenrelevanten Biotoptypen bzw. Biotoptypkomplexen untersucht und anschließend die Ergebnisse auf alle Flächen gleicher Biotopstruktur übertragen. Die flächenhafte Kartierung erfasst alle Biotoptypen eines Untersuchungsgebietes und grenzt sie flächenscharf ab. Die Idee der Stadtbiotopkartierung entstand bereits in den 70er Jahren. Berlin, München und Augsburg gehörten zu den ersten Städten, die sich mit stadtökologischen Untersuchungen befassten. In Berlin wurden Biotoptypenkomplexe auf der Grundlage umfangreicher ökologischer Untersuchungen für das Stadtgebiet Westberlins beschrieben. Diese repräsentative Kartierung war die Grundlage des Landschafts- und Artenschutzprogramms Berlin 1984, des ersten Planungsinstruments dieser Art für ein Stadtgebiet in der Bundesrepublik. zum Landschafts- und Artenschutzprogramm Eine erste flächendeckende Kartierung der Biotope wurde zwischen 2003 und 2013 erstellt. Im Jahr 2024 erfolgte eine flächendeckende Aktualisierung der Biotoptypenkarte auf Grundlage von Luftbildern aus dem Jahr 2023 und terrestrischen Kartierungen zwischen 2015 und 2022 (siehe Abschnitt Biotoptypenkarte ). Grundlagen Biotoptypenliste Berlins Biotoptypenkarte Kartierbeispiel Die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt und die Landesbeauftragte für Naturschutz und Landschaftspflege haben die Grundlagen zur Biotopkartierung mit einer Gruppe von Fachexpertinnen und Fachexperten erarbeitet und veröffentlicht. Hiermit wurden einheitliche Standards zur Kartierung und Bewertung der Biotope in Berlin zur Verfügung gestellt. Zu diesen Grundlagen gehören die Liste der Berliner Biotoptypen, die Beschreibung der Biotoptypen, eine Kartieranleitung, ein Geländekartierungsbogen, das Verfahren zur Bewertung und Bilanzierung von Eingriffen und die Beschreibung der in Berlin gesetzlich geschützten Biotope. Mit der Biotoptypenliste und der Kartieranleitung wird ein fachlich verbindlicher Standard für das häufig angewandte Instrument der Biotopkartierung formuliert. Die weiterführenden Informationen bieten zugleich einen fachlich gesicherten Zugang zum Erkennen und Bewerten der Biotope. Ergänzend werden Informationen zur Gefährdung sowie zum Schutz und zur Pflege der verschiedenen Biotope vermittelt. Die Biotoptypenliste gibt die Gliederung für im Gelände direkt erkennbare Einheiten vor, enthält aber keinen Bewertungsrahmen. Die Bewertungen von Kartierungen können später entsprechend der jeweiligen Aufgabe (Bewertungsziel) durchgeführt werden. Die Arbeiten „Beschreibung der Biotoptypen Berlins“ und „Gesetzlich geschützte Biotope im Land Berlin“ erleichtern die Zuordnung und Abgrenzung der in Berlin vorkommenden Biotoptypen. Die entsprechende Karte stellt deren Verbreitung in Berlin dar. Zur Bewertung kann das Verfahren zur Bewertung und Bilanzierung von Eingriffen herangezogen werden. Die Berliner Biotoptypenliste basiert auf der Brandenburger Liste und wurde an die besondere Situation der Großstadt angepasst. Sie wurde von einer länderübergreifenden Arbeitsgruppe weiterentwickelt und unter Berücksichtigung der Ansprüche der Berliner Landschaftsplanung und des Naturschutzes um urbane Biotoptypen erweitert. Die Berliner Biotoptypenliste (Köstler et al. 2003, aktualisiert Köstler 2023) umfasst rund 7.480 Biotoptypen und wird hier zum Download angeboten. Sie ist hierarchisch gegliedert in Biotoptypklasse, Biotoptypengruppe, Biotoptyp und ggf. Untertypen. Die nachfolgende Tabelle