Intensiver Forschung ist es gelungen, die Gefahr auftretender Pulsationen durch eine entsprechende Auslegung der Brennkammer einzuschränken und gezielt auf auftretende Probleme im Betrieb zu reagieren. Dennoch ist das Bereitstellen weiterer Stabilisierungsmaßnahmen unabdingbar. Und um schnell den Anforderungen des schwankenden Netzes zu folgen, sind zudem Gasturbinen in allen Leistungsklassen erforderlich, die einen astflexiblen Betrieb mit weiteren Brennstoffen problemlos erlauben. Die Problemstellungen erfordern zudem das Weiterentwickeln der Vorhersagemodelle der Schadstoffbildung, der Instabilitäten und deren Messtechnik. Die Arbeiten im Bereich Verbrennung verteilen sich auf die drei Gruppen 'Thermoakustik', 'Brennstoffflexibilität' sowie 'Analyse und Diagnose'.
Ziel dieses Forschungsvorhabens ist es, einen neuen Hybrid-Katalysator zu entwickeln, der effizient die Stickoxide aus dem Abgas entfernt, bevor sie in die Umwelt gelangen. Das Teilvorhaben von Umicore befasst sich mit der Entwicklung einer Beschichtung zum Aufbau von Hybridkatalysatoren (DeNOx-Prinzip) mit verifizierter Funktion und einem zugehörigen industrialisierbaren Beschichtungsverfahren.
Erdgas ist einer der bedeutendsten Alternativ-Kraftstoffe. Für eine zukunftsfähige Erdgasmobilität ist die Erschließung der Direkteinblasung als neuem Technologiepfad erforderlich. Erst damit können eine weitere Reduzierung der Emissionen von Kohlendioxid (CO2), Kohlenmonoxid (CO), Stickoxiden (NOx), unverbrannten Kohlenwasserstoffen (HC) sowie Partikeln ermöglicht und Emissionsziele kostengünstig erreicht werden. Die bisher praktizierte Erweiterung von Motoren mit Benzindirekteinspritzung um eine Gas-Saugrohreinblasung ist für einen optimalen Gasbetrieb nicht ausreichend. Stattdessen ist die Entwicklung eines geeigneten Brennverfahrens und der notwendigen Komponenten erforderlich. Ein derartiges Brennverfahren erhöht nicht nur die Effizienz des Motors, sondern verbessert auch seine Drehmomentcharakterisitik. Dies kommt der Fahrbarkeit und damit der Akzeptanz beim Endkunden zugute. In Direct4Gas werden hierzu homogene Brennverfahren sowie ein direkt in den Brennraum einblasender Gasversuchsinjektor entwickelt und entsprechende Versuchsmuster in Gasmotorprototypen auf dem Prüfstand und im Fahrzeug erprobt. Für die bei Erdgas erhöhten Abgasnachbehandlungsanforderungen werden neuartige Katalysator-Versuchsmuster eingesetzt. Über das Konsortium ist eine ganzheitliche Bewertung der lndustrialisierbarkeit gegeben. Über einen weiteren Forschungspfad wird zusätzlich das Langfristpotential von Gasmotoren bewertet. Hierzu werden magere Brennverfahren bis hin zur Schichtladung untersucht. Die teilweise deutlich höheren Anforderungen an Gemischbildung, Injektor inkl. Ansteuerung, Zündung und Abgasnachbehandlung werden erarbeitet und Lösungsansätze bewertet. Das Projekt gliedert sich in die Arbeitspakete 'Systemanalyse und -anforderungen', 'Konzeptionierung und Motoraufbau', 'Gemischbildung, Brennverfahren und Abgasnachbehandlung', 'Komponenten und Funktionsmuster', 'Aufbau im Fahrzeug und Funktionstest', 'Simulation und Modellbildung' sowie 'Evaluierung'. Konsortialpartner sind die Robert Bosch GmbH als Konsortialführerin, die Daimler AG und das Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS); die Umicore AG & Co. KG ist assoziierter Partner.
