Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025
Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität Projektleitung: Dipl.-Ing. Gernot Schmid, Seibersdorf Labor GmbH Beginn: 18.03.2021 Ende: 11.11.2024 Finanzierung: 449.025 Euro Hintergrund Elektromobilität gilt als Schlüssel für eine klimafreundliche Mobilität. Elektroantriebe arbeiten weitgehend schadstoffemissionsfrei. Betriebsbedingt entstehen allerdings Magnetfelder, die von dem elektrifizierten Antriebsstrang eines Elektrofahrzeugs ausgehen und auf Fahrer*in und Passagier*innen einwirken. Expositionen ( d.h. ein Ausgesetztsein gegenüber solchen Feldern) in relevanten Größenordnungen können dabei nicht von Vornherein ausgeschlossen werden. Gründe sind der geringe Abstand der Sitze zu den Komponenten, die Magnetfelder erzeugen, und die hohen Stromstärken in leistungsstarken Fahrzeugen. Darüber hinaus können bei rein batterieelektrischen Fahrzeugen (BEV) und bei Plug-In-Hybriden (PHEV) Expositionen bei Fahrzeugstillstand während des Ladevorgangs auftreten. Magnetfeldquellen sind dann zum Beispiel die Ladeeinrichtung selbst, das Ladekabel im Fall konduktiven Ladens, als Gleichrichter arbeitende Leistungselektronik sowie die Leitungen im Fahrzeug und die Fahrzeugbatterie. Magnetfeldquellen nur in Elektroautos und Hybriden Zielsetzung In dem Vorhaben wurde die Exposition von Personen gegenüber elektromagnetischen Feldern der Elektromobilität bestimmt. Einbezogen wurden Expositionsbeiträge durch den Fahrzeugfahrbetrieb und durch Batterieladevorgänge bei Fahrzeugstillstand. Die Studie ist aussagekräftig für Elektroautos und Elektro-Zweiräder ( d.h. ein- und zweispurige Personenkraftfahrzeuge). Als Fahrräder eingestufte Elektrofahrzeuge ( sog. E -Bikes) waren ausgenommen. Die Ergebnisse können mit Werten einer im Jahr 2009 abgeschlossenen Studie des BfS und mit in der Literatur veröffentlichten Werten verglichen werden. Zudem geben die Ergebnisse Hinweise für die Standardisierung. Durchführung Untersucht wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle von verschiedenen Herstellern. Dazu wurden Magnetfeldmessungen an mehreren Stellen im Fahrgastraum der Elektroautos und an den Sitzpositionen der Elektro-Zweiräder ( d.h. Elektroroller bzw. -motorräder) durchgeführt, während sich die Fahrzeuge auf einem Rollenprüfstand und in vorab festgelegten Betriebszuständen befanden. Die Betriebszustände umfassten das Beschleunigen, das Bremsen sowie das Fahren mit konstanten Geschwindigkeiten gegen verschiedene Lastmomente, um Luftwiderstände, Streckensteigungen und -gefälle zu simulieren. Anschließend wurden Magnetfeldmessdaten während eines Worldwide Harmonized Light Vehicle Test Cycle (WLTC) aufgezeichnet. Dabei handelt es sich um einen ca. 30-minütigen genormten Fahrzyklus, der ursprünglich für vergleichbare Abgas- und Verbrauchsmessungen festgelegt wurde. Daten für Zweiräder wurden während eines World Motorcycle Test Cycle (WMTC) aufgezeichnet. Die auf dem Prüfstand ermittelten Daten wurden mit Messungen bei Fahrten auf einer abgesperrten, ebenen Teststrecke und bei einer etwa 90-minütigen Fahrt im öffentlichen Straßenverkehr validiert. Anschließend wurden die im Zeitbereich aufgezeichneten Messdaten entsprechend der spektralen Zusammensetzung analysiert und bewertet. Situationen, die basierend auf den Messungen die höchsten Expositionen erwarten ließen, wurden zusätzlich dosimetrisch analysiert. Die betreffenden Expositionssituationen wurden dazu in einer Simulationssoftware nachgebildet. Ziel war die rechentechnische Bestimmung, der im Körper einer exponierten Person hervorgerufenen elektrischen Feldstärken. Hierfür musste vorab die lokale Verteilung der Magnetfeldstärken in der Fahrgastzelle bzw. im Bereich der Sitze der Elektro-Zweiräder bekannt sein. Stellvertretend für die exponierten Personen wurden hochaufgelöste, digitale Menschmodelle eingesetzt, die