Die Ozonierung ist eine etablierte Technologie zur effizienten Oxidation von organischen Spurenstoffen in der Wasseraufbereitung. Ein wesentlicher Nachteil bei der Anwendung von Ozon ist die Bildung von stabilen und potenziell toxischen Ozonungsprodukten (OPs). Kritisch sind wegen ihrer Langlebigkeit vor allem biologisch stabile OPs. Unmöglich kann die Reaktion aller relevanter CECs mit Ozon, die dabei entstehenden OPs und deren biologische Stabilität untersucht werden. Vielmehr ist es notwendig, basierend auf dem systematischen Studium funktioneller Gruppen Kenntnisse zu generieren, die auf andere Stoffe übertragbar sind. Bislang wurden solche systematischen Studien aber nicht durchgeführt. Noch größer ist die Wissenslücke bei den im Abwasser vorliegenden organischen Kohlenstoffverbindungen (engl.: effluent organic matter, EfOM). Zwar belegt die Ozonzehrung von EfOM dessen Reaktivität gegenüber Ozon, aber welche funktionellen Gruppen reagieren, welche Produkte gebildet werden und wie biologisch stabil diese sind, ist gerade für EfOM mit Heteroatomen (N, S) nicht untersucht. Dieses Vorhaben will beide Lücken durch ein komplementäres analytisches und experimentelles Vorgehen schließen, mit dem gemeinsamen methodischen Ansatz der Einführung einer Markierung in die OPs durch Verwendung von 18O-Ozon und der nachfolgenden Detektion und Identifizierung der OPs mithilfe der (ultra-hochauflösenden) Massenspektrometrie. Das Vorhaben basiert auf der zentralen Hypothese, dass die Reaktion von Ozon sowohl mit bestimmten funktionellen Gruppen organischer Spurenstoffe als auch mit äquivalenten Gruppen des EfOM zu einer vorhersagbaren Bildung von OPs führt. Es zielt darauf ab, i) unser Verständnis der Reaktivität verschiedener funktioneller Gruppen gegenüber Ozon zu verbessern, wobei der Schwerpunkt auf der Identifikation biologisch schwer abbaubarer Funktionen innerhalb der OPs liegt, ii) ozon-reaktive funktionelle Gruppen im EfOM basierend auf bestehendem Wissen zur Transformation von Spurenstoffen zu identifizieren, wobei der Schwerpunkt auf N- und S-haltigen funktionellen Gruppen liegt, welche potentiell chemisch stabile OPs bilden, und iii) die Bedeutung des EfOM im Hinblick auf die Bildung biologisch schwer abbaubarer OPs in der Ozonierung von Abwasser zu bewerten. Dazu soll der biologische Abbau der OPs anhand deren spezifischen funktionellen Gruppen in Säulen-Abbauversuchen und einer simulierten Grundwasseranreicherung untersucht werden. Mit dem neuen Ansatz der Markierung sind wir in der Lage, OPs von CECs ebenso wie von EfOM sicher zu detektieren, besser zu identifizieren und ihre Stabilität gut zu verfolgen. Das Vorhaben generiert ein systematisches und übertragbares Verständnis zur Bildung stabiler OPs basierend auf funktionellen Gruppen organischer Moleküle, von CECs wie von EfOM. Erst wenn die Stabilität der möglichen OPs untersucht ist, wird auch eine systematische toxikologische Bewertung der Ozonung als Wasseraufbereitungsmethode möglich.
