API src

Found 860 results.

Flüssigkeitschromatographie mit Triplequadrupol-Massenspektrometer

Die Arbeitsgruppen Anorganische Chemie (Prof. Lang), Koordinationschemie (Prof. Mehring), Chemische Technologie (Prof. Stöwe) an der Technischen Universität Chemnitz haben sich zu einem Interessenverbund zum Thema nachhaltige Wasserwirtschaft zusammengefunden und mit dem regionalen führenden kommunalen Energieversorger dieses Interesse abgestimmt. Ziele sind die Entwicklung von neuen Abwasseraufbereitungsmethoden zur Entfernung von Mikroverunreinigungen wie Endokrin Disruptiven Verbindungen (EDCs), Pestiziden und Pharmazeutika aus kommunalen Abwässern über unterschiedliche Methoden, wie z.B. photokatalytischen Abbau oder elektrochemische Fällung. Zur Spuren- und Ultraspurenanalytik der Schadstoffe in wässrigen Medien, der Aufklärung von Abbauprodukten und -mechanismen dieser Verbindungen wird eine flüssigkeitschromatographische Trennmethode auf der Basis einer UHPLC mit angekoppelter Triple-Quadrupol-Massenspektrometrie benötigt. Weiterhin soll das System in Kooperation mit weiteren Gruppen (Prof. Kataev) zur Analytik der Produktverteilung in supramolekularen und katalytischen Reaktionen, Reinheitsbestimmung sowie kinetische und mechanistische Untersuchungen zum Reaktionsablauf von organischen Produktkomponenten eingesetzt werden.

Stickstofffixierung in der monsunbeeinflussten Flussfahne des Mekong

Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.

Reaktivität und Transformation funktioneller Gruppen von Spurenstoffen und organischer Hintergrundmatrix bei der Ozonierung von Abwasser

Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.

Die systemisch erworbene Resistenz bei Pflanzen - ein - omics Ansatz zur Pathogenantwort

Ziel dieses Projekts ist es, Signalkomponenten der systemisch erworbenen Resistenz (SAR) in Arabidopsis thaliana und einer Mutante, eds1, welche nicht mehr in der Lage ist, SAR Signale zu produzieren oder zu transportieren, zu identifizieren. EDS1 abhängige Peptide, Lipide und polare niedermolekulare Stoffe werden mit massenspektrometrischen Methoden identifiziert. Danach wird in verschiedenen (Nutz)Pflanzen untersucht, ob die so identifizierten möglichen SAR Komponenten Resistenz gegen Krankheitserreger auslösen. Des Weiteren wird der Einfluss von SAR Signalen auf Prozesse wie z.B. Trockenresistenz untersucht.