anatomisch möglichst korrekt waren und Gewebetypen mit verschiedenen elektrischen Eigenschaften unterschieden. Die Untersuchungen zum Aufladen bei Fahrzeugstillstand berücksichtigten Positionen in und außerhalb der Fahrzeuge. Ebenso wurden die Untersuchungen an Normal- und Schnellladepunkten durchgeführt. Dummy mit Messsonden im Fond eines Elektroautos Ergebnisse Die Studie stellt nach Kenntnis des BfS die bislang detaillierteste Untersuchung zu Magnetfeldexpositionen in Elektrofahrzeugen dar. Die Messungen wurden in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugen unter realen Bedingungen sowie auf Teststrecken durchgeführt. Erstmals wurden auch Zweiräder einbezogen. Die Fahrzeughersteller waren nicht an den Untersuchungen beteiligt. Die Magnetfeldexposition innerhalb der Fahrzeuge war räumlich sehr ungleichmäßig. Hohe Werte traten im Bereich der Beine auf, während der Oberkörper und der Kopf deutlich weniger exponiert waren. Die Exposition variierte je nach Fahrmanöver: Beim Beschleunigen und Bremsen waren die Werte höher als bei konstantem Fahren. Die maximale Motorleistung der Fahrzeuge hing nicht systematisch mit der Magnetfeldexposition zusammen. Langzeit-Effektivwerte aus Messungen während Fahrten im realen Straßenverkehr zeigten höhere Werte als die Daten, die während genormter Fahrzyklen auf einem Fahrzeugprüfstand ermittelt wurden. Die Magnetfeldexposition wurde mit den Referenzwerten der EU -Ratsempfehlung und den ICNIRP -2010-Leitlinien verglichen. Bei sanfter Fahrweise lagen die Ausschöpfungen der EU -Referenzwerte meist im niedrigen zweistelligen Prozentbereich. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der EU -Referenzwerte. Bei Anwendung der moderneren ICNIRP -2010-Leitlinien ergab sich nur in einem Fall eine Überschreitung. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper induzierte elektrische Felder festgestellt. Neben dem Antriebssystem erzeugen weitere Fahrzeugkomponenten Magnetfelder, z.B. die Sitzheizungen, Fensterheber oder Fahrzeugeinschaltung. In einigen Fällen waren diese Expositionen höher als die durch das Antriebssystem verursachten Felder. In vielen Fahrzeugen traten die höchsten Werte beim Einschalten oder Starten auf. Die mittleren Langzeitwerte in Elektroautos (0,5 bis 2,5 Mikrotesla/ µT ) entsprachen weitgehend denen in etablierten elektrisch angetriebenen Verkehrsmitteln wie Straßenbahnen oder U-Bahnen (2 bis 3 µT ). In doppelstöckigen Zügen wurden auf der oberen Fahrgastebene Werte bis zu 13 µT gemessen, also potenziell höhere Expositionen als in Elektroautos. Stand: 21.08.2025
Löß ist ein einzigartiges Archiv pleistozäner Umweltbedingungen. Seine weite Verbreitung und seine oft quasi-kontinuierliche Sedimentation ermöglichen zeitlich und räumlich hoch aufgelöste Rekonstruktionen der Paläoumwelt. Darüber hinaus sind besonders die mittel- und jungwürmzeitlichen Löße hervorragende archäologische Archive. In Zentral- und in SE-Europa findet sich eine große Zahl bedeutender jungpaläolithischer Fundplätze eingebettet in mächtige Lößabfolgen. Löß kann, wie auch andere Sedimente, die zeitlichen Variationen des Erdmagnetfeldes auf Skalen von Jahrhunderten bis Jahrhunderttausenden aufzeichnen. Untersucht der Umweltmagnetismus die magnetischen Eigenschaften des 'Tonbandes' (hier Löß), so ist die möglichst genaue Rekonstruktion der darauf gespeicherte 'Musik' der Erdmagnetfeldvariationen Gegenstand des Paläomagnetismus. Ist die zeitliche Variabilität des Erdmagnetfeldes bekannt, so kann das in einem konkreten Profil erkannte Variationsmuster zur indirekten Datierung des Profils herangezogen werden. Seit September 2005 werden Grabungsprofile in der Wachau und in den rumänischen Ostkarpaten paläo- und umweltmagnetisch bearbeitet. Ziel der Untersuchungen ist -neben einer unabhängigen zeitlichen Einstufung- die Rekonstruktion des Paläoklimas zur Zeit der paläolithischen 'Besiedlung'.
