Optimierung der Arbeitsweise von Abwassersystemen durch: Erhöhung der Reinigungsleistung und Systemverfügbarkeit unter Ausnutzung der Dynamik Senkung der Betriebskosten durch verbesserten Steuerungsentwurf Reduktion der Schmutzfracht für die Gewässer Erhöhung der Zuverlässigkeit durch softwaretechnische Anlagenüberwachung im Hinblick auf unsichere oder ungenaue Messwerte.
Die Rolle der Fische beim Energie- und Naehrstoffumsatz soll einerseits im Hallwilersee (z.B. Grazing-Effekt) und andererseits in der Glatt (Forschungs-Schwerpunkt 'Fliessgewaesser') untersucht und quantitativ erfasst werden. Dabei geht es in erster Linie um die Frage, welchen Einfluss die Fische auf Zusammensetzung und Abundanz der jeweiligen Futterorganismen wie Zooplankton oder Benthos ausueben und welchen Beitrag sie an die Remobilisation von Naehrstoffen leisten. Die Arbeiten sollen in enger Zusammenarbeit mit der Fachabteilung Hydrobiologie/Limnologie durchgefuehrt werden.
This dataset comprises key carbonate chemistry parameters measured and calculated in incubation experiments under different experimental conditions. pH, water temperature, and salinity were measured with a WTW multimeter (MultiLine® Multi 3630 IDS). Total alkalinity was determined by open-cell titration with an 888 Titrando (Metrohm). Saturation state of calcite and aragonite were calculated using phreeqpython, a Python wrapper of the PhreeqC engine (Vitens 2021) with pH, water temperature, total alkalinity, and major ions as major input, and phreeqc.dat as database for the thermodynamic data (Parkhurst and Appelo 2013). As the original Elbe water was supersaturated with carbon dioxide (CO2) with respect to the atmosphere, its partial pressure of CO2 (pCO2) level decreased during the incubation period with open flasks, which caused an adjustment of calcite saturation state (ΩC) for ambient air conditions. To adapt for the impact of pCO2 variations during the experiment, saturation state of calcite and aragonite was calculated assuming an equilibrium with an atmospheric pCO2 of 415 ppm (normalized ΩC and normalized aragonite sautration state ΩA). Since ion concentrations were measured for only a small number of samples, the ion concentrations of the remaining samples were reconstructed using stoichiometry based on the initial solution composition and total alkalinity. The concentrations of conservative ions (Na+, K+, Cl-, SO42-) were assumed remain constant, while ions related to carbonate precipitation (Ca2+, Mg2+) were calculated based on changes in measured alkalinity (see Figure 5 of the associated paper). Detailed analysis and calculation procedures are described in the Method section of the associated paper.
Global efforts to reduce emissions remain inadequate which resulted in an increasing need for negative emission technologies that actively remove and permanently sequester CO₂ from the atmosphere.We highlight the rapid growth of commercial mCDR start-ups, despite limited research and potential irreversible harm to marine ecosystems. These activities appear uncoordinated, lack oversight, and show no evidence of compliance with international frameworks such as the London Protocol. Our study underscores the urgent need for its ratification.
Welche Treibhausgasminderungen bis 2040 sieht das Umweltbundesamt als notwendig an? Und wie können diese erreicht werden? Aus Sicht des Umweltbundesamtes sollten bis 2040 die Treibhausgasemissionen um mindestens 90 Prozent gegenüber 1990 gemindert werden, um das Ziel der Netto-Treibhausgasneutralität laut dem Bundes-Klimaschutzgesetz im Jahr 2045 zu erreichen. Dieses Papier zeigt die dafür notwendigen Schritte und ebnet den nachhaltigen Weg in ein treibhausgasneutrales Wirtschaftssystem. Für die Bereiche Energie, Verkehr, Gebäude, Industrie, Landwirtschaft, Abfall- und Abwasserwirtschaft sowie LULUCF (Senken) und langfristige technische Negativemissionen werden sektorübergreifende und sektorspezifische Klimaschutzmaßnahmen und -instrumente erörtert, die schnellstmöglich zu implementieren sind, um diese Minderungsziele zu erreichen. Veröffentlicht in Position.
Die Karte zeigt die mittleren Monatswerte für die Globalstrahlung in kWh/m².