Erdgas ist einer der bedeutendsten Alternativ-Kraftstoffe. Für eine zukunftsfähige Erdgasmobilität ist die Erschließung der Direkteinblasung als neuem Technologiepfad erforderlich. Erst damit können eine weitere Reduzierung der Emissionen von Kohlendioxid (CO2), Kohlenmonoxid (CO), Stickoxiden (NOx), unverbrannten Kohlenwasserstoffen (HC) sowie Partikeln ermöglicht und Emissionsziele kostengünstig erreicht werden. Die bisher praktizierte Erweiterung von Motoren mit Benzindirekteinspritzung um eine Gas-Saugrohreinblasung ist für einen optimalen Gasbetrieb nicht ausreichend. Stattdessen ist die Entwicklung eines geeigneten Brennverfahrens und der notwendigen Komponenten erforderlich. Ein derartiges Brennverfahren erhöht nicht nur die Effizienz des Motors, sondern verbessert auch seine Drehmomentcharakterisitik. Dies kommt der Fahrbarkeit und damit der Akzeptanz beim Endkunden zugute. In Direct4Gas werden hierzu homogene Brennverfahren sowie ein direkt in den Brennraum einblasender Gasversuchsinjektor entwickelt und entsprechende Versuchsmuster in Gasmotorprototypen auf dem Prüfstand und im Fahrzeug erprobt. Für die bei Erdgas erhöhten Abgasnachbehandlungsanforderungen werden neuartige Katalysator-Versuchsmuster eingesetzt. Über das Konsortium ist eine ganzheitliche Bewertung der lndustrialisierbarkeit gegeben. Über einen weiteren Forschungspfad wird zusätzlich das Langfristpotential von Gasmotoren bewertet. Hierzu werden magere Brennverfahren bis hin zur Schichtladung untersucht. Die teilweise deutlich höheren Anforderungen an Gemischbildung, Injektor inkl. Ansteuerung, Zündung und Abgasnachbehandlung werden erarbeitet und Lösungsansätze bewertet. Das Projekt gliedert sich in die Arbeitspakete 'Systemanalyse und -anforderungen', 'Konzeptionierung und Motoraufbau', 'Gemischbildung, Brennverfahren und Abgasnachbehandlung', 'Komponenten und Funktionsmuster', 'Aufbau im Fahrzeug und Funktionstest', 'Simulation und Modellbildung' sowie 'Evaluierung'. Konsortialpartner sind die Robert Bosch GmbH als Konsortialführerin, die Daimler AG und das Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS); die Umicore AG & Co. KG ist assoziierter Partner.
Erdgas stellt heute den bedeutendsten Alternativ-Kraftstoff dar. Für eine zukunftsfähige Erdgasmobilität ist die Erschließung des neuen Technologiepfades einer Direkteinblasung erforderlich. Erst damit wird die Reduzierung von CO2, PN, PM und NOx kostengünstig realisierbar. Moderne Verbrennungsmotoren mit Benzindirekteinspritzung sind nicht ausreichend auf den Gasbetrieb ausgelegt. Hierzu werden homogene Brennverfahren mit den hierfür erforderlichen Versuchsmustern bestehend aus Gasmotorprototypen (Prüfstand und Fahrzeug) inkl. Steuerung sowie ein neuartiger direkt in den Brennraum einblasender Gasversuchsinjektor aufgebaut. Auch die bei Erdgas erhöhten Abgasnachbehandlungsanforderungen werden über neuartige Versuchsmuster dargestellt. Über das Konsortium ist eine ganzheitliche Bewertung der Industrialisierbarkeit gegeben. Über einen weiteren Forschungspfad wird zusätzlich das Langfristpotential von Gasmotoren bewertet. Hierzu werden magere Brennverfahren bis hin zur Schichtladung untersucht. Die teilweise deutlich höheren Anforderungen an Gemischbildung, Injektor inkl. Ansteuerung, Zündung und Abgasnachbehandlung werden erarbeitet und Lösungsansätze bewertet. Um den Zielkonflikt zwischen effizienter, emissionsarmer Verbrennung und zuverlässiger, langlebiger und einfacher Komponente zu lösen, findet eine simultane Untersuchung von Gemischbildung, Brennverfahren, Abgasnachbehandlung und Injektor statt. Dies ermöglicht eine Optimierung des Gesamtsystems durch Abwägung zwischen innermotorischem Wirkungsgrad einerseits, Aufwand für Abgasnachbehandlung und Reduzierung der Klopfneigung bei schwankender Gasqualität andererseits. Die Integration der gefundenen Lösungen im Fahrzeug stellen das Potential des Verfahrens dar. Eine enge Verzahnung von Simulation, Modellbildung und Versuch ermöglicht das Verständnis der physikalischen Zusammenhänge. Dies unterstützt die effiziente Auslegung von Komponenten und Betriebsverfahren bis hin zu Funktionen der Motorsteuerung.