Hochauflösendes Flugzeitmassenspektrometer mit UHPLC

Bei dem beantragten Gerät handelt es um die Kombination eines Hochleistungsflüssigkeitschromatographie-Gerätes (Ultra High Performance Liquid Chromatography, UHPLC) zur Stofftrennung mit einem hochauflösenden Massenspektrometer (Kopplung eines Quadrupol-Systems mit einem Flugzeitmassenspektrometer, „Time of Flight“, QTOF-MS, im folgendem kurz als HR-MS bezeichnet) neuester Bauart. Das Gerät soll zur Strukturaufklärung unbekannter organischer Spurenstoffe in Umweltproben und anderen Matrices eingesetzt werden. Die Forschungen der Antragsteller beschäftigen sich umfassend mit dem Auftreten, den Eigenschaften und dem Verhalten von überwiegend anthropogen in den Wasserkreislauf eingetragenen Chemikalien sowie der Verfolgung von biotischen und abiotischen Transformationsprozessen in technischen und natürlichen Systemen. Die Verfügbarkeit eines hochauflösenden Massenspektrometers ist für die Charakterisierung von Abbaupfaden und für die Identifizierung von Produkten, deren Umweltrelevanz ebenfalls aufgeklärt werden muss, unabdingbar. Weiterhin wird das Gerät zur Identifizierung von anthropogenen Spurenschadstoffen in allen Ebenen des globalen Wasserkreislaufs benötigt, wobei als methodischer Ansatz u.a. ein „Non-Target Screening“ verwendet werden soll. Im Rahmen diverser aktueller und geplanter Forschungsarbeiten müssen für eine Vielzahl von Umweltchemikalien deren Metaboliten und Transformationsprodukte sicher identifiziert werden. Das angestrebte hochauflösende LC-MS-System kann außerdem zur exakten Quantifizierung von organischen Spurenstoffen eingesetzt werden, was bei den Antragstellern erhebliche Bedeutung besitzt. Die geplante Anschaffung bewirkt eine weitere Steigerung der bereits bestehenden hochwertigen und vielschichtigen Forschung und führt zu einer signifikanten Erhöhung der Wettbewerbsfähigkeit sowie Attraktivität hinsichtlich des wissenschaftlichen Nachwuchses aller beteiligten Institutionen der Fakultät Umweltwissenschaften. Ein HR-MS ist bislang an der gesamten Fakultät nicht vorhanden.

Auf dem Weg zu einem besseren DMS-Oxidationsmechanismus (ADOniS)

Wechselwirkungen zwischen dem Ozean und der Troposphäre sind für viele Prozesse in beiden Systemen wichtig. Ein Schlüsselprozess stellt der Austausch von Spurengasen zwischen der Atmosphäre und dem Ozean dar. Die Emission von Dimethylsulfid (DMS) stellt die größte natürliche Quelle für reduzierten Schwefel in die Atmosphäre dar. Dort kann DMS zu Schwefeldioxid, Schwefelsäure oder Methansulfonsäure oxidiert werden. Diese Verbindungen sind wichtige Vorläufersubstanzen für sekundäre Aerosole, die den natürlichen Strahlungshaushalt und die Wolkenbildung beeinflussen können. Die chemische Prozessierung, d.h. die sekundäre Bildung und Oxidation von DMS-Oxidationsprodukten, ist jedoch noch immer schlecht verstanden. Daher ist die Implementierung in aktuelle Multiphasenchemiemechanismen und Klimamodellen begrenzt, wodurch die aktuellen Vorhersagen noch sehr unsicher sind. Um die bestehenden Lücken in unserem Verständnis der DMS-Multiphasenchemie weiter zu schließen, zielt das Projekt ADOniS darauf ab, (i) fortgeschrittene Laboruntersuchungen zur Gas- und Flüssigphasenchemie von DMS-Oxidationsprodukten durchzuführen, (ii) ein fortgeschrittenes Multiphasen-DMS-Chemiemodul zu entwickeln und (iii) Prozess- und 3D-Modelluntersuchungen durchzuführen. Die vorgeschlagenen detaillierten Laboruntersuchungen konzentrieren sich auf die OH-Oxidation von Gasphasenprodukten der ersten Generation, Hydroperoxymethylthioformat (HPMTF) und Dimethylsulfoxid (DMSO), sowie auf die Bildung von DMS-Oxidationsprodukten der zweiten Generation. Die detaillierten mechanistischen Untersuchungen werden mit einem Freistrahl-Strömungsreaktor durchgeführt. Weitere kinetische und mechanistische Untersuchungen werden sich auf die Chemie von DMS-Oxidationsprodukten in der wässrigen Phase konzentrieren. OH Radikalreaktionen von HPMTF-Surrogaten werden mit Hilfe eines Laser Flash Photolysis - Long Path Absorption (LFP-LPA) Systems untersucht. Weiterhin wird die Oxidation von MSA/MS- durch OH(aq) und die Oxidation von MSIA/MSI- durch O3(aq) in wässriger Phase untersucht. Ferner soll die Aufnahme von wichtigen DMS-Oxidationsprodukten an verschiedenen Aerosolpartikeln durch Kammerstudien untersucht werden. Die Bildung von DMS-Oxidationsprodukten in der Gasphase und deren Aufnahme auf injizierten Aerosolpartikeln wird mit einem CI-APi-TOF Massenspektrometer gemessen. Basierend auf den Ergebnissen der Laborstudien wird ein fortschrittliches DMS-Reaktionsmodul entwickelt und anschließend im Multiphasenchemiemodell SPACCIM für detaillierte Prozessstudien eingesetzt. Die gewonnenen Erkenntnisse über die wichtigsten DMS-Oxidationswege werden dann die Grundlage für eine aktualisierte Behandlung DMS in globalen Klimachemiemodellen (CCMs), hier ECHAM-HAMMOZ, bilden. Schließlich werden Simulationen mit ECHAM-HAMMOZ die Auswirkungen des verbesserten DMS-Mechanismus auf die globale atmosphärische DMS-Chemie untersuchen und die Auswirkungen auf das Klima und die zukünftige Sensitivität bewerten.