The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.
Die Wärmeaufnahme und der meridionale Wärmetransport der globalen Ozeanzirkulation ist ein zentraler Bestandteil des Klimasystems der Erde. Die damit einhergehenden Massentransporte finden auf Zeitskalen von Tagen bis Jahrtausenden statt. Die SWARM mission ermöglicht mit ihrer angestrebten Präzession von 0.1 nT erstmals einen direkten Blick auf diese Prozesse. Das beantragte Projekt verbessert, quantifiziert und charakterisiert die auf die Ozeanzirkulation zurückgehenden Signale im Magnetfeld der Erde. Ein Ensembleansatz wird mit einem globalen Ozeanzirkulationsmodell kombiniert um Charakteristika der strömungsinduzierten Signale zu abzuleiten. Diese Charakteristika beinhalten Wertebereich, Pattern, Frequenzen, Fehler und Korrelationen der ozeanischen Magnetfelder. Weiterhin werden die Sensitivitäten der ozeanischen Magnetfeldberechnung bezüglich der Annahmen: Salzgehalts und Temperaturabhängige Leitfähigkeit und konstante Leitfähigkeit, 2D- und 3D-Strömungsverteilung, Gleichgewichtslösung und zeitliche Variabilität der Lösung, untersucht. Die identifizierten Signale, ihre Fehler und entsprechende Korrelationen können benutzt werden, die SWARM-Messungen vom ozeanischen Signalanteil zu befreien. Dies ist insbesondere für die nicht-ozeanischen Projekte innerhalb des SPP wichtig, da die integralen SWARM-Messungen nur Informationen über einzelne Erdsubsysteme liefern können, wenn alle anderen Signalbeiträge und ihre Fehler entweder genau bekannt oder zumindest gut charakterisiert sind. Im Hinblick auf ein zukünftige Datenassimilation der Magnetfeldmessungen mit Ozeanmodellen, wird das beantragte Projekt untersuchen, welche ozeanischen Signale und Frequenzen aus aktuellen oder zukünftigen satellitenbasierten Magnetfeldmissionen separiert werden können. Mithilfe des Ozeanmodell-Ensembles werden robuste ozeanische Magnetfeldsignale ermittelt. Dies sind Signale, die von unsicheren Annahmen bei der Magnetfeldberrechung (z.B., durch Unsicherheiten in der Hintergrundleitfähigkeit) und dem Ozeanmodell (z.B. durch Unsicherheiten im Anfangszustand und dem Modellantrieb) wenig beeinflusst werden. Im Anschluss an die Identifizierung werden die robusten Signale mit den Signalen der nichtozeanischen Erdsubsysteme und den SWARM-Messunsicherheiten abgeglichen. Dieser Abgleich wird den gesamten Informationsgewinn des DynamicEarth Schwerpunktprogramms nutzen.
Electrical conductivity is a key parameter in models of magnetic field generation in planetary interiors through magneto-hydrodynamic convection. Measurements of this key material parameter of liquid metals is not possible to date by experiments at relevant conditions, and dynamo models rely on extrapolations from low pressure/temperature experiments, or more recently on ab-initio calculations combining molecular dynamics and linear response calculations, using the Kubo-Greenwood formulation of transport coefficients. Such calculations have been performed for Fe, Fe-alloys, H, He and H-He mixtures to cover the interior of terrestrial and giant gas planets. These simulations are computationally expensive, and an efficient accurate scheme to determine electrical conductivities is desirable. Here we propose a model that can, at much lower computational costs, provide this information. It is based on Ziman theory of electrical conductivity that uses information on the liquid structure, combined with an internally consistent model of potentials for the electron-electron, electron-atom, and atom-atom interactions. In the proposal we formulate the theory and expand it to multi-component systems. We point out that fitting the liquid structure factor is the critical component in the process, and devise strategies on how this can be done efficiently. Fitting the structure factor in a thermodynamically consistent way and having a transferable electron-atom potential we can then relatively cheaply predict the electrical conductivity for a wide range of conditions. Only limited molecular dynamics simulations to obtain the structure factors are required.In the proposed project we will test and advance this model for liquid aluminum, a free-electron like metal, that we have studied with the Kubo-Greenwood method previously. We will then be able to predict the conductivities of Fe, Fe-light elements and H, He, as well as the H-He system that are relevant to the planetary interiors of terrestrial and giant gas planets, respectively.