Um die globale Erwärmung zu einzudämmen, ist der Entzug von Kohlendioxid (CDR) aus der Atmosphäre dringend in erheblichem Maßstab erforderlich. Zwei heute bereits verfügbare Negativ-Emissionstechnologien (NET) sind die beschleunigte Verwitterung von silikatischem Gestein (engl. enhanced weathering - EW) und die pyrogene Kohlenstoffabscheidung und -speicherung (engl. pyrogenic carbon capture and storage - PyCCS). Bei EW wird vulkanisches Gesteinsmehl in landwirtschaftliche Böden eingebracht, wo dieses mit CO2 reagiert und gelöstes Bicarbonat bildet, das durch weitere Reaktionen im Boden als Karbonat ausfallen kann oder über die Bodenlösung in Grund- und Oberflächengewässer gelangt und in die Ozeane transportiert wird. Bei PyCCS erfolgt der CO2-Entzug durch Photosynthese (Produktion von Biomasse). Anschließend wandelt die Pyrolyse die Biomasse und damit den pflanzlich aufgenommenen Kohlenstoff in eine stabile Form um, die, wenn sie in den Boden eingebracht wird, für Jahrhunderte stabil bleibt. Die Kombination dieser beiden NETs, d. h. pyrogene und mineralische Kohlenstoffabscheidung und -speicherung (PyMiCCS), könnte das C-Senken Potenzial pro bewirtschafteter Flächeneinheit maximieren und die positiven Effekte auf die Bodenfruchtbarkeit vereinen und verstärken. Allerdings sind systematische Untersuchungen zu den Materialeigenschaften, zur Kinetik der Verwitterung von Silikatgestein in Gegenwart von pyrogenem Kohlenstoff, zur C-Effizienz der Pyrolyse, zu möglichen Umweltrisiken und zur kombinierten Wirkung beider NETs auf das Pflanzenwachstum erforderlich. Darüber hinaus muss die CDR-Dynamik dieser kombinierten C-Senken erfasst werden, um die Bewertung von PyMiCCS gegenüber anderen NETs zu ermöglichen. Zu diesem Zweck werden sowohl Mischungen aus Pflanzenkohle und Gesteinsmehl als auch Co-Pyrolysate aus Biomasse und Gesteinsmehl experimentell im Kilogramm-Maßstab hergestellt. Diese PyMiCCS-Materialien werden in Säulen- und Gewächshausversuchen eingesetzt. Verwitterungsraten, Nährstoffauswaschung und Pflanzenwachstum werden quantifiziert. Sowohl frische als auch gealterte Pflanzenkohlen werden spektro-mikroskopisch untersucht, um den Einfluss des Gesteinsmehls auf die Speziierung des pyrogenen Kohlenstoffs zu charakterisieren. An gealterter Pflanzenkohle, die aus den Gewächshausexperimenten gewonnen wird, wird der Einfluss des Gesteinsmehls auf den Alterungsprozess untersucht, insbesondere auf die Bildung der organischen Beschichtung der Pflanzenkohle. Diese Beschichtung trägt maßgeblich zur Fähigkeit der Pflanzenkohle bei, hochmobile Pflanzennährstoffe wie Nitrat zurückzuhalten, was eine wichtige Eigenschaft von (gealterter) Pflanzenkohle ist. Basierend auf den experimentellen Daten und Literaturarbeit wird die CDR-Dynamik der PyMiCCS C-Senke beschrieben, um eine spätere Zertifizierung solcher Kohlenstoffsenken zu ermöglichen.
Für den Zeitraum ab 2030 wird die Klimaschutzarchitektur der EU einem strukturellen Evaluierungs- und Weiterentwicklungsprozess unterzogen. Insbesondere stehen in diesem Kontext auch maßgebliche Entscheidungen zur Weiterentwicklung des Emissionshandels an. Wesentlich ist u.a. die Frage einer schrittweisen oder gar vollständigen Integration des EU-ETS 1 mit dem EU-ETS 2 und in diesem Zusammenhang insbesondere der etwaigen Ausgestaltung spezifischer Regeln für die einbezogenen Sektoren (Energie; Industrie; Land-, See und Luftverkehr; Wärme). Außerdem ist der Umgang mit CCS/CCU und negativen Emissionen im Rahmen des Emissionshandels eines der wesentlichen Handlungsfelder, für das ab 2030 regulatorische Leitplanken zu erwarten sind. Weiterhin stellt sich die Frage nach der Einbeziehung weiterer Sektoren in den Emissionshandel (u.a. der Landwirtschaft). Das Projekt soll UBA und BMWK in diesem Prozess mit wirtschaftswissenschaftlichen Analysen unterstützen.
Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.
| Origin | Count |
|---|---|
| Bund | 332 |
| Land | 26 |
| Wissenschaft | 66 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 27 |
| Ereignis | 6 |
| Förderprogramm | 253 |
| Gesetzestext | 2 |
| Text | 28 |
| Umweltprüfung | 1 |
| unbekannt | 86 |
| License | Count |
|---|---|
| geschlossen | 46 |
| offen | 291 |
| unbekannt | 66 |
| Language | Count |
|---|---|
| Deutsch | 244 |
| Englisch | 184 |
| Resource type | Count |
|---|---|
| Archiv | 9 |
| Datei | 59 |
| Dokument | 65 |
| Keine | 254 |
| Webdienst | 7 |
| Webseite | 88 |
| Topic | Count |
|---|---|
| Boden | 255 |
| Lebewesen und Lebensräume | 276 |
| Luft | 227 |
| Mensch und Umwelt | 387 |
| Wasser | 300 |
| Weitere | 400 |