s/maschinelles-lernen/Maschinelles Lernen/gi
Der menschengemachte Klimawandel bedroht langfristig die Stabilität der Ökosysteme des Planeten, und damit auch die Stabilität der menschlichen Gesellschaft durch Verknappung von Wasser, Nahrung und Lebensraum. Insbesondere die landwirtschaftliche Nahrungsmittelproduktion blickt einer ungewissen Zukunft entgegen und es besteht erheblicher Informationsbedarf hinsichtlich geeigneter Klimaschutzstrategien. Übergeordnetes Ziel des Vorhabens ist die Identifizierung von geeigneten Bewirtschaftungsmaßnahmen und betrieblichen Strategien zur Optimierung der Pflanzenproduktion im Sinne des Klimaschutzes. Das Projekt ModOKlim verfolgt dabei vorrangig folgende wissenschaftliche Ziele: (i) die verlässliche Reproduktion von räumlichen und zeitlichen Mustern der Produktivität landwirtschaftlicher Kulturen in Deutschland über die vergangenen 30 Jahre mit Hilfe von Agrarökosystemmodellen, (ii) die deterministische Projektion der Ertragsaussichten und damit verbundener THG-Emissionen landwirtschaftlicher Kulturen in Deutschland, (iii) die Szenarienanalyse mit Hilfe von biophysikalischen und ökonomischen Modellen zur Beurteilung von Erfolgsaussichten von Klimaschutzstrategien in Richtung von profitablen, klimaangepassten und artenreichen Anbausystemen und (iv) die Integration des aktuellsten Stands der Wissenschaft in Bezug auf die probabilistische Projektion von Extremwetterereignissen in die Projektionen der deterministischen Modelle. Ziel des Arbeitspakets 1 ist die Analyse des Auftretens ertragsrelevanter Extremwetter für landwirtschaftliche Kulturen in Vergangenheit und Zukunft. Mit Hilfe eines objekt-orientierten Ansatzes basierend auf Radardaten wird am KIT untersucht, bei welchen Umgebungsbedingungen sich schaden-relevante Hagelstürme bilden und wie sich diese Bedingungen in einem zukünftigen Klima verändern. Durch den objekt-orientierten Ansatz und Verfahren des maschinellen Lernens werden robustere Trendaussagen erwartete im Vergleich zu den bisher verwendeten Methoden.
Ultrafeine Partikel (UFP) mit einem aerodynamischen Durchmesser kleiner als 100 nm stehen unter dem Verdacht die menschliche Gesundheit zu schädigen, allerdings fehlt bisher die abschließende wissenschaftliche Evidenz aus epidemiologischen Studien. Zur Herleitung von Expositionskonzentrationen gegenüber UFP wurden zum Teil statistische Modellierungsverfahren genutzt um UFP-Anzahlkonzentrationen vorherzusagen. Ein häufig genutztes Verfahren ist eine auf Flächennutzung basierte lineare Regression („land-use regression“, LUR). Allerdings wurden in luftqualitativen Studien auch andere, ausgefeiltere Modellansätze benutzt, z.B. „machine learning“ (ML) oder „deep learning“ (DL), die eine bessere Vorhersagegenauigkeit versprechen. Das Ziel des Projekts ist die Modellierung von UFP-Anzahlkonzentration in urbanen Räumen basierend auf ML- und DL-Algorithmen. Diese Algorithmen versprechen eine bessere Vorhersagegenauigkeit gegenüber linearen Modellansätzen. Mit unserem Modellansatz wollen wir sowohl räumliche als auch zeitliche Variabilität der UFP-Anzahlkonzentrationen abbilden. In einem ersten Schritt werden die Messergebnisse aus mobilen Messkampagnen genutzt um ein ML-basiertes LUR Modell zu kalibrieren. Zusätzlich werden urbane Emissionen aus lokalen Quellen, abseits vom Straßenverkehr, identifiziert und explizit in das Modell einbezogen. In einem zweiten Schritt wird ein DL-Modellansatz basierend auf Langzeit-UFP-Messungen mit dem ML-Modell gekoppelt um die Repräsentierung der zeitlichen Variabilität zu verbessern. Unser vorgeschlagenes Arbeitsprogramm besteht aus fünf Arbeitspaketen (WP): WP 1 beinhaltet mobile Messungen mittels eines mobilen Labors und eines Messfahrads. WP 2 besteht aus stationären Messungen, die an Stationen des German Ultrafine Aerosol Network durchgeführt werden. In WP 3 werden wichtige UFP-Emissionsquellen, insbesondere Nicht-Verkehrsemissionen, mit Hilfe von zusätzlichen kurzzeitigen stationären Messungen identifiziert und quantifiziert. In WP 4 werden ML-Algorithmen genutzt um ein statistisches Modell aufzubauen. Als Kalibrierungsdatensatz werden die Messungen aus WP 1 benutzt. Das Modell wird UFP-Anzahlkonzentrationen mit Hilfe eines Datensatzes aus erklärenden Variablen, u.a. meteorologische Größen, Flächennutzung, urbaner Morphologie, Verkehrsmengen und zusätzlichen Informationen zu UFP-Quellen nach WP 3, vorhersagen. In WP 5 werden die UFP-Anzahlkonzentrationen aus WP 2 für einen DL-Modellansatz genutzt, der die zeitliche Variabilität repräsentieren wird. Dieser wird dann mit dem ML-Modell aus WP 4 gekoppelt. Der Nutzen der Modellkopplung wird mit dem Datensatz aus WP 3 validiert. Aus unserem Projekt wird ein Modell hervorgehen, das in der Lage ist die räumliche und zeitliche Variabilität urbaner UFP-Anzahlkonzentrationen in einer hohen Genauigkeit zu repräsentieren. Damit wird unsere Studie einen Beitrag zur Quantifizierung von Expositionskonzentrationen gegenüber UFP z.B. in epidemiologischen Studien leisten.
