Die thermische Abfallbehandlung erfüllt im Rahmen der Circular Economy gleich mehrere Aufgaben: - Gewährleistung der Entsorgungssicherheit als Beitrag zur Daseinsvorsorge unter Ausnutzung vorhandener Potenziale zur Energiebereitstellung und Wertstoffgewinnung - Zerstörung und Ausschleusung von Schadstoffen aus dem Stoffkreislauf und das Bindeglied zwischen Stoffumwandlung und Energie. Thermische Abfallbehandlungsanlagen (TAB) erfüllen bereits heute höchste Umweltstandards, u.a. zur Emissionsminderung. Die absehbaren Entwicklungen zielen auf eine weitere Absenkung der Emissionswerte, optimierte Energieausnutzung, Recycling von Endprodukten aus der thermischen Behandlung. Die thermische Abfallbehandlung in ihrer Funktion als Schadstoffsenke ist essentielle Voraussetzung für das hochwertige Recycling bestimmter Abfallfraktionen und konzentriert sich dabei vor allem auf organische Schadstoffe, die dem Stoffkreislauf entzogen werden müssen. Dabei liegt besonderes Interesse auf den POPs (z.B. bromierte Dioxine) aufgrund deren besonderer Produkteigenschaften wie hohe Stabilität aber die gleichzeitig damit verbundene schwere Abbaubarkeit sowie einigen fluorierten Verbindungen (PFAS). Um die die Funktion der Schadstoffentfrachtung von Stoffströmen sicher erfüllen zu können, sind Kenntnisse über die thermische Zersetzung dieser Stoffgruppen notwendig, die über das geplante Vorhaben generiert werden sollen. Hierzu sind entsprechende Kenntnisse über das Ausgangsmaterial (Abfallanalyse Bauabfälle, Sortierreste Verpackungssortierung (DSD), Gewerbeabfälle) durch die Auswahl geeigneter Leitsubstanzen oder Summenparameter in Verbindung mit der Auswahl geeigneter Messmethoden zu erarbeiten. Weiterhin sind Emissionsmessungen an großtechnischen Anlagen durchzuführen, wobei die Emissionsmessungen aufgrund von Abfallanalysen und den dabei als sinnvoll erkannten Leitparametern erfolgen sollen.
Zielsetzung: Das Forschungsprojekt hat die Entwicklung eines Verfahrens zur Trennung von Beschichtungen und Textilien zum Ziel. Speziell geht es um persönliche Schutzausrüstung (PSA) in Form von Arbeitsschutzhandschuhen mit Nitrilkautschuk-Beschichtung, deren Basisrohstoffe zurückgewonnen und wiederverwertet werden sollen. Ansprüche an das Vorhaben sind das Schließen von Lücken in der Kreislaufwirtschaft sowie Vermeidung von Abfällen. Daher wird angestrebt, ein Downcycling der gewonnenen Rohstoffe zu vermeiden und aus ihnen wieder beschichtete Textilien herzustellen. Zur Umsetzung dieses Vorhabens soll ein mehrstufiges Recyclingverfahren zum Trennen der in den Schutzhandschuhen enthaltenen Wertstoffe entwickelt werden. Die von den Projektpartnern zu erarbeitenden und zu untersuchten Prozessschritte beinhalten dabei neben Wasch- und Sortiervorgängen auch das Schreddern und Feinmalen der Arbeitsschutzhandschuhe mit anschließendem Sieben oder Windsichten zur Rückgewinnung der Ausgangsmaterialien, um diese schmelzfiltern oder granulieren zu können. Anlass des Projektes ist der Anfall hoher Abfallmengen an beschichteten Handschuhen, was bspw. bei der Daimler Truck AG rund 5,8 Mio. Paare pro Jahr ausmacht. Potenziell als Abfall anfallen können ca. 124 Mio. Paare pro Jahr (ca. 6.200 t), wenn man von der Gesamtmenge produzierter Ware in diesem Segment ausgeht. Die beschichteten Handschuhe werden am Endes ihres Gebrauchs der Müllverbrennung zugeführt. Grund der thermischen Verwertung ist die Untrennbarkeit der Beschichtungen vom Substrat mit