Das im Boden vorkommende Bakterium Agrobacterium tumefaciens infiziert eine Vielzahl von Pflanzenarten und verursacht die Wurzelhalsgallenkrankheit. Es überträgt bakterielle DNA zusammen mit Effektorproteinen in Wirtszellen. Diese T-DNA (Transfer-DNA) wird stabil in das Pflanzengenom integriert, und die Expression der darin kodierten Onkogene führt zu Zellproliferation und Tumorbildung. Die Fähigkeit, DNA in das Wirtsgenom zu übertragen, hat A. tumefaciens zu einem der wichtigsten Werkzeuge in der pflanzlichen Gentechnik gemacht. Allerdings sind viele Pflanzenarten weiterhin schwierig zu transformieren, und es ist unklar, woran das liegt. Dies ist auch eine Folge unseres unzureichenden Wissens über die molekularen Voraussetzungen auf Seiten der Wirtszellen. In einer Reihe unabhängiger Experimente haben wir beobachtet, dass eine veränderte Sphingolipidzusammensetzung von Arabidopsispflanzen die Agrobakterien-Transformationseffizienz signifikant beeinflusst. Pflanzliche Sphingolipide wie Glucosylceramide und Glucosylinositolphosphorylceramide (GIPCs) sind vorwiegend in Nanodomänen der Plasmamembran lokalisiert. Frühere Studien in Arabidopsis haben gezeigt, dass Sphingolipide die Funktion von membranständigen Rezeptoren und Calciumkanälen beeinflussen können, welche für verschiedene Signaltransduktionsprozesse wichtig sind. Sphingolipide könnten daher in verschiedenen Phasen der Agrobacterium-Transformation eine Funktion haben, z. B. durch Beeinflussung membranständiger Rezeptoren, die Abwehrreaktionen auslösen, oder durch die Interaktion mit bakteriellen Proteinen des Typ-IV-Sekretionssystems während des T-DNA-Transfers durch die Plasmamembran. Dieses Projekt zielt daher darauf ab, diejenigen pflanzlichen Sphingolipid-Spezies zu identifizieren, die die Agrobacterium-Transformationseffizienz beeinflussen, und die Funktion dieser Lipide während der verschiedenen Transformationsstadien zu charakterisieren. Um die Auswirkungen verschiedener Sphingolipidprofile auf die Transformationseffizienz zu ermitteln, setzen wir einen etablierten in vivo Transformationseffizienztest ein. In diesem werden wir unsere Sammlung von Arabidopsis-Mutantenlinien mit veränderter Sphingolipidzusammensetzung, sowie eine Reihe von pharmakologischen und Temperatur-Behandlungen testen. Zur Identifizierung der relevanten Sphingolipide setzen wir Hochdruck-Flüssigkeitschromatographie und anschließende Massenspektrometrie (UPLC-MS/MS) ein. Anschliessend werden wir analysieren, in welcher Phase der Transformation diese Lipide beteiligt sind. Dazu werden wir im in vivo System Wachstum, Anheftung und die Expression von Virulenzgenen der Bakterien testen und parallel dazu die Abwehrreaktion der Pflanze und die subzelluläre Lipidzusammensetzung analysieren. Wir erwarten, dass die Charakterisierung dieser Sphingolipid-abhängigen Prozesse in der Wirtszelle unser Verständnis der Mechanismen der Pflanzentransformation durch Agrobakterien entscheidend verbessern wird.
Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.
Gesaettigte Kohlenwasserstoffe ebenso wie Alkylaromaten werden bei Anwesenheit von Sauerstoff und geeigneten Sensibilisatoren (aromatische Ketone, Chinone) durch natuerliches Sonnenlicht zu Carbonylverbindungen abgebaut. Durch Modelluntersuchungen unter quasi-natuerlichen Bedingungen wurde gefunden, dass durch Kettenfragmentierung homologe Reihen entstehen, deren niedermolekulare Glieder Aceton, Acetaldehyd und Formaldehyd die hoeheren Homologen hinsichtlich ihrer Konzentration ueberwiegen. Zur Anreicherung hoeherer Homologen aus Meerwasser werden Sorptionsharze verwendet. Die Analytik stuetzt sich auf chromatographische Methoden und Massenspektrometrie. Fuer quantitative Untersuchungen wird als Reaktionsmedium steril-filtriertes Meerwasser benutzt, welches man nach Zugabe geringer Mengen des zu untersuchenden Kohlenwasserstoffes knapp unterhalb der Meeresoberflaeche natuerlichem Sonnenlicht aussetzt. Da bei sensibilisierten Reaktionen in verduennten, waessrigen Loesungen der molekulare Extinktionskoeffizient, welcher zur Bestimmung der Quantenausbeute erforderlich ist, schwer zu bestimmen ist, wird die Absorption des Substrates durch chemische Actinometer (p-Nitroacetophenon/Pyridin) ermittelt.
Normalverteilung von Organochlorverbindungen in Humangewebe (Sektionsmaterial) und tierischen Organen (Schlachttiere) im Rahmen des Environmental Specimen Bank Program. Bestimmung mit Gaschromatographie und Kopplung mit Massenspektrometer.