Bei dem Betrieb von mager-vorgemischten Brennkammern tritt häufig das Phänomen der thermoakustischen Instabilität auf. Hierbei kommt es zu einer hohen mechanischen Belastung des Verbrennungssystems, daher ist eine solche Instabilität zu vermeiden. Das geplante Vorhaben leistet einen Beitrag, thermoakustische Instabilitäten bereits im Auslegungsprozess zu erkennen und zu vermeiden, indem detaillierte, innovative Simulationstechniken entwickelt werden. Diese ermöglichen es, bereits zu Beginn des Entwicklungsprozesses verschiedene Varianten und Konzepte zu untersuchen und hinsichtlich der gewünschten thermoakustischen Eigenschaften zu bewerten. Als Entwicklungsumgebung dient dabei der CFD-Code PRECISE-UNS der Firma Rolls Royce Deutschland. Das Ziel des Vorhabens lässt sich unterteilen in die folgenden Teilziele: 1.Verifikation der 2-Phasen-LES sowie der implementierten Flammenmodelle 2.Implementierung der Rückkopplung der CAA in die LES 3. Verifikation der Rückkopplung anhand von experimentellen Daten 4. Simulation einer Brennkammerkonfiguration für unterschiedliche Lastzustände.
Das hier beschriebene Vorhaben befasst sich mit der Interaktion zweier Kernkomponenten einer Gasturbine, der Brennkammer und der Hochdruckturbine. Im Vordergrund der experimentellen Untersuchungen steht die aerodynamische Wechselwirkung zwischen der Brennkammer und der ersten Leitschaufelreihe der Hochdruckturbine unter gleichzeitiger Berücksichtigung der nabenseitig austretenden Kühlluft stromauf der ersten Leitschaufelreihe (sog. RIDN-Kühlluft). Bei der Auslegung der ersten Turbinen-Leitradschaufel kann aufgrund der Austrittsströmung von modernen Mager-Brennkammern nicht mehr von einer rein axialen Zuströmgeschwindigkeit als aerodynamische Randbedingung ausgehen. Vielmehr kommt es im Naben- und Gehäusebereich bei einer Nichtbeachtung der Drallkomponente zu einer Fehlanströmung der Schaufel, was negative Konsequenzen für die zu erwartenden Schaufelverluste hat, die Druckverteilung im Vorderkantenbereich verändert, mit entsprechende Auswirkungen auf die zu legenden Kühlfilme der thermisch hoch belasteten Leitradschaufel, und über die sich verändernde Sekundärströmung den Vermischungsprozess mit der Kühlluftströmung beeinflussen wird. Diese Nichtbeachtung kann letztlich zu Wirkungsgradeinbußen in der Turbine führen und gleichzeitig erhebliche Konsequenzen für die thermische Belastbarkeit bzw. den Kühlluftbedarf der Leitschaufelreihe haben. In diesem Vorhaben soll nun die Auswirkung drallbehafteter Brennkammeraustrittsströmungen auf die Statoraerodynamik und die Vermischung zwischen der Ringkanalströmung und der im Nabenbereich austretenden RIDN-Kühlluft experimentell, mit Hilfe eines zweistufigen Modellturbinenprüfstandes untersucht werden. Der Modellturbinenprüfstand LSTR lässt aufgrund seiner Größe örtlich hoch aufgelöste Vermessungen des Geschwindigkeitsfeldes zwischen der Leitrad- und Laufradbeschaufelung zu. Gleichzeitig wird in Abhängigkeit der variierbaren Parameter der Turbinenwirkungsgrad bestimmt, so dass eine Aussage über den Grad der Verlustabhängigkeit von den einzelnen Parametern möglich sein wird. Auf Basis der Messergebnisse sollen neue Auslegungsrichtlinien formuliert werden, die für den Fall einer drallbehafteten Brennkammeraustrittsströmung eine verlustärmere Gestaltung des Leitradschaufelprofils und eine verlustärmere Gestaltung der Kühlluftzuführung ermöglichen sollen. Die Messdatenbasis kann außerdem zur Validierung der numerischen Auslegungswerkzeuge genutzt werden. Die Designwerkzeuge erlauben dann nicht nur die Auslegung einer effizienten Leitschaufel-/Sperrluftkonfiguration sondern auch die Auslegung einer insgesamt robusteren Konfiguration, die innerhalb gewisser Grenzen drallunempfindlich ist. Außerdem ist eine Überprüfung existierender Konfigurationen hinsichtlich ihrer Einsetzbarkeit bei modifizierten Brennerdüsen mit verändertem Drall möglich.
Origin | Count |
---|---|
Bund | 20 |
Type | Count |
---|---|
Förderprogramm | 20 |
License | Count |
---|---|
offen | 20 |
Language | Count |
---|---|
Deutsch | 19 |
Englisch | 2 |
Resource type | Count |
---|---|
Keine | 5 |
Webseite | 15 |
Topic | Count |
---|---|
Boden | 13 |
Lebewesen & Lebensräume | 13 |
Luft | 16 |
Mensch & Umwelt | 20 |
Wasser | 12 |
Weitere | 20 |