der bestehenden Prozesstechnik. Bei der Seiz Industriehandschuhe GmbH machen die zur Entsorgung aussortierten Handschuhe ca. 35 t aus, was 7 % von 500 t Reinigungsware entspricht. Unbeschichtete Textilien werden aufgerissen und z. T. in Abmischungen mit Neufasern in Vliesstoffen für den nicht sichtbaren Bereich im Automobil, als Putzlappen, Füllstoffe und in weiteren Anwendungen eingesetzt. Diese Verwendung recycelbarer Wertstoffe ist bisher für beschichtete Handschuhe nicht möglich. Eine Rückführung der Handschuhrohstoffe kann jedoch den Rohstoffverbrauch für Neuprodukte reduzieren und somit eine Energieeinsparung bei der Produktion begünstigen. Die nebenstehende Abbildung führt eine Soll-Ist-Darstellung der Kreislaufwirtschaft im geplanten Projekt auf. Beim Recycling von Arbeitsschutzkleidung allgemein, und bei Handschuhen im Besonderen, muss beachtet werden, dass es sich um Funktionstextilien handelt mit der Aufgabe, ihren Träger vor Umwelteinwirkungen zu schützen. Die Handschuhe stellen einen Verbundwerkstoff dar, der aus Polyamid 6.6 (Nylon) und Nitril-Butadien-Kautschuk (NBR) besteht. Der Nylon-Bestandteil ist ein linear aufgebautes Polyamid aus der Gruppe der Copolymere, welches nach dem Schmelzen zu Endlosfasern (Filamenten) ausgesponnen und zur textilen Fläche verstrickt wird. Der Synthesekautschuk für die Handschuhbeschichtung ist das Co-Polymerisat von Acrylnitril und 3-Butadien und wird zum Erreichen von Chemikalienfestigkeit auf die Arbeitsschutzhandschuhen aufgebracht. Die Arbeitsschutzhandschuhe mit NBR-Beschichtung werden derzeit einer Wiederverwendung nach Wiederaufbereitung durch Waschen zugeführt. Diese kann die Handschuhe jedoch nicht ewig vor Verschleiß und daher der thermischen Verwertung bewahren. Grund ist, dass derzeit keine passenden Trennverfahren für NBR-PA-Verbunde bekannt sind. Die Herstellung neuer Arbeitsschutzhandschuhe aus wiederaufbereiteten Bestandteilen ist ein Bestreben des Forschungsprojektes. Die bisherigen Recyclingansätze innerhalb der Textilindustrie sind dafür jedoch nicht geeignet. Im Rahmen des Projektes soll weiterhin eine Analyse des Produktportfolios beim Schutzhandschuhhersteller Seiz erfolgen, um Sortiervorgaben und Prozesswege für das Recycling zu definieren. Weiterhin sollen Vorgaben für Neuentwicklungen und die Beschaffung von Rohstoffen festgelegt werden, um die Produkte umweltneutraler zu gestalten. (Text gekürzt)
Ziel des Vorhabens ist die Entwicklung von Verfahren zur Herstellung von Aerogelen mittels aus Altholz gewonnener Rohstoffe (Cellulose, Lignin, Hemicellulose). Aus den Aerogelen werden Dämmstoffe und/oder schadstoffabsorbierende Filter hergestellt, aus denen nach Ende der Gebrauchsdauer wieder die genannten Rohstoffe gewonnen werden können. Zusätzlich werden beispielhaft weitere Varianten aus nachwachsenden Rohstoffen aufgezeigt. Aerogele zeichnen sich durch hervorragende Dämmeigenschaften, geringe Schallübertragung und gute Absorptionswirkung für flüchtige chemische Stoffe aus. Das eröffnet diesen Materialien zahlreiche Anwendungsmöglichkeiten, z.B. als Dämmstoffe oder Filter. Während die ersten Aerogele aus Siliziumdioxid hergestellt wurden, gibt es heute vielseitige Ausgangsmaterialien, die u.a. auch aus nachwachsenden Rohstoffen gewonnen werden können, wie z.B. aus Cellulose, Lignin, Stärke oder aus Polysacchariden. Diese Stoffe können auch aus Abfällen oder Produktionsresten verschiedener Herstellungsverfahren gewonnen werden.