Sorption und Transformation von Aminopolyphosphonat-Komplexbildnern in natürlichen und technischen Systemen - Prozessaufklärung durch komponentenspezifische Isotopenanalyse

Aminopolyphosphonate (APPs) sind starke Komplexbildner für Metalle, die zunehmend in der Industrie und im Haushalt eingesetzt werden. Sie sind gut wasserlöslich, nicht flüchtig und besitzen eine geringe Affinität zu organischen Phasen. Dennoch scheint in Kläranlagen die Sorption an Klärschlamm ein wichtiger Eliminierungssprozess zu sein. Die Polyphosphonat-Konzentrationen in deutschen Flüssen liegen derzeit im ng L-1- bis niedrigen µg L-1 Bereich. Es wird jedoch ein Anstieg der Polyphosphonat-Konzentrationen aufgrund einer erhöhten Produktion und Nutzung vorhergesagt. Das Umweltverhalten dieser Substanzen kann derzeit jedoch nicht zuverlässig abgeschätzt werden, was in erster Linie auf Wissenslücken bezüglich der Bedeutung von Sorptions- und Abbauprozessen für die Gesamtentfernung von APPs in natürlichen und technischen Systemen zurückzuführen ist. Darüber hinaus sind die Reaktionsmechanismen und -wege von AAPs nicht vollständig identifiziert. Dies erschwert sowohl die Vorhersage der Auswirkungen von Umweltparametern auf den Verbleib von APPs als auch die Entwicklung von Verfahren zur effizienten Entfernung in technischen Systemen. Ziel der vorgeschlagenen Forschung ist es daher, Sorbentien, Reaktanten und Umweltbedingungen zu identifizieren, die die Entfernung von APPs aus natürlichen Gewässern und in der Wasseraufbereitung begünstigen. Wir schlagen vor, die Auswirkungen wichtiger Umweltparameter (z.B. pH-Wert, Komplexbildung) auf Sorptions- und Abbausprozesse von APPs in sorgfältig konzipierten Laborexperimenten an zwei Vertretern dieser Substanzklasse zu untersuchen: ATMP (Amino-tris(methylenphosphonsäure) und EDTMP (Ethylendiamin-tetra¬(methylenphosphonsäure). Durch die Kombination von Isotopenanalyik und hochauflösender Massenspektrometrie unter Einbeziehung weiterer moderner Verfahren sollen die wichtigsten Sorptions- und Abbauprozesse sowie die Umwandlungsprodukte von APPs identifiziert werden. Die vorgeschlagenen Forschungsarbeiten umfasse drei Teilbereiche. Zunächst soll die Sorption von APPs an Eisen(hydr-)oxiden, Tonmineralen und Aktivkohle/Biokohle untersucht und die potenziellen Isotopenfraktionierungseffekte aufgrund der Sorption quantifiziert werden. Dann werden wir uns mit den natürlichen Umwandlungsprozessen von AAPs befassen, wobei der Schwerpunkt auf der Oxidation durch Manganoxide und der direkten Photolyse von APP-Fe(III)-Komplexen liegt. Schließlich werden AAP-Abbauprozesse in technischen Systemen wie Ozonolyse und elektrochemischen Oxidation untersucht.

