This series refers to datasets related to the presence of people; livelihoods; species or ecosystems; environmental functions, services, and resources; infrastructure; or economic, social, or cultural assets in places and settings that could be adversely affected by climate hazards, including flooding, wildfires and urban heat island effects. The datasets are part of the European Climate Adaptation Platform (Climate-ADAPT) accessible here: https://climate-adapt.eea.europa.eu/
Data compiled are annual national total and sectoral emissions of air pollutants and associated activity data reported by EEA member and cooperating countries. Data are available for download in the UNECE/EMEP Nomenclature for Reporting (NFR) format used by countries. A consolidated dataset for all countries and consistent with the European Union's air pollutant emission inventory submission to the LRTAP Convention is also provided.
Data on emissions of air pollutants (ammonia (NH3), non-methane volatile organic compounds (NMVOC), nitrogen oxides (NOx), particulate matter 2.5 (PM2.5) and sulphur dioxide (SO2)) reported annually by Member States to the European Commission (with copies to EEA) under Directive 2016/2284 of the European Parliament and of the Council on the reduction of national emissions of certain atmospheric pollutants.
The Floods Directive (FD) was adopted in 2007 (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32007L0060). The purpose of the FD is to establish a framework for the assessment and management of flood risks, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the European Union. ‘Flood’ means the temporary covering by water of land not normally covered by water. This shall include floods from rivers, mountain torrents, Mediterranean ephemeral water courses, and floods from the sea in coastal areas, and may exclude floods from sewerage systems. This reference spatial dataset, reported under the Floods Directive, includes the areas of potential significant flood risk (APSFR), as they were lastly reported by the Member States to the European Commission, and the Units of Management (UoM).
This Discomap web map service provides an EU-27 (2020) basemap for internal EEA use as a background layer in viewers or any other web application. It is provided as REST and as OGC WMS services, dynamic and cached. The cached service has a custom cache at the following scales: 1/50.000.000 1/42.000.000 1/36.000.000 (Europe's size) 1/30.000.000 1/20.000.000 1/10.000.000 1/5.000.000 1/2.500.000 1/1.000.000.
The Governance of the Energy Union and Climate Action ((EU) 2018/1999) requires Member States to report national projections of anthropogenic GHG emissions. Every two years, each EU Member State shall report GHG projections in a ‘with existing measures’ scenario for the years 2020, 2025, 2030, 2035, 2040, 2045 and 2050 by gas (or group of gases) and by sector. National projections shall take into consideration any policies and measures adopted at Union level. The reported data are quality checked by the EEA and its European Topic Centre for Climate Change Mitigation and Energy (ETC/CME).
A total of 140 samples were collected from the il-Blata section outcropping on the Mediterranean Island of Malta (base of section at 35.9004˚N, 14.3309˚E, top of section at 35.9000˚N, 14.3314˚E). 16 of these samples were selected to determine the 87Sr/86Sr in the bulk sediment and used to generate numerical ages using the LOWESS FIT for Sr-Stratigraphy (McArthur et al., 2012). All 87Sr/86Sr measurements conducted at the University of Geneva using a Thermo Neptune PLUS Multi-Collector inductively coupled plasma mass spectrometer. Data and numerical age model presented in table S1. The εNd data from (Bialik et al., 2019) were recalibrated to fit the new age model and presented in table S2. The percentage carbonate matter was measured using a FOGl digital calcimeter at the University of Malta (table S3). Dry powders were used to generate a stable isotope (δ18O & δ13C) record (table S4), all measurements were conducted on a Gasbench II coupled to a Thermo Delta V Advantage isotope ratio mass spectrometer at the School of Earth and Environmental Sciences, Cardiff University. Dry bulk sediment powders were also used to obtain major element composition and calculate element ratios Sr/Ca, Ti/Al, K/Al, Zr/Al, Si/Ti. All element measurements were conducted at The School of Earth and Environmental Sciences, Cardiff University using a hand-held Olympus Delta Innov-X XRF gun. Element data presented in table S5. Mean values of the ratios Sr/Ca, Ti/Al, K/Al, Zr/Al and Si/Ti were obtained for three different parts in the section in order to determine regime changes (table S6).
Progress to targets for greenhouse gas (GHG) emissions and removals is a dataset under the National Energy and Climate Progress Reports (NECPRs), which is reported every second year (starting in 2023) by EU Member States. The dataset provides information regarding Member State's GHG and removals targets and progress in achieving them. The EEA collects and quality checks this data. The dataset links to data from GHG inventories and projections (also collected by the EEA), as well as Annual Emission Allocations (AEAs). This reporting obligation comes from the Governance Regulation 2018/1999, Implementing Regulation (EU) 2022/2299 (Annex I).
Additional reporting in the area of renewable energy is a dataset under the National Energy and Climate Progress Reports (NECPRs), which is reported every second year (starting in 2023) by EU Member States. The dataset provides information regarding Member States functioning system for guarantees of origin (GO), renewable energy surplus/deficits, biomass use and impacts, and renewable energy usage in buildings. The EEA collects and quality checks this data. The dataset links to data from Eurostat. This reporting obligation comes from the Governance Regulation 2018/1999, Implementing Regulation (EU) 2022/2299 (Annex XVI).
This indicator shows concentrations of nitrate in groundwater bodies. The indicator can be used to illustrate geographical variations in current nutrient concentrations and temporal trends.
| Origin | Count |
|---|---|
| Bund | 43 |
| Europa | 190 |
| Land | 13 |
| Wissenschaft | 2 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Ereignis | 8 |
| Förderprogramm | 18 |
| Text | 21 |
| unbekannt | 197 |
| License | Count |
|---|---|
| geschlossen | 13 |
| offen | 58 |
| unbekannt | 175 |
| Language | Count |
|---|---|
| Deutsch | 50 |
| Englisch | 200 |
| Resource type | Count |
|---|---|
| Archiv | 9 |
| Bild | 7 |
| Datei | 28 |
| Dokument | 35 |
| Keine | 65 |
| Unbekannt | 3 |
| Webdienst | 52 |
| Webseite | 167 |
| Topic | Count |
|---|---|
| Boden | 108 |
| Lebewesen und Lebensräume | 138 |
| Luft | 71 |
| Mensch und Umwelt | 245 |
| Wasser | 244 |
| Weitere | 246 |