bietet als Kurzversion eine Übersicht der 12 Biotoptypenklassen und der wichtigsten Biotoptypengruppen. Um eine aktuelle und flächendeckende Datenbasis im Land Berlin für Naturschutz, Stadt- und Landschaftsplanung sowie für Fachplanungen zu schaffen, wurde zwischen 2003 und 2013 eine erste Karte der Biotope erstellt. Im Jahr 2024 erfolgte eine flächendeckende Aktualisierung der Biotoptypenkarte auf Grundlage von Luftbildern aus dem Jahr 2023 und terrestrischen Kartierungen zwischen 2015 und 2022. Die Besonderheit der vorliegenden Biotoptypenkarte besteht darin, dass zur Erfassung der Biotoptypen unterschiedliche Methoden zur Anwendung kamen. Das Ergebnis der Kartierung unterscheidet sich damit hinsichtlich der Genauigkeit und Differenzierung der Auskartierung auf den verschiedenen Flächenkulissen. Die folgenden drei Methoden der Datenerhebung kamen zum Einsatz: Terrestrische Kartierung – Terrestrische Kartierungen aus den Jahren 2015-2022 sind hinreichend aktuell und wurden abgesehen von geringfügigen Anpassungen z.B. bei grundlegenden Nutzungsänderungen unverändert in die Biotoptypenkarte übernommen. Die aktuellen terrestrischen Kartierungen umfassen 9.620 ha. Übernahme Primärdaten der Biotoptypenkarte 2013 – Primärdaten der Biotoptypenkarte 2013 wurden im Sinne einer Änderungsanalyse überprüft und ggfls. aktualisiert. Sofern keine grundlegende Änderung des Biotops und der Landnutzung im Luftbild erkennbar war, wurden die Objekte mit der ursprünglichen Geometrie und den Sachdaten übernommen. Biotope, die ursprünglich für die Biotoptypenkarte 2013 terrestrisch erhoben wurden, konnten nicht immer durch Luftbildinterpretation hinsichtlich aller Merkmale überprüft werden. Bei Unsicherheiten wurde der ursprüngliche Biotoptyp dennoch beibehalten, sofern er plausibel erschien und das entsprechende Objekt mit einem Bedarf zur terrestrischen Kontrolle markiert. Bei anteiliger oder vollständiger Änderung des Biotops erfolgte eine Anpassung der Biotopabgrenzung oder eine Neuerfassung des Biotops im Sinne der nachfolgend beschriebenen Neukartierung. Im Ergebnis wurden 28.207 ha mit dieser Methodik kartiert. Luftbildkartierung – Auf allen nicht durch 1. oder 2. abgedeckten Gebieten wurde eine Neuerfassung der Biotope durch monoskopische Luftbildinterpretation durchgeführt. Für die Erkennung der Biotoptypen im Luftbild wurde die klassische Beschreibung nach Farbmerkmalen (Grundfarbe, Helligkeit, Farbverteilung) und Strukturmerkmalen (Struktur, Textur, Höhe) in Ansatz gebracht. Die grundlegende Geometrie dafür bildeten die Block- und Teilblockflächen der ISU5. Dabei wurde jedem Block / Teilblock ein Biotoptyp zugeordnet. Eine weitere Unterteilung der Geometrie des Teilblocks erfolgte nur, wenn naturschutzfachlich wertvolle und naturnahe Biotoptypen (z.B. Kleingewässer, Röhrichte, Trocken- und Magerrasen, Staudenfluren, natürliche Gehölzbestände sowie großflächige, prägende Grünflächen und Gehölzgruppen) im Teilblock vorhanden waren. Diese wurden dann als exakte Geometrie separat abgegrenzt. Die neuerfassten Biotope der Luftbildkartierung umfassen 41.990 ha Biotope und 9.429 ha Straßenland. Die Karte Biotoptypen 2024 steht zur Nutzung als Entscheidungshilfe für Fachleute und Verwaltungen zur Verfügung. Aus dem Gesamtdatenbestand wurden thematische Karten zu FFH-Lebensraumtypen und gesetzlich geschützten Biotopen abgeleitet. Eine weitere Karte zeigt die verwendete Kartiermethode . Die Biotoptypenkarte