Bei dem beantragten Gerät handelt es um die Kombination eines Hochleistungsflüssigkeitschromatographie-Gerätes (Ultra High Performance Liquid Chromatography, UHPLC) zur Stofftrennung mit einem hochauflösenden Massenspektrometer (Kopplung eines Quadrupol-Systems mit einem Flugzeitmassenspektrometer, „Time of Flight“, QTOF-MS, im folgendem kurz als HR-MS bezeichnet) neuester Bauart. Das Gerät soll zur Strukturaufklärung unbekannter organischer Spurenstoffe in Umweltproben und anderen Matrices eingesetzt werden. Die Forschungen der Antragsteller beschäftigen sich umfassend mit dem Auftreten, den Eigenschaften und dem Verhalten von überwiegend anthropogen in den Wasserkreislauf eingetragenen Chemikalien sowie der Verfolgung von biotischen und abiotischen Transformationsprozessen in technischen und natürlichen Systemen. Die Verfügbarkeit eines hochauflösenden Massenspektrometers ist für die Charakterisierung von Abbaupfaden und für die Identifizierung von Produkten, deren Umweltrelevanz ebenfalls aufgeklärt werden muss, unabdingbar. Weiterhin wird das Gerät zur Identifizierung von anthropogenen Spurenschadstoffen in allen Ebenen des globalen Wasserkreislaufs benötigt, wobei als methodischer Ansatz u.a. ein „Non-Target Screening“ verwendet werden soll. Im Rahmen diverser aktueller und geplanter Forschungsarbeiten müssen für eine Vielzahl von Umweltchemikalien deren Metaboliten und Transformationsprodukte sicher identifiziert werden. Das angestrebte hochauflösende LC-MS-System kann außerdem zur exakten Quantifizierung von organischen Spurenstoffen eingesetzt werden, was bei den Antragstellern erhebliche Bedeutung besitzt. Die geplante Anschaffung bewirkt eine weitere Steigerung der bereits bestehenden hochwertigen und vielschichtigen Forschung und führt zu einer signifikanten Erhöhung der Wettbewerbsfähigkeit sowie Attraktivität hinsichtlich des wissenschaftlichen Nachwuchses aller beteiligten Institutionen der Fakultät Umweltwissenschaften. Ein HR-MS ist bislang an der gesamten Fakultät nicht vorhanden.
Die zeitliche und räumliche Rekonstruktion der Intensitätsschwankungen der Klimaphänomene mit Fernwirkung wie die El Nino/La Nina-Ereignisse, der Nordatlantischen Oszillation und des Monsun-Phänomens, die einen nachhaltigen Einfluss auf das globale Klima/Wettergeschehen haben, sind von großem sozio-ökonomischen Interesse. Jedoch sind die Intensitätsschwankungen bisher weder zeitlich noch räumlich ausreichend erfasst, um eindeutige Aussagen über die Bedeutung dieser Phänomene für die Vergangenheit und die Zukunft des globalen Klimageschehens zu machen. Die Ursache ist u.a. darin zu suchen, dass die notwendigen 'Proxie-Daten' zur zeitlichen und räumlichen Charakterisierung dieser Phänomene weder simultan noch in ausreichender zeitlicher und räumlicher Dichte aufgenommen werden konnten. Die neueren instrumentell-analytischen Fortschritte in der Massenspektrometrie durch die Kombination von Thermionenmassenspektrometrie (TIMS) mit der ICPMS-Technik erlaubt nun die simultane und präzise Messung von Element- und Isotopenverhältnissen bei hohem Probendurchsatz. Hinzu kommt, dass jetzt Element- und Isotopenverhältnisse gemessen werden können, die sich bisher nur mit hohem analytischem Aufwand oder gar nicht haben bestimmen lassen. Mit Hilfe dieser neuen Technik wollen wir räumlich hochaufgelöste Zeitreihen simultan gemessener 'Proxies' für den westlichen und östlichen Indischen Ozean aufnehmen, um die Perioden und Intensitätsschwankungen der großen klimatischen Phänomene mit Fernwirkung zu studieren und zu vergleichen.
Vergleich von klassischen GC-MS-Methoden mit den von der Gruppe Baumann entwickelten Immunelektroden, die nur ein sehr hochohmiges Millivoltmeter zum Messen voraussetzen
| Origin | Count |
|---|---|
| Bund | 847 |
| Land | 15 |
| Wissenschaft | 11 |
| Type | Count |
|---|---|
| Förderprogramm | 837 |
| Repositorium | 1 |
| Text | 9 |
| unbekannt | 25 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 839 |
| unbekannt | 10 |
| Language | Count |
|---|---|
| Deutsch | 787 |
| Englisch | 162 |
| Resource type | Count |
|---|---|
| Bild | 2 |
| Dokument | 5 |
| Keine | 610 |
| Unbekannt | 2 |
| Webdienst | 1 |
| Webseite | 254 |
| Topic | Count |
|---|---|
| Boden | 591 |
| Lebewesen und Lebensräume | 646 |
| Luft | 553 |
| Mensch und Umwelt | 872 |
| Wasser | 594 |
| Weitere | 857 |