Die Klimakrise verändert zunehmend die räumliche und zeitliche Verfügbarkeit von Grundwasser, der wichtigsten globalen Süßwasserressource. Das quantitative Verständnis der Interaktion von Grundwasser und Klima, vor allem auf nationaler und kontinentaler Skala, ist wichtig für ein optimal angepasstes Grundwassermanagement. Bisher ist das Wissen über die großskalige Sensitivität der Grundwasserressourcen auf den Klimawandel jedoch sehr limitiert. Das Ziel des hier vorgestellten Projektes ist die Erforschung der Auswirkungen des Klimawandels und der damit einhergehenden Umweltveränderungen auf den quantitativen Zustand von Grundwasserressourcen auf national-kontinentaler Skala. Etablierte prozessbasierte Modelle (PBMs) zur hydro(geo)logischen Modellierung auf großer Skala (meist „Global Hydrological Models“ - GHMs) sind starke Vereinfachungen der Realität und unterliegen daher deutlichen Limitationen und Unsicherheiten. Im Gegensatz zu anderen PBMs, weisen GHMs daher begrenzte physikalische Konsistenz und Interpretierbarkeit auf und ihre Anwendung kann zu irreführenden Schlussfolgerungen über die Verfügbarkeit von Grundwasser vor dem Hintergrund des Klimawandels führen. Vor allem die Übertragbarkeit auf datenarme Regionen ist nur eingeschränkt möglich. In den letzten Jahren haben sich Deep Learning (DL) Modelle als präziser und leicht übertragbarer alternativer Ansatz in der Modellierung von Wasserressourcen etabliert. Für die Modellierung von Oberflächengewässern wurde zudem gezeigt, dass DL auch spezialisierte PBMs übertreffen kann. Das vorgeschlagene Projekt möchte sich die gewonnenen Erkenntnisse zunutze machen und ein DL-Modell zur Untersuchung der Sensitivität von Grundwasser auf den Klimawandel auf kontinentaler Skala aufbauen. Hierfür wird ein „big data“ Ansatz gewählt, der Daten von >2200 Einzugsgebieten in Nordamerika nutzt (Erweiterung denkbar). Ein solches Modell kann lernen, Wissen über verschiedene Regionen zu transferieren, gewinnt somit stark an Generalisierungsfähigkeit (z.B. auf datenarme Regionen) und schlussendlich an Vertrauenswürdigkeit. Weiterhin soll das Problem von fehlenden, interpretierbaren und physikalisch konsistenten Modellen im nationalen Maßstab angegangen werden, indem physikalisches Wissen und Prozesse in die DL-Modelle eingebaut werden. Durch diese Ansätze soll ein plausibles, interpretierbares und vor allem vertrauenswürdiges Modell entstehen, welches sich zur Untersuchung von Klimawandelszenarien eignet. Die genannten Aspekte sind hierbei besonders kritisch, da für Zeiträume in der Zukunft keine Validierung möglich ist. Das entwickelte Modell dient anschließend der Beantwortung der übergeordneten Fragestellung, und die Auswirkungen des Klimawandels auf die Grundwasserressourcen werden anhand der Daten von Klimamodellen auf Basis von RCP bzw. SSP Szenarien untersucht. Weiterhin werden spezialisierte Untersuchungen (Szenarien) zum Einfluss einzelner Einflussfaktoren (z.B. Landnutzung) durchgeführt.