ist im Geoportal Berlin veröffentlicht. Karte Biotoptypen 2024 Karte Gesetzlich geschützte Biotope 2024 Karte Lebensraumtypen (FFH-Richtlinie) 2024 Karte Kartiermethode 2024 Weitere Informationen zur Kartierung, zur Methodik, den Datengrundlagen sowie den Karten im Geoportal finden Sie im Umweltatlas Berlin sowie im Bericht zum Aktualisierungsprojekt der Biotoptypenkarte: Umweltatlas Berlin Hinweise zu den Karten „gesetzlich geschützte Biotope 2024“ und „Lebensraumtypen 2024“: Die Zuordnung des rechtlichen Schutzstatus gemäß § 30 Bundesnaturschutzgesetz und § 28 Berliner Naturschutzgesetz erfolgt bei den terrestrischen Kartierungen durch fachliche Einschätzung der kartierenden Person. Bei den durch Luftbildinterpretation erhobenen Daten ist meist der wahrscheinliche Schutzstatus angegeben (sofern keine terrestrische Überprüfung vorliegt). Die Entscheidung über die Anwendung der Regelung „Gesetzlich geschützte Biotope“ erfolgt im Einzelfall durch die zuständige untere Naturschutzbehörde der Bezirke. Die FFH-Lebensraumtypen der aktuellen Biotopkartierung sind nur bei den durch terrestrische Kartierung erfassten Flächen ermittelt. Alle anderen Flächen, insbesondere die aus Luftbildern kartierten Flächen sind hierauf ungeprüft. In den nächsten Jahren werden terrestrische Kartierungen in den gemeldeten Natura 2000-Gebieten und der bekannten Lebensraumtypen außerhalb der Natura 2000-Gebiete erfolgen. Für Verträglichkeitsprüfungen und Planungen ist der jeweils aktuelle Datenbestand der FFH-Lebensraumtypen bei der obersten Naturschutzbehörde (zuständigen Senatsverwaltung) zu erfragen. Die vorliegende Karte Biotoptypen 2024 wird durch terrestrische Kartierungsprojekte schrittweise aktualisiert. Diese Kartierungsprojekte betreffen v.a. die gemeldeten Natura 2000-Gebiete, Natur- und Landschaftsschutzgebiete sowie Gebiete mit aktuellen Planungsvorhaben.
<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten. 2025 gab es 11 Heiße Tage (gemittelt über die Fläche Deutschlands).</p><p>Informationen zur interaktiven Karte</p><p>Quellen: <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> 2000-2025 – <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>/Climate Data Center, <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2000-2025 – DWD/Climate Data Center; Daten für 2025 – Persönliche Mitteilung des DWD vom 14.11.2025.</p><p>Die Bearbeitung der interaktiven Karte erfolgt durch das Umweltbundesamt, FG I 1.6 und I 1.7.</p><p>Gesundheitsrisiko Hitze</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich. </p><p><em>Tipps zum Weiterlesen: </em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. & Mücke, H.-G. (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>
Aktuelle wissenschaftliche Studien legen nahe, dass die aktuelle Erderwärmung durch Treibhausgasemissionen hervorgerufen wird, die vom Menschen verursacht sind. Um gegen diese Entwicklung geeignete Maßnahmen ergreifen zu können bzw. um zu überprüfen, ob solche Maßnahmen von Erfolg gekrönt sind, ist es notwendig, die Schadstoffkonzentrationen inklusive der zugehörigen Emissionsquellen genau zu kennen. Diese Informationen sind bisher jedoch sehr lückenhaft und beruhen auf sogenannten 'bottom-up' Berechnungen. Da diese Kalkulationen nicht auf direkten Messungen beruhen, weisen sie große Ungenauigkeiten auf und sind außerdem nicht in der Lage, bisher unbekannte Emissionsquellen zu identifizieren. In dem hier vorgestellten