Mobi-Kids-Studie: Keine Erhöhung des Hirntumor-Risikos bei Kindern durch mobile Kommunikationsgeräte Fachliche Stellungnahme des BfS zu einer internationalen Untersuchung Die MOBI-Kids-Studie untersuchte den Zusammenhang zwischen Hirntumoren und der Nutzung von drahtlosen Telefonen in einer gemeinsamen Auswertung von Daten aus 14 Ländern. Mit fast 900 Kindern und Jugendlichen mit Hirntumoren und 1900 Kindern und Jugendlichen ohne Hirntumorerkrankung handelt es sich um die bisher größte Studie zu Mobiltelefonnutzung und Hirntumoren in dieser Altersgruppe. Die Ergebnisse der Studie sprechen dafür, dass die Benutzung von Mobiltelefonen bzw. schnurlosen Telefonen das Risiko für Hirntumoren bei Jugendlichen nicht erhöht. Eine in der Studie beobachtete vermeintliche Abnahme des Hirntumorrisikos, je länger und öfter mobile Kommunikationsgeräte genutzt wurden, deutet auf ein mögliches methodisches Artefakt hin, da es keinen Grund für die Annahme eines tatsächlich existierenden schützenden Effektes gibt. Die Autoren vermuten als Gründe für den beobachteten Effekt Unsicherheiten bei den Angaben zur Nutzung, wenn diese von den Eltern statt von den Kindern und Jugendlichen selbst stammen, und Änderungen im Nutzungsverhalten bei erkrankten Personen bereits vor der Diagnose. Aufgrund möglicher Verzerrungsquellen, die in Fall-Kontroll-Studien trotz größter Sorgfalt und größtem Aufwand vorhanden sein können, kann auch auf Basis dieser Studienergebnisse ein kleiner Risikoanstieg nicht völlig ausgeschlossen werden. Insgesamt sprechen die Beobachtungen der Studie aber deutlich gegen ein substantiell erhöhtes Risiko von Hirntumoren durch die Nutzung von Mobiltelefonen und kabellosen Telefonen bei Kindern und Jugendlichen. Die Studie untermauert den aktuellen wissenschaftlichen Stand, dass es keine belastbaren wissenschaftlichen Belege dafür gibt, dass Strahlung von Mobiltelefonen das Hirntumorrisiko erhöht. Hintergrund Quelle: byswat/stock.adobe.com Drahtlose Kommunikationstechniken wie Mobiltelefone oder kabellose DECT -Telefone sind zentraler Bestandteil unseres Lebens. Dies gilt inzwischen auch für Kinder und Jugendliche, insbesondere im Bereich des Mobilfunks. Mobiltelefone wie auch kabellose DECT -Telefone sind Quellen hochfrequenter elektromagnetischer Felder und niederfrequenter Magnetfelder. Diese werden von der Weltgesundheitsorganisation WHO als "möglicherweise krebserregend" eingestuft (Gruppe 2b). Eine solche Einstufung seitens der IARC bedeutet, dass die Möglichkeit eines solchen Risikos zwar nicht wahrscheinlich ist, aber wegen Einzelhinweisen auch nicht ausgeschlossen werden kann. Bei Mobiltelefonen und DECT -Telefonen stellt sich vor allem die Frage nach einem möglichen Risiko für Hirntumoren, da die Exposition im Kopfbereich am stärksten ist. Falls ein solches Risiko bestünde, könnten Kinder und Jugendliche besonders betroffen sein. Zum einen ist das sich noch entwickelnde Gehirn bei Kindern und Jugendlichen besonders empfindlich, zum anderen können Kinder und Jugendliche bei einem frühen Nutzungsbeginn im Lauf ihres Lebens besonders lange einer entsprechenden Exposition ausgesetzt sein. Die wissenschaftliche Untersuchung der Frage, ob Telefonieren mit dem Mobiltelefon oder DECT -Telefon das Risiko für Hirntumoren bei Kindern und Jugendlichen erhöht, ist eine besondere Herausforderung. Hirntumoren treten bei Kindern und Jugendlichen glücklicherweise nur sehr selten auf. Aussagekräftige