Ziel des Vorhabens ist die Entwicklung von Verfahren zur Herstellung von Aerogelen mittels aus Altholz gewonnener Rohstoffe (Cellulose, Lignin, Hemicellulose). Aus den Aerogelen werden Dämmstoffe und/oder schadstoffabsorbierende Filter hergestellt, aus denen nach Ende der Gebrauchsdauer wieder die genannten Rohstoffe gewonnen werden können. Zusätzlich werden beispielhaft weitere Varianten aus nachwachsenden Rohstoffen aufgezeigt. Aerogele zeichnen sich durch hervorragende Dämmeigenschaften, geringe Schallübertragung und gute Absorptionswirkung für flüchtige chemische Stoffe aus. Das eröffnet diesen Materialien zahlreiche Anwendungsmöglichkeiten, z.B. als Dämmstoffe oder Filter. Während die ersten Aerogele aus Siliziumdioxid hergestellt wurden, gibt es heute vielseitige Ausgangsmaterialien, die u.a. auch aus nachwachsenden Rohstoffen gewonnen werden können, wie z.B. aus Cellulose, Lignin, Stärke oder aus Polysacchariden. Diese Stoffe können auch aus Abfällen oder Produktionsresten verschiedener Herstellungsverfahren gewonnen werden.
Zielsetzung: Aufgrund aktueller umwelt- und gesundheitspolitischer Erfordernisse ist die Reduzierung von Energie und die völlige Vermeidung von Mikroplastik bei gleichzeitiger, nachhaltiger Verbesserung wirtschaftlich-technologischer sowie umweltschonender Aspekte, ein zentrales Anliegen von Lackrohstoffanbietern, Lackherstellern und industriellen Lackanwendern. Eine in Frage kommende Technologie zur Beschichtung von industrienahen Produkten ist die Pulverlackapplikation. Aus diesen Gründen haben sich die Projektpartner iLF Magdeburg GmbH, Ganzlin Beschichtungspulver GmbH und die Otto-von-Guericke Universität Magdeburg das ehrgeizige Ziel gesteckt, eine biologisch abbaubare Beschichtung als Pulverlack zu entwickeln und den Eintrag von nicht abbaubaren Partikeln aus Kunststoffen während und nach der Nutzung der beschichteten Bauteile zu verhindern. Es werden verschiedene Arten der Biokunststoffe unterschieden. Dabei existieren neben den biologisch abbaubaren Kunststoffen aus nachwachsenden und fossilen Rohstoffen auch biologisch nicht abbaubare Biokunststoffe. Im Rahmen des hier beschriebenen Vorhabens wird der Fokus auf die biologisch abbaubaren Kunststoffe gelegt. Dabei sollen im Wesentlichen zwei Pfade verfolgt werden: die PLA-Route und die Polyester-Route. In beiden Fällen sollen den Matrixmaterialien (PLA und Polyester) natürliche, regional verfügbare Füll- und Farbstoffe zugesetzt werden. Als Füllstoffmaterialien kommen dabei Cellulose, Maismehl oder Lignin in Frage. Die Farbgebung soll zunächst in 3 Farbtönen durch Verwendung natürlicher Farbstoffe wie Karotin, Rote Beete oder Ruß erfolgen. Zusätzlich verfolgen die Projektpartner das Ziel, möglichst niedrige Verarbeitungstemperaturen zu erreichen, um in Zeiten massiv steigender Energiekosten wirtschaftlich und umweltschonend produzieren zu können. Weiterhin sollen möglichst alle Rohstoffe aus Europa stammen, um den gesamten Produktlebenszyklus nachhaltig zu gestalten. Das Projektkonsortium stellt sicher, dass eine Charakterisierung der Ausgangsmaterialien und der erhaltenen Beschichtungen mit modernsten Methoden der Bildgebung und Analytik kombiniert werden mit Know-How und Methoden im Bereich der Oberflächenprüftechnik und der industriellen Entwicklung und Herstellung von Pulverlacken. Die Projektpartner haben in Ihrer langjährigen erfolgreichen Kooperation bereits mehrfach Produktinnovationen hervorgebracht und verfügen über die dafür notwendige Expertise.