Projekt soll ein mesoskaliges Netzwerk für die Überwachung von Luftschadstoffen wie CO2, CH4, CO, NO2 und O3 aufgebaut werden, das auf dem neuartigen Konzept der differentiellen Säulenmessung beruht. Bei diesem Ansatz wird die Differenz zwischen den Luftsäulen luv- und leewärts einer Stadt gebildet. Diese Differenz ist proportional zu den emittierten Schadstoffen und somit eine Maßzahl für die Emissionen, welche in der Stadt generiert werden.Mithilfe dieser Methode wird es in Zukunft möglich sein, städtische Emissionen über lange Zeiträume hinweg zu überwachen. Damit können neue Informationen über die Generierung und Umverteilung von Luftschadstoffen gewonnen werden. Wir werden u.a. folgende zentrale Fragen beantworten: Wie verhält sich der tatsächliche Trend der CO2, CH4 und NO2 Emissionen in München über mehrere Jahre? Wo sind die Emissions-Hotspots? Wie akkurat sind die bisherigen 'bottom-up' Abschätzungen? Wie effektiv sind die Maßnahmen zur Emissionsreduzierung tatsächlich? Sind vor allem für Methan weitere Maßnahmen zur Reduzierung der Emissionen notwendig? Zu diesem Zweck werden wir ein vollautomatisiertes Messnetzwerk aufbauen und passende Methoden zur Modellierung entwickeln, welche u.a. auf STILT (Stochastic Time-Inverted Lagrangian Transport) und CFD (Computational Fluid Dynamics) basieren. Mithilfe der Modellierungsresultate werden wir eine Strategie entwerfen, wie städtische Netzwerke zur Überwachung von Luftschadstoffen aufgebaut werden müssen, um repräsentative Ergebnisse zu erhalten. Außerdem können mit den so gewonnenen städtischen Emissionszahlen z.B. dem Stadtreferat, den Stadtwerken München oder der Bayerischen Staatsregierung Möglichkeiten zur Beurteilung der Effektivität der angewandten Klimaschutzmaßnahmen an die Hand gegeben werden. Das hier vorgestellte Messnetzwerk dient somit als Prototyp, um die grundlegenden Fragen zum Aufbau eines solchen Sensornetzwerks zu klären, damit objektive Aussagen zu städtischen Emissionen möglich werden. Dieses Projekt ist weltweit einmalig und wird zukunftsweisende Ergebnisse liefern.
Der Antragsteller SINN Power GmbH wurde im Rahmen des 6. Energieforschungsprogramms (EFP) des Bundesministeriums für Wirtschaft und Energie (BMWi) unter dem Kennzeichen 0324190 gefördert, um die 'Erprobung eines modularen Konzepts zur Erzeugung von netzkonformem Strom aus unregelmäßigen Meereswellen in einem Generatoren-Verbund' voranzutreiben. Das Projekt SINN-Wave 2.0 knüpft an die Ergebnisse des erfolgreich abgeschlossenen Projekts an und hat folgende Arbeitsziele: - Optimierung der mechanischen Komponenten der eigenentwickelten Wellenkraftwerksmodule und deren Integration in den Prototypen der Ocean Hybrid Platform - SOcean. - Zertifizierung der Ocean Hybrid Platform - SOcean. - Optimierung der eigenentwickelten Leistungselektronik, deren Zertifizierung sowie die Inbetriebnahme des Smart-Grids auf dem schwimmenden Kraftwerk. - Dauertest des schwimmenden Kraftwerks mit Durchführung von mechanischen und elektrischen Tests. Das Ziel ist der Nachweis der Langlebigkeit, Widerstandfähigkeit und dauerhaften Betriebssicherheit der Wellenkraftwerksmodule und der schwimmenden Plattform. - In Kooperation mit der Hochschule München wird ein kompakter, modularer Energiewandlers für verlustarme Stromübertragung auf Mittelstrecken für maritime Anwendungen konzipiert, entwickelt und auf dem schwimmenden Kraftwerk getestet.
1
2
3
4
5
…
247
248
249