Ergebnisse sind jedoch nur von einer Studie mit einer großen Anzahl an Hirntumor-Fällen zu erwarten. Daher werden hierfür oft Fall-Kontroll-Studien durchgeführt. Hierbei ist es aber rein methodisch schwierig, rückwirkend zuverlässige Informationen über das Nutzungsverhalten zu erhalten, da sich alle Teilnehmenden an ihr zum Teil jahrelang zurückliegendes Verhalten erinnern müssen. Berücksichtigt man diese Einschränkungen jedoch in adäquater Weise, lassen sich aus sorgfältig geplanten und korrekt durchgeführten Fall-Kontroll-Studien - wie dieser - dennoch wissenschaftlich belastbare Aussagen ableiten. Generell ist für die Risikobewertung immer das Gesamtbild, das sich aus den verschiedenen Arten von Studien ergibt, relevant. In die MOBI-Kids-Studie wurden Patient*innen aus 14 Ländern eingeschlossen. Ergebnisse der Studie zum Zusammenhang zwischen der Nutzung von Mobil- und DECT -Telefonen durch Kinder und Jugendliche und deren Risiko für Hirntumoren wurden Ende Dezember 2021 in der Zeitschrift Environment International veröffentlicht ( Castaño-Vinyals et al. 2021 ). Finanziert wurde die MOBI-Kids-Studie hauptsächlich von der Europäischen Kommission (Förderungen 226873 und 603794), eine Teilfinanzierung des deutschen Projekts erfolgte durch das Bundesamt für Strahlenschutz im Rahmen des Ressortforschungsvorhabens 3609S30010 (Laufzeit 2010-2014). Bewertung Die Studie von Castaño-Vinyals et al. hat eine Reihe von Stärken im Vergleich zu bisher existierenden Studien zu dem Thema. Der Studienumfang ist deutlich größer als bei der einzigen bisher existierenden Fall-Kontroll-Studie zum Zusammenhang zwischen Mobilfunknutzung und Hirntumorerkrankungen bei Kindern und Jugendlichen ( Aydin et al. 2011 ), der sogenannten CEFALO-Studie. Diese umfasste 352 Fälle und 646 Kontrollen aus vier Ländern (Dänemark, Schweden, Norwegen und der Schweiz) und hatte ein statistisch nicht signifikant erhöhtes Risiko gezeigt. Zudem sind die durchschnittliche Nutzungsdauer und -häufigkeit in der MOBI-Kids-Studie deutlich größer als in der CEFALO-Studie, so dass sich ein Zusammenhang zwischen Mobilfunknutzung und Hirntumorrisiko in der MOBI-Kids-Studie mit größerer Wahrscheinlichkeit gezeigt hätte als in der CEFALO-Studie, wenn ein solcher Zusammenhang bestehen würde. Der Anteil der Langzeit-Nutzer*innen (> 10 Jahre) ist mit 22,5 % in der MOBI-Kids-Studie sogar größer als in der bei Erwachsenen durchgeführten INTERPHONE -Studie ( INTERPHONE Study Group, 2010 ), bei der dieser Anteil laut Castaño-Vinyals et al. bei 13,6 % lag. Damit verfügt die MOBI-Kids-Studie über eine aussagekräftigere Datenbasis als bisherige Studien. Zu beachten ist dabei, dass sich die durchschnittliche Sendeleistung der Mobiltelefone mit der flächendeckenden Einführung neuer Mobilfunktechnologien deutlich reduziert hat. Während die Exposition in der Interphone-Studie vorwiegend durch 1G (C-Netz) und 2G ( GSM ) -Telefone geschah, waren für die Nutzer*innen in der MOBI-Kids-Studie bereits Telefone mit dem deutlich effizienteren Standard 3G ( UMTS ) verfügbar, sodass bei gleichem Nutzungsverhalten von einer geringeren Exposition der Teilnehmenden der MOBI-Kids-Studie ausgegangen werden muss. Weitere Stärken der Studie sind, dass auch die Nutzung von kabellosen Telefonen berücksichtigt worden ist und dass die Auswertung zusätzlich mit einem Maß für die geschätzte Feldeinwirkung am Ort des Tumors durchgeführt wurde ( Calderón et al. 2022 ). Positiv