Die Quantifizierung der Effekte von Transport, Mischung und chemischer Prozessierung von klimarelevanten Spurengasen in der extratropischen oberen Troposphäre und unteren Stratosphäre (UTLS) ist von großer Bedeutung für das Verständnis des Strahlungsbudgets der Atmosphäre. Dynamische Systeme wie der Jetstream, der Asiatische Monsun, Schwere- und Rossbywellen verändern die Verteilung und den Transport von Spurenstoffen in der UTLS und beeinflussen dadurch das Klima. Ziel des Projektes ist es die Veränderung der Zusammensetzung und des Transports in der UTLS durch diese dynamischen Systeme zu untersuchen. Ein spezifischer Fokus liegt hierbei auf den Spurengasen H2O, O3, Stickoxid- und Halogenverbindungen sowie Zirren. Zu diesem Zweck wird das Atmosphärische chemische Ionisations-Massenspektrometer AIMS und das durchstimmbare Diodenlaser Hygrometer WARAN bei WISE eingesetzt. Erfolgreiche erste Messungen wurden bereits während der Kampagnen TACTS/ESMVal, ML-CIRRUS und POLSTRACC/GW-Cycle/SALSA durchgeführt. Der Nachweis mit dem Reagenzien SF5- wurde bislang zur Messung der Spurengase HCl, HNO3, SO2 und HONO verwendet. In diesem Projekt schlagen wir den quantitativen Nachweis von ClONO2 und HBr mit AIMS als Weiterentwicklung vor. Im Rahmen der WISE Mission liegt der Fokus auf der quantitativen Bestimmung der Beiträge von stratosphärischem O3 und HNO3 in der UTLS abgeleitet aus dem stratosphärischen Tracer HCl. Transportprozesse und ihr Einfluss auf die Inversionsschicht der Tropopause (TIL) werden in Abhängigkeit von Breite und dynamischer Situation untersucht . Tracer-Tracer Korrelationen in der extratropischen Tropopausen Schicht werden eingesetzt um den Mischungszustand in und oberhalb dieser Schicht zu charakterisieren. Unsere in-situ Messungen werden zur Validierung der Fernerkundungsinstrumente GLORIA (HNO3, ClONO2, H2O und SO2), DOAS (HONO, Bry) und WALES (H2O) herangezogen. Der Einfluss von Eiswolken und kaltem Aerosol auf die Spurengaszusammen in der polaren UTLS wird mit Daten der Mission POLSTRACC bestimmt. Die Aufnahme von HNO3 in Eis und die Bildung von kondensierten Salpetersäure/Wasser Kondensaten ist bei tiefen Temperaturen unzureichend verstanden. Diese Fragestellungen werden aus Messungen von Wasser, gasförmiger HNO3 und HNO3 in Eispartikeln beantwortet. Tracer-tracer Korrelationen der Chlor- und Stickoxidverbindungen werden benutzt um die Verteilung von Chloraktivierung und De- und Nitrifizierung zu bestimmen. Unsere Messungen dienen dazu das Verständnis des Einflusses dynamischer und heterogener chemischer Prozesse auf die Verteilung klimarelevanter Spurengase in der UTLS zu verbessern.
Mit einer neuen Kombinationsstechnik aus Chromatographie und Flammen-AAS ist die vollautomatische Trennung und Bestimmung von Cr(III)/Cr(VI) in Abwasserproben in nur einer Minute moeglich. Dies wird durch ein im Institut fuer Spektrochemie und Angewandte Spektroskopie integriertes Chromatographie-/Zerstaeubungssystem erreicht, wobei zur Datenauswertung eine Standard-Chromatographie-Software benutzt wird.