Klimawandelinduzierte Änderungen der Schadstoffströme

Veranlassung Im Rahmen des BMDV-Expertennetzwerks (Themenfeld 1: Klimawandel und Extreme) werden Auswirkungen von Extremwetterereignissen, z.B. Starkregen- und Trockenwetterperioden, auf den Eintrag organischer Spurenstoffe in Bundeswasserstraßen untersucht. Erste Studien zu regeninduzierten Spurenstoffeinträgen werden am Fallbeispiel der Mosel durchgeführt. Hier werden seit April 2021 während Regenereignissen Tagesmischproben von zwei Messstationen entlang des innerdeutschen Verlaufs der Mosel entnommen. Ausgewählte Proben werden durch das Verfahren des Non-Target-Screenings mittels Flüssigkeitschromatographie gekoppelt an hochauflösende Massenspektrometrie untersucht. Mithilfe von Clusteranalysen werden ereignisbezogene Eintragsmuster in den Datensätzen entschlüsselt. Über den Abgleich mit internen Datenbanken, die über 1000 bekannte Spurenstoffe und chemische Signale aus Elutionsversuchen mit Reifenabrieben umfassen, können Signale in den Umweltproben bereits bekannten Substanzen bzw. möglichen Quellen wie Reifenabrieb zugeordnet werden. Ziele - Erfassung regeninduzierter Spurenstoffeinträge in Bundeswasserstraßen - Identifikation quellenspezifischer organischer Spurenstoffe als repräsentative Substanzen für zielgerichtetes Monitoring - Identifikation relevanter Quellen und Eintragspfade für regeninduzierte Spurenstoffeinträge - Angaben zu regen- und trockenheitsinduzierten Spurenstoffeinträgen und -konzentrationen in Bundeswasserstraßen unter Berücksichtigung von Klimaprognosen - Erstellung eines Konzepts zur quantitativen Erfassung ausgewählter quellen- und eintragsspezifischer Spurenstoffe in Bundeswasserstraßen - Integration ausgewählter Spurenstoffe in Gewässergütemodelle bzw. Schadstoffemissionsmodelle Organische Spurenstoffe gelangen über verschiedene Eintragspfade, z.B. über Kläranlagenabläufe, Regenwasserkanäle und diffusen Oberflächenabfluss, in Fließgewässer. Hier werden sie in komplexen Mischungen detektiert und können ein Risiko für das Ökosystem darstellen. Die genaue Anzahl organischer Spurenstoffe ist unbekannt. Zudem variiert die Zusammensetzung der Stoffmischungen in Abhängigkeit von Konsum, Anwendungen und witterungsbedingten Einträgen. Extremwetterereignisse wie Starkregen- und Trockenwetterperioden können angesichts des Klimawandels zunehmen, sodass deren Auswirkungen auf Stoffeinträge und -konzentrationen in Gewässern zukünftig an Bedeutung gewinnen. Durch den Klimawandel können Extremwetterereignisse zunehmen. Im Expertennetzwerk werden extremwetterbedingte Spurenstoffeinträge und deren Auswirkungen auf die Wasserbeschaffenheit in Bundeswasserstraßen untersucht.

