Zur Anreicherung und Isolierung von polycyclischen aromatischen Kohlenwasserstoffen (= PAH) wurde ein PAH-spezifisches Anreicherungsverfahren entwickelt. In mehreren Proben (Weichbraunkohle, Garsdorf; Matt- und Glanzbraunkohle, Bogovina und Banovici) wurde der Gehalt an Fluoranthen, Pyren, Benzofluoranthene, Benzo(e)pyren, Benzo(a)pyren, Perylen, Benzi(ghi)perylen u.a. bestimmt. Die Identitaet dieser Verbindungen wurde mit der GC-MS-Kombination bestaetigt. Die gaschromatographisch bestimmten Gehalte lagen z.B. fuer Benzo(a)pyren zwischen 0.07 und 0.20 mg/kg Kohle. In erheblich hoeheren Konzentrationen wurden 6 weitere Verbindungen isoliert, deren UV- und Massenspektren auf substituierte PAH hindeuten. Ebenso werden Torfproben aus Hoch- und Niedermooren auf ihren Gehalt an PAH untersucht und der Versuch unternommen, zwischen dem PAH-Gehalt einer Torfschicht und ihrem Alter Korrelationen herzustellen.
Die innere Mischung des Sees, sowie die Wechselwirkung des Sees mit der Atmosphaere und dem Sediment soll mit Hilfe von Spurenstoffmessungen untersucht werden. Geplant sind Messungen von Temperatur, Sauerstoff, Leitfaehigkeit, Phosphat, SO2, Tritium, Helium-3, Radium 226, Radon-222, Blei-210 und Ionium.
Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.
Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.
Ziel dieses Projekts ist es, Signalkomponenten der systemisch erworbenen Resistenz (SAR) in Arabidopsis thaliana und einer Mutante, eds1, welche nicht mehr in der Lage ist, SAR Signale zu produzieren oder zu transportieren, zu identifizieren. EDS1 abhängige Peptide, Lipide und polare niedermolekulare Stoffe werden mit massenspektrometrischen Methoden identifiziert. Danach wird in verschiedenen (Nutz)Pflanzen untersucht, ob die so identifizierten möglichen SAR Komponenten Resistenz gegen Krankheitserreger auslösen. Des Weiteren wird der Einfluss von SAR Signalen auf Prozesse wie z.B. Trockenresistenz untersucht.
Im weiträumigsten Gebiet um die militärischen 239Pu-Produktionsanlagen in Tscheljabinsk, Tomsk und Krasnojarsk und um das Testgebiet von Semipalatinsk wird mit Hilfe von Messungen des langlebigen 129I eine retrospektive Dosimetrie des kurzlebigen 131I durchgeführt. Unter Miteinbeziehung der 129I-Einträge durch die Kernwaffentests, die zivilen Aufbereitungsanlagen La Hague und Sellafield und den Reaktorunfall von Tschernobyl wird eine Datenbasis für die Verwendung von 129I als Tracer in der Umwelt erstellt. Wasserproben von Seen mit langen Abflusszeiten wie Khuvsugul Nuur, Uvs Nuur, Orog, Achit (alle Mongolei), Baikal, Balachasch, Issyk Kul und von kleineren Seen und Bodenproben aus dem Gebiet werden genommen. Mit Beschleunigungsmassenspektrometrie werden 129I /127I-Verhältnisse gemessen und 129I-Fluenzen abgeleitet. 129I-Immissionen und -Verteilungen werden mit atmosphärischen Transportrechnungen erhalten. In Abhängigkeit der Bestrahlungszeit der Brennelemente und der Wartezeit zwischen Bestrahlung und Aufbereitung werden mit atmosphärischen Transportmodellen 131I-Aktivitäten im Bereich der Anlagen und im Altai-Gebiet berechnet.
Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.
Basierend auf dem Stand des Wissens ist es nicht möglich, zuverlässig die Transfergeschwindigkeiten für den Gasaustausch zwischen Ozean und Atmosphäre bei hohen Windgeschwindigkeiten anzugeben. Der Mangel an experimentellen Daten ist der Grund dafür. Das Ziel dieses Projekts ist es daher, die Mechanismen des Gasaustausches mit Fokus auf die hohen Windgeschwindigkeiten durch eine Reihe von Laborexperimenten unter den weit möglichen Bedingungen zu untersuchen. Drei geeignete Einrichtungen wurden ausgewählt: der erste Wind/Wellen Kanal, an dem Windgeschwindigkeiten mit Hurrikan Stärke möglich sind, an der Universität Kyoto, der große Kanal an der Universität Marseille und der große ringförmige Kanal an der Universität Heidelberg, das Aeolotron. Die experimentellen Bedingungen umfassen Windgeschwindigkeiten (U10) von 0-70 m/s, Wassertemperaturen von 5-40 Grad C, Süß- und Meerwasser, Überlagerung mechanisch und winderzeugter Wellen und Belüfter, um hohe Blasenkonzentrationen zu erreichen. Mehr als ein Dutzend Tracer - mit denen der gesamte Bereich der möglichen Diffusivitäten und Löslichkeit abgedeckt wird - lassen sich gleichzeitig durch Membraneinlass-Massenspektrometrie und UV Spektroskopie messen. Damit werden die vorhandenen konzeptionellen Modelle überprüft und, wenn notwendig, modifiziert oder erweitert, und die relative Bedeutung der einzelnen Mechanismen quantitativ bestimmt.
Normalverteilung von Organochlorverbindungen in Humangewebe (Sektionsmaterial) und tierischen Organen (Schlachttiere) im Rahmen des Environmental Specimen Bank Program. Bestimmung mit Gaschromatographie und Kopplung mit Massenspektrometer.
| Origin | Count |
|---|---|
| Bund | 840 |
| Land | 15 |
| Wissenschaft | 11 |
| Type | Count |
|---|---|
| Förderprogramm | 830 |
| Sammlung | 1 |
| Text | 9 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 832 |
| unbekannt | 10 |
| Language | Count |
|---|---|
| Deutsch | 780 |
| Englisch | 158 |
| Resource type | Count |
|---|---|
| Bild | 2 |
| Dokument | 5 |
| Keine | 608 |
| Unbekannt | 2 |
| Webdienst | 1 |
| Webseite | 249 |
| Topic | Count |
|---|---|
| Boden | 591 |
| Lebewesen und Lebensräume | 645 |
| Luft | 559 |
| Mensch und Umwelt | 865 |
| Wasser | 593 |
| Weitere | 850 |