Die Auswirkungen von flüchtigen organischen Verbindungen (VOC) auf die Luftqualität und damit auf die Gesundheit der Menschen auf lokaler oder regionaler Skala sind direkt offenkundig durch die schädlichen Effekte auf die Lebenswelt. Noch bedeutender ist die kritische Rolle, die VOC in chemischen Prozessen der Atmosphäre einnehmen. Die Bildung vieler sekundärer organischer Schadstoffe in der Atmosphäre wie Ozon, Peroxide, Aldehyde, Peroxyacetylnitrate und sekundäre organische Aerosole hängt entscheidend von der Verfügbarkeit der VOC und ihrer Vorläufersubstanzen ab. Wir planen die Messung von Isotopenverhältnissen und Konzentrationen spezifischer VOC in der Abluft großer Ballungszentren (MPC) in Europa und Asien durch Einsatz des Luftprobensammlers MIRAH auf den HALO-Missionen EMeRGe-EU und EMeRGe-Asia. Die Luftproben werden im Labor mittels Gaschromatographie-Verbrennungs-Isotopen-Massenspektrometrie analysiert. Isotopenverhältnisse in VOC sind wertvolle Indikatoren zur Untersuchung von Reaktionen, die derzeitigen Messverfahren nicht direkt zugänglich sind. Transport- und Mischungsprozesse in der Atmosphäre können damit visualisiert werden, wertvolle Information über dominante Prozesse, an denen VOC beteiligt sind, gewonnen werden. Bereits in den letzten HALO-Missionen, TACTS/ESMVal und den beiden OMO-Missionen, konnten wir zeigen, dass die beantragte Messmethode ein sensitives Werkzeug ist, z.B. für Quellstudien von VOC, zur Ableitung von Transportwegen und deren Einfluss auf die Verteilung der VOC, zur Abschätzung des Mischungsgrads, der Unterscheidung zwischen dynamischen und chemischen Prozessen, als auch zur Untersuchung atmosphärischer Umwandlung und Verweilzeit spezifischer VOC. Die Wertstellung dieser Ergebnisse wird sogar noch gesteigert durch den Vergleich mit Ergebnissen aus 3-dimensionalen Chemie-Transport-Modellen. Die folgenden geplanten wissenschaftlichen Zielsetzungen betten sich in die übergreifenden Ziele von EMeRGe-EU and EMeRGe-ASIA: (1) Messung der Zusammensetzung der in Europa und Asien entspringenden Schadstofffahnen und Bestimmung des Beitrags bestimmter VOC an der Zusammensetzung der Atmosphäre; (2) Bestimmung der weitreichenden Luftverschmutzung sowie deren Einfluss auf die Verteilung bestimmter VOC; (3) Identifizierung möglicher Unterschiede im Transport und der Umwandlung von VOC, die mit besonderen einzigartigen Charakteristiken europäischer und asiatischer MPCs verbunden sind; (4) Identifizierung von Oxidations- und Zwischenprodukten des VOC-Abbaus; (5) Informationsgewinnung über Oxidationswege durch Messung von Vorläufer- und Oxidationsprodukten; (6) Altersbestimmung von Luftmassen in unterschiedlichen Stadien der Schadstofffahnen; (7) Gegenüberstellung photochemischer Prozessierung gegen Transport und Mischung; (8) Verbindung der Informationen aus Isotopenverhältnissen mit bestimmten regionalen meteorologischen Daten; (9) Bereitstellung der Messdaten für Chemietransportmodelle.
Atmosphärische Partikel enthalten innerhalb ihrer organischen Fraktion einen bedeutenden Anteil sogenannter 'huminähnlicher' Verbindungen (humic like substances, HULIS). Zur chemischen Zusammensetzung dieser Fraktion ist nur relativ wenig bekannt. Trenntechniken wie Umkehrphasenchromatographie oder Kapillarelektrophorese erlauben keine umfassende Trennung dieser komplex zusammengesetzten Fraktion, weshalb im vorliegenden Projekt die Anwendung einer 2-dimensionalen Trennung nach Polarität (Umkehrphasenchromatographie) und molekularer Größe (Größenausschlusschromatographie) vorgeschlagen wird. Die Kopplung der beiden Dimensionen soll offline geschehen und die erhaltenen Fraktionen gesammelt werden, um davon den Gesamtkohlenstoffgehalt (total organic carbon, TOC), die UV-VIS Absorption, sowie die Elementarzusammensetzung einzelner charakteristischer Substanzen mittels Flugzeitmassenspektrometrie zu bestimmen. Proben von verschieden geprägten Sammelorten (europäischer Hintergrund, asiatische Megacity, ländlich mit starkem Biomasseverbrennungseinfluss) sollen analysiert werden, um anschliessend Muster im zweidimensionalen Raum Polarität vs. Größe finden und vergleichen zu können. Weiterhin sollen die Ergebnisse der offline Charakterisierung mit (außerhalb des Projektes) gewonnenen Daten eines online-Aerosolmassenspektrometers verglichen werden. Die Ergebnisse sollen ein besseres Verständnis zu Konzentration, Zusammensetzung und möglichen Quellen der wichtigen HULIS-Fraktion atmosphärischer Partikel ermöglichen.