Tandem-Massenspektrometer gekoppelt mit Hochleistungsflüssigkeitschromatograph

Das beantragte LC-Tandem Massenspektrometer (LC-MS/MS) soll aufgrund der hohen Sensitivität und Vielseitigkeit die Quantifizierung von organischen Spurenstoffen im Nanogramm pro Liter-Bereich sowie die Identifizierung von Transformationsprodukten aus der Wasserbehandlung und in natürlichen aquatischen Systemen ermöglichen. Diese Arbeiten bauen auf bisherigen erfolgreichen Forschungsaktivitäten auf. Da an der TU München bisher keine sensitiven, quantitativ nutzbaren LC-MS/MS Systeme zur Verfügung stehen, handelt sich bei dem beantragten Gerät um eine Neuanschaffung im Rahmen einer Neuberufung. Aufgrund der hohen Anzahl intern generierter Proben von ingenieurtechnischen Anlagen zur Entfernung von Spurenstoffen in wässrigen Matricen im labor- und halbtechnischen Maßstab ist es unerlässlich, diese Technologie zu etablieren. Die quantitative Analytik ist essentiell bei Untersuchungen von Wasseraufbereitungsanlagen, der Optimierung von Prozesssteuerungen sowie für die quantitative Bestimmung von Spurenstoffen in Umweltproben.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Molekulare Lebenssignaturen und Umwandlungen von organischem Material nahe des Temperaturlimits von Leben, IODP Exp. 370

Exp. 370 diente der Erforschung des oberen Temperaturlimits der Tiefen Biosphäre vor dem Kap Muroto im Nankai Graben vor Japan. Dieser Standort ist charakterisiert durch einen extrem hohen Wärmefluss und sehr hohe Temperaturen, die an der Grenzfläche des Sediments zur Kruste bis zu 120 Grad C erreichen können. Dies entspricht der Maximaltemperatur bei der Leben bisher im Labor nachgewiesen wurde. Dieser Temperaturbereich umfasst ebenfalls den Bereich in dem Katagenese stattfindet, der thermische Zerfall von organischem Material zu flüssigen und flüchtigen Kohlenwasserstoffen. Es wird vermutet, dass dieses durch Katagenese gebildete labile und sauerstoffreiche oxidierte organische Material eine direkte Nahrungsquelle für die Mikrobengemeinschaften in diesen Sedimenten ist und somit eine direkte Kopplung der abiotischen und biotischen Zone darstellt. Die Hauptfragen in diesem Projekt sind: Welche und wieviele Mikroorganismen befinden sich in den Sedimenten nahe des Temperaturmaximums mikrobiellen Lebens? Bis in welche Tiefe, und können diese nachgewiesen werden? Wie ist mikrobielles Leben an diese extremen Bedingungen angepasst? Welche bioverfügbaren Verbindungen werden bei erhöhten Temperaturen aus dem organischen Material freigesetzt und inwieweit stellen diese eine Verknüpfung der tiefen Geo- und Biosphäre im Nankai Graben dar? Hierfür wird ein umfassender geochemischer Ansatz vorgeschlagen, der zum einen das Erstellen von Tiefenprofilen molekularer Lebenssignaturen vorsieht und zum anderen diese mit einer detaillierten Charakterisierung von löslichem und unlöslichem organischen Material (Kerogen) verknüpft. Diagnostische Biomoleküle wie z.B. intakte polare Membranlipide und Chinone werden hierbei mittels ultra-sensitiven massenspektrometrischen Methoden identifiziert und quantifiziert. Qualität und Bioverfügbarkeit des organischen Materials bei erhöhten Temperaturen soll mit einer Kombination aus Elementaranalyse und massenspektrometrischen, spektroskopischen und pyrolytischen Methoden untersucht werden. Zusätzlich wird die Bildung von potentiellen organische Substrate für die Mikrobengemeinschaften mittels wässriger Pyrolyse in Laborversuchen getestet. Diese Arbeiten stehen im direkten Bezug zu fundamentalen Fragen der Erforschung der Tiefen Biosphäre und versprechen wichtige Einblicke in Hinblick auf die Verteilung von tief versenktem Leben und der Faktoren welche dessen Ausbreitung limitiert.

1 2 3 4 584 85 86