hervorzuheben an der Studie ist zudem, dass in einer zusätzlichen Studie durch den Vergleich zwischen den Fragebogenangaben und den Angaben der Mobilfunk-Anbieter geprüft wurde, ob die Qualität der Fragebogenangaben sich zwischen Fällen und Kontrollen unterschied. Ein solcher Unterschied würde zu einer Verzerrung der Ergebnisse führen. Es zeigte sich jedoch kein relevanter Unterschied. Trotz des vergleichsweise großen Studienumfangs sind auch in dieser Studie die Fallzahlen in verschiedenen Untergruppen sehr klein, so dass aussagekräftige Auswertungen für diese Untergruppen nicht möglich sind bzw. deren Ergebnisse sehr ungenau sind. Schwächen der Studie, die jedoch für praktisch alle Fall-Kontroll-Studien gelten, sind zudem, dass eine gewisse Verzerrung der Ergebnisse durch unterschiedliche Teilnahmebereitschaft von Fällen und Kontrollen in Abhängigkeit vom Nutzungsverhalten („Selektionsbias“) nicht ausgeschlossen werden kann, und dass die Angaben zum Nutzungsverhalten im Nachhinein erhoben worden sind. Im Unterschied zu Fall-Kontroll-Studien besteht bei Kohortenstudien das Problem der selektiven Teilnahmebereitschaft von erkrankten und nicht erkrankten Personen nicht und es ist möglich, Angaben zum Nutzungsverhalten fortlaufend zu erheben. Kohortenstudien sind jedoch deutlich aufwändiger als Fall-Kontroll-Studien . Zurzeit läuft mit der COSMOS-Studie eine Langzeit- Kohortenstudie , die 300.000 Teilnehmer aus sechs Nationen (die Niederlande, England, Schweden, Finnland, Dänemark und Frankreich) umfasst ( Schüz et al. 2011 ). Ergebnisse liegen bisher noch nicht vor. Die Ergebnisse der MOBI-Kids-Studie stützen die Ergebnisse vorliegender Studien an Erwachsenen, die mehrheitlich kein erhöhtes Risiko für das Auftreten von Hirntumoren in Abhängigkeit von Mobiltelefon-Nutzung fanden. Die bisher einzige Studie zu Mobiltelefon-Nutzung und Hirntumoren bei Kindern und Jugendlichen ( Aydin et al. 2011 ) zeigte keinen statistisch signifikanten Zusammenhang. Die Studie betrachtete aber deutlich kleinere Fallzahlen und die Nutzungsdauer war wesentlich kürzer als in der MOBI-Kids-Studie. Fazit Bisher gibt es keine wissenschaftlichen Belege für einen ursächlichen Zusammenhang zwischen Mobiltelefonnutzung und dem Risiko für Hirntumoren bei Kindern und Jugendlichen, wie es auch im Standpunkt des BfS zum Thema 5G erläutert wird. Die Ergebnisse der MOBI-Kids-Studie liefern ebenfalls keinen Hinweis auf einen entsprechenden Zusammenhang. Die große sorgfältig durchgeführte multizentrische Studie trägt damit wesentlich zur Verringerung bestehender Unsicherheiten bezüglich des Gesundheitsrisikos von Kindern und Jugendlichen durch Nutzung von drahtlosen Telefonen bei. Stand: 26.09.2025
| Origin | Count |
|---|---|
| Bund | 611 |
| Land | 26 |
| Wissenschaft | 33 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Daten und Messstellen | 5 |
| Ereignis | 1 |
| Förderprogramm | 459 |
| Gesetzestext | 1 |
| Sammlung | 2 |
| Text | 88 |
| unbekannt | 113 |
| License | Count |
|---|---|
| geschlossen | 118 |
| offen | 529 |
| unbekannt | 22 |
| Language | Count |
|---|---|
| Deutsch | 601 |
| Englisch | 182 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 2 |
| Datei | 4 |
| Dokument | 70 |
| Keine | 298 |
| Multimedia | 5 |
| Webdienst | 5 |
| Webseite | 287 |
| Topic | Count |
|---|---|
| Boden | 328 |
| Lebewesen und Lebensräume | 318 |
| Luft | 299 |
| Mensch und Umwelt | 669 |
| Wasser | 207 |
| Weitere | 626 |