Exp. 370 diente der Erforschung des oberen Temperaturlimits der Tiefen Biosphäre vor dem Kap Muroto im Nankai Graben vor Japan. Dieser Standort ist charakterisiert durch einen extrem hohen Wärmefluss und sehr hohe Temperaturen, die an der Grenzfläche des Sediments zur Kruste bis zu 120 Grad C erreichen können. Dies entspricht der Maximaltemperatur bei der Leben bisher im Labor nachgewiesen wurde. Dieser Temperaturbereich umfasst ebenfalls den Bereich in dem Katagenese stattfindet, der thermische Zerfall von organischem Material zu flüssigen und flüchtigen Kohlenwasserstoffen. Es wird vermutet, dass dieses durch Katagenese gebildete labile und sauerstoffreiche oxidierte organische Material eine direkte Nahrungsquelle für die Mikrobengemeinschaften in diesen Sedimenten ist und somit eine direkte Kopplung der abiotischen und biotischen Zone darstellt. Die Hauptfragen in diesem Projekt sind: Welche und wieviele Mikroorganismen befinden sich in den Sedimenten nahe des Temperaturmaximums mikrobiellen Lebens? Bis in welche Tiefe, und können diese nachgewiesen werden? Wie ist mikrobielles Leben an diese extremen Bedingungen angepasst? Welche bioverfügbaren Verbindungen werden bei erhöhten Temperaturen aus dem organischen Material freigesetzt und inwieweit stellen diese eine Verknüpfung der tiefen Geo- und Biosphäre im Nankai Graben dar? Hierfür wird ein umfassender geochemischer Ansatz vorgeschlagen, der zum einen das Erstellen von Tiefenprofilen molekularer Lebenssignaturen vorsieht und zum anderen diese mit einer detaillierten Charakterisierung von löslichem und unlöslichem organischen Material (Kerogen) verknüpft. Diagnostische Biomoleküle wie z.B. intakte polare Membranlipide und Chinone werden hierbei mittels ultra-sensitiven massenspektrometrischen Methoden identifiziert und quantifiziert. Qualität und Bioverfügbarkeit des organischen Materials bei erhöhten Temperaturen soll mit einer Kombination aus Elementaranalyse und massenspektrometrischen, spektroskopischen und pyrolytischen Methoden untersucht werden. Zusätzlich wird die Bildung von potentiellen organische Substrate für die Mikrobengemeinschaften mittels wässriger Pyrolyse in Laborversuchen getestet. Diese Arbeiten stehen im direkten Bezug zu fundamentalen Fragen der Erforschung der Tiefen Biosphäre und versprechen wichtige Einblicke in Hinblick auf die Verteilung von tief versenktem Leben und der Faktoren welche dessen Ausbreitung limitiert.
Der Arbeitsbereich Dioxinanalytik befasst sich mit der Bestimmung von Dioxinen/Furanen (PCDD/PCDF) und polychlorierten Biphenylen (PCB) in allen Umweltmedien sowie in Lebens- und Futtermitteln. Dioxine reichern sich in der Umwelt an und können toxisch wirken sowie zur Entstehung von Krebs beitragen. Die Belastung der Menschen mit Dioxinen geht durch technische und rechtliche Maßnahmen seit einigen Jahrzehnten zurück. Damit die Belastung weiterhin sinkt, ist eine Überwachung und Kontrolle der Dioxine in der Umwelt notwendig. Untersuchung von Lebens- und Futtermittelproben im Rahmen des Nationalen Kontrollplanes auf Dioxine (PCDD/PCDF) und dioxinähnliche PCB Untersuchung von Emissions- und Immissionsproben für das Luftüberwachungssystem Sachsen-Anhalt - LÜSA Untersuchung von Proben im Rahmen von Havarien und Sondermessprogrammen (Hochwasser, Brände, Störfälle) Der Bereich der Dioxin-Untersuchungen in Futter- und Lebensmitteln ist seit 