Maschinelle Lernmodelle haben große Erfolge beim Lernen komplexer Muster wie zum Beispiel die räumliche Verbreitung von Bodeneigenschaften gezeigt, die es erlauben Vorhersagen über nicht erfasste Bereiche zu treffen. Die Fähigkeit, das Gelernte auf andere Gebiete anzuwenden ist dagegen wenig entwickelt und bislang können die Modelle nur sehr eingeschränkt auf Bereiche außerhalb der unmittelbaren Lernumgebung übertragen werden. Ähnlich empirischen Regressionen gelten die Regelwerke, z.B. bei Entscheidungsbaumverfahren wie Random Forest, nur für den von Trainingsdaten abgedeckten Wertebereich. Für jedes weitere Gebiet werden erneut möglichst hochwertige und umfangreiche Trainingsdaten benötigt. Fortschritte im Bereich des Deep Learning (DL), z.B. Convolutional Neural Networks, des Transfer Learnings und kombinierte Ansätze im Bereich Feature Selection (FS) bieten hier erweiterte Möglichkeiten, um die Dimensionalität gerade bei kleineren Datensätzen einzuschränken, die Überanpassung an die Trainingsdaten zu minimieren und die Übertragung auf angrenzende Gebiete zu verbessern. Im vorliegenden Antrag nehmen wir diese Entwicklungen auf und versuchen Bodeneigenschaften auch für Bereiche außerhalb der Lernumgebung vorherzusagen. Dazu erstellen wir zunächst mit Umweltfaktoren eine gebietsspezifische Parametrisierung maschineller Lernmodelle anhand von geomorphometrischen, geologischen, landschaftsökologischen und klimatischen Parametern. Welche Parameter dies im Einzelnen sind und wie sie untereinander im Verhältnis stehen, wird exemplarisch für verschiedene Testdatensätze in Deutschland (humides Klima) und im Iran (semi-arid bis arides Klima) durch die Kombination von Methoden des DL und der FS berechnet. Im Folgeschritt werden die mit den ausgewählten Parametern der Umweltfaktoren und den Bodenprofildaten trainierten Modelle auf nicht trainierte Gebiete übertragen und an unabhängigen Bodendaten validiert. Die nicht trainierten Gebiete werden anhand von Distanz- und Ähnlichkeitsmaßen hinsichtlich ihrer Vergleichbarkeit mit den ursprünglichen Trainingsgebieten charakterisiert, um die Transferleistung der maschinellen Lernmodelle zu beurteilen. Abschließend ist vorgesehen, für die unbekannten Gebiete schrittweise Trainingsdaten zuzufügen, um die Entwicklung der Vorhersagegenauigkeit zu quantifizieren und die Transfereigenschaften verschiedener ML-Verfahren zu beurteilen. Als Trainingsdaten dienen LUCAS-Daten für Deutschland und Bodenprofildaten aus der nationalen SPDB Datenbank für den Iran. Die Umweltparameter werden aus Satellitendaten, digitalen Höhenmodellen, Weltklimadaten sowie Landnutzungskarten und geologischen Kartenwerken abgeleitet. Bodeneigenschaften sind Bodenkohlenstoffgehalt, Bodentextur, Carbonatgehalt und Kationenaustauschkapazität. Es werden 12 maschinelle Lernverfahren vergleichend angewendet.
Das Gesamtziel des Vorhabens besteht in einer Steigerung der stofflichen Verwertung von Altholz durch - Entwicklung altholzgerechter, innovativer Sortier- und Zerkleinerungsverfahren - Generelle Steigerung der Wirtschaftlichkeit der stofflichen Altholznutzung durch eine maßgeschneiderte, auf den Rohstoffeigenschaften basierende Weiterverarbeitung - Orientierende Versuche zur Erhöhung der Rohstoffqualität als Voraussetzung für die Produktion von Holzwerkstoffplatten - Erprobung innovativer Sortierverfahren zur Entfernung kritischer Fehlwürfe aus ansonsten stofflich zu verwertenden Altholzsortimenten Das vorgeschlagene Konzept - Fusion der Signale optischer bildgebender Verfahren (Farbkameratechnik) mit NIR-Spektroskopie bei Auswertung durch Methoden der künstlichen Intelligenz (KI) und des maschinellen Lernens (Deep Learning) in Kombination mit innovativer Zerkleinerungstechnik - hat das Potenzial, die Sortierung und Verwendung von Altholz deutlich zu verbessern. Methoden der künstlichen Intelligenz haben bereits in zahlreichen anderen Anwendungsgebieten, z.B.im maschinellen Bildverstehen, autonomen Fahren und in der Spracherkennung, zu signifikanten Fortschritten geführt.