2001 nach DIN EN ISO/IEC 17025:2018 akkreditiert. Der geforderte Qualitätsstandard wird durch die Teilnahme an nationalen und internationalen Ringversuchen (z.B. BfR, EURL-POPs, norwegisches Institut für Gesundheit) abgesichert. Hochauflösende Massenspektrometrie (HRMS) Gaschromatografie mit Massenspektrometrie-Kopplung (GC/MS, GC/MSMS) Durch aufwendige Aufarbeitungsverfahren in der Probenvorbereitung und die Durchführung der Messung mit hochempfindlichen Analysengeräten ist diese Analytik zeitaufwendig und kostenintensiv. Alle Arbeiten werden auf der Grundlage von europäischen und nationalen Normen und Richtlinien der EU durchgeführt. Letzte Aktualisierung: 07.07.2022
Ziel der Studie war, die vorgeschlagenen Moeglichkeiten zur Bestimmung der Quellen polyzyklischer Aromaten zu ueberpruefen. Diskutiert werden: die Mengenverhaeltnisse von Benzo(a)pyren zu Benzo(ghi)perylen und zu Coronen, das Vorkommen einzelner Verbindungen, die Profile schwefelhaltiger Di- und Polyzyklen, die vollstaendigen Profile, die Intensitaeten homologer Polyzyklenserien. Das Ergebnis ist, dass keine dieser Ueberlegungen zur Herkunftsbestimmung polyzyklischer Aromaten nuetzlich ist. Es wird erwogen, ob manche Vorschlaege einfach durch die unzureichende Analytik veranlasst wurden. In diesem Zusammenhang werden wichtige Analysenverfahren und damit erhaltene Ergebnisse diskutiert. Fuer Zimmeroefen mit Leistungen bis zu 9 kW wird folgende Abschaetzung gegeben: Die gesamten Polyzyklenemissionen von Gasofen, Oelofen und Kohleofen verhalten sich naeherungsweise wie 0,001:1:100. Bei solchen Verhaeltnissen wird schon die Unterscheidung zwischen den Beitraegen von Feuerungen schwierig, da bei einem geringen Anteil von Kohleheizungen deren Emissionen ueberwiegen. Mit der Hochaufloesungs-Niedervolt-Massenspektrometrie wurden bisher in verschiedenartigen Umweltproben stets sehr viele Verbindungstypen nachgewiesen. Diese Vielfalt und damit die analytische Problematik werden durch neuartige graphische Profile veranschaulicht. Wegen der Schwierigkeiten der exakten Strukturbestimmung von Polyzyklen in Umweltproben wird erneut die Frage gestellt, ob es sinnvoll ist, am Grundsatz der Analyse einzelner Verbindungen festzuhalten.
Ziel dieses Projekts ist es, Signalkomponenten der systemisch erworbenen Resistenz (SAR) in Arabidopsis thaliana und einer Mutante, eds1, welche nicht mehr in der Lage ist, SAR Signale zu produzieren oder zu transportieren, zu identifizieren. EDS1 abhängige Peptide, Lipide und polare niedermolekulare Stoffe werden mit massenspektrometrischen Methoden identifiziert. Danach wird in verschiedenen (Nutz)Pflanzen untersucht, ob die so identifizierten möglichen SAR Komponenten Resistenz gegen Krankheitserreger auslösen. Des Weiteren wird der Einfluss von SAR Signalen auf Prozesse wie z.B. Trockenresistenz untersucht.
Origin | Count |
---|---|
Bund | 832 |
Land | 16 |
Wissenschaft | 22 |
Type | Count |
---|---|
Förderprogramm | 822 |
Text | 8 |
unbekannt | 25 |
License | Count |
---|---|
geschlossen | 21 |
offen | 824 |
unbekannt | 10 |
Language | Count |
---|---|
Deutsch | 771 |
Englisch | 152 |
Resource type | Count |
---|---|
Bild | 2 |
Dokument | 3 |
Keine | 605 |
Unbekannt | 2 |
Webdienst | 1 |
Webseite | 244 |
Topic | Count |
---|---|
Boden | 575 |
Lebewesen & Lebensräume | 656 |
Luft | 543 |
Mensch & Umwelt | 855 |
Wasser | 590 |
Weitere | 836 |