Die jahreszeitliche Variabilität der globalen Meereisbedeckung ist eine wichtige Komponente des globalen Klimas. Jedoch ist der kleinskalige Einfluss des Meereises in globalen Klimamodellen bis heute nur unzureichend beschrieben. Dieser Antrag hat daher das Ziel, die physikalischen (P) und bio-geo-chemischen (BGC) Schlüsselprozesse im Meereis mit einem hochaufgelösten Zweiskalenmodell mathematisch zu beschreiben. Die Ergebnisse können dann parametrisiert in globale Klimamodelle (GCMs) einfließen, sodass eine verbesserte Prognosefähigkeit erreicht wird.Die Ozeanerwärmung wird die Mikrostruktur des Meereises erheblich verändern. Wir entwickeln daher ein P-BGC-Modell einer antarktischen Meereisscholle, um die komplexen gekoppelten Zusammenhänge zwischen Eisbildung, Nährstofftransport, Salinität und Solekanalverteilung, Photosynthese und Karbonatchemie mathematisch zu beschreiben. Damit simulieren wir verschiedene Szenarien der Meereisbildung und ihrer Auswirkungen auf das Wachstum von Meereisalgen, die einen großen Einfluss auf den vertikalen Kohlenstoff-Export (biologische Kohlenstoffpumpe) besitzen.Damit leistet dieses Projekt einen wesentlichen Beitrag zum Forschungsschwerpunkt ‘3.2.D - Verbessertes Verständnis der polaren Prozesse und Mechanismen’ bei. Im Einzelnen gehen wir auf drei übergeordnete Ziele ein:Schritt 1: Beschreibung der Meereisstruktur Wir verwenden ein gekoppeltes Zweiskalenmodell, mit dem relevante Aspekte des Gefrierens und Schmelzens im Zusammenhang mit Deformation, Salinität und Soletransport beschrieben werden. Auf der Makroebene dient dafür eine kontinuumsmechanische Beschreibung im Rahmen der erweiterten Theorie poröser Medien (eTPM). Damit können über einen gekoppelten Gleichungssatz partieller Differentialgleichungen (PDE) Deformations-, Transport und Reaktionsprozesse beschrieben werden. Für das physikalische Phänomen der Phasentransformation zwischen Wasser und Eis dient das Phasenfeldmodell (PF) als Mikromodell, welches ebenfalls aus gekoppelten PDEs besteht. Daraus resultiert eine PDE-PDE Kopplung.Schritt 2: Kopplung mit dem erweiterten RecoM2 Modul als Mikromodell Damit können die BGC Phänomene beschrieben werden. Das RecoM2 Modul besteht aus einem Gleichungssystem gewöhnlicher Differentialgleichungen, sodass hier eine PDE-ODE Kopplung zu einem P-BGC Modell erfolgt. Schritt 3: Bewertung der Modellansätze Dies beinhaltet die Verifizierung und Validierung des kombinierten P-BGC-Modells mittels Literatur- sowie experimenteller Daten. Für die Verwendung des hochaufgelösten zweiskaligen P-BGC Modells in globalen Klimamodellen muss die Berechnungseffizienz gesteigert werden. Zu diesem Zweck werden Reduzierte-Basis-Modell (ROM) zur Erzeugung von Surrogaten des Vollen-Basis-Modells (FOM) eingesetzt, die die Modellkomplexität verringern, z.B. durch datengetriebene Machine-Learning (ML)-Techniken oder “Generalized Proper Decomposition” (GPD).
| Origin | Count |
|---|---|
| Bund | 1736 |
| Global | 1 |
| Land | 85 |
| Wissenschaft | 23 |
| Zivilgesellschaft | 25 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Daten und Messstellen | 2 |
| Ereignis | 6 |
| Förderprogramm | 1597 |
| Text | 153 |
| Umweltprüfung | 1 |
| unbekannt | 98 |
| License | Count |
|---|---|
| geschlossen | 205 |
| offen | 1645 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 1796 |
| Englisch | 317 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 7 |
| Datei | 10 |
| Dokument | 68 |
| Keine | 1528 |
| Unbekannt | 1 |
| Webdienst | 7 |
| Webseite | 276 |
| Topic | Count |
|---|---|
| Boden | 915 |
| Lebewesen und Lebensräume | 1148 |
| Luft | 742 |
| Mensch und Umwelt | 1858 |
| Wasser | 558 |
| Weitere | 1698 |