Die Bundesregierung strebt die qualitativ und quantitativ hochwertige Verwertung von Bioabfällen an, um dadurch Klima und Ressourcen zu schonen. Im Hinblick auf eine mögliche Weiterentwicklung der Bioabfallverordnung, sollen in diesem Forschungsprojekt verschiedene Themenfelder untersucht werden, die direkt oder indirekt mit der Erzielung möglichst reiner Komposte und Gärreste in Verbindung stehen und somit die Grundlage für eine hochwertige Verwertung darstellen. In Arbeitspaket (AP) 1 sollen geeignete Techniken zur Detektion von Fremdstoffen bei der haushaltsnahen Erfassung von Bioabfall ermittelt und bewertet werden. AP 2 legt den Fokus auf die Abtrennung von Fremdstoffen und insbesondere Kunststoffen vor der eigentlichen Bioabfallbehandlung und umfasst verschiedene Eingangsstoffströme wie Bioabfall aus Haushalten, verpackte Lebensmittel und anlagenintern rezyklierte Stoffströme. In AP 3 sollen die mögliche Bildung vor allem von kleinen Kunststoffpartikeln innerhalb der Prozesskette der biologischen Abfallbehandlung untersucht und die Möglichkeiten zur Bestimmung des Gehalts an Kunststoffpartikeln über die etablierten Methoden hinaus betrachtet werden. Ziele dieses Forschungsprojekts sind die Bereitstellung von fachlichen Grundlagen und Erkenntnissen zur Weiterentwicklung der Bioabfallverordnung sowie die Informationsaufbereitung für die Praxis.
Die Bewirtschaftung von Wäldern ist durch die mit dem Klimawandel eintretende Verschlechterung des Waldzustandes vor große Herausforderungen gestellt. Besonders die Wahl der Baumarten und die Verfügbarkeit von hochwertigem Forstvermehrungsgut stellt Waldeigentümer nach häufig auftretenden Schadereignissen vor Probleme. Ziel des Vorhabens ist eine Ergänzung waldbaulicher Handlungsspielräume durch Bereitstellung von vegetativ vermehrter Hybridlärche als Alternative für klimawandelbedingt ausfallende Bestände und als Ergänzung des Vermehrungsgutangebotes. Unser Vorhaben baut auf eine vorhandene umfangreiche Klonsammlung auf. Diese soll durch Genotypen mit hervorragenden Merkmalen, erhöhter Vitalität und Trockenheitstoleranz ergänzt werden. Zur vegetativen Vermehrung der Genotypen wird die somatische Embryogenese (SE) genutzt, welche für die Lärche bereits etabliert ist. Neben der hohen Vermehrungsrate ermöglicht die SE in Kombination mit Kryokonservierung eine Langzeitlagerung zur nachfrageangepassten Bereitstellung von Pflanzgut. Ziel ist ein hochproduktives und teilautomatisiertes Verfahren zur Anzucht von in vitro vermehrtem Pflanzenmaterial, welches als Routineverfahren in Baumschulbetriebe eingebunden werden kann. Die Markteinführung dieser Strategie soll durch Öffentlichkeitsarbeit begleitet werden. Ein wichtiges Teilziel des Vorhabens ist die Anlage von Klonprüfungen zur Zulassung des Ausgangsmaterials nach Forst-Vermehrungsgutgesetz (FoVG). Ebenso notwendig ist die eindeutige Identifizierbarkeit der Genotypen anhand molekularer Markerverfahren. Zu diesem Zweck sollen die Vorteile verschiedener Markersysteme verknüpft und klonspezifische Fingerprints auf einer Plattform hinterlegt werden. Diese Daten werden mit phänotypischen Charakteristika zu umfassenden Klonbeschreibungen kombiniert. Damit wird eine Identitätsprüfung sowie die Möglichkeit der kontinuierlichen Erweiterung der Datenbasis als Voraussetzung für die Nutzung in Forschung und Praxis ermöglicht.
Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar.
Die Bewirtschaftung von Wäldern ist durch die mit dem Klimawandel eintretende Verschlechterung des Waldzustandes vor große Herausforderungen gestellt. Besonders die Wahl der Baumarten und die Verfügbarkeit von hochwertigem Forstvermehrungsgut stellt Waldeigentümer nach häufig auftretenden Schadereignissen vor Probleme. Ziel des Vorhabens ist eine Ergänzung waldbaulicher Handlungsspielräume durch Bereitstellung von vegetativ vermehrter Hybridlärche als Vorwand nach klimawandelbedingt ausfallenden Beständen und als Ergänzung des Vermehrungsgutangebotes. Unser Vorhaben baut auf eine vorhandene umfangreiche Klonsammlung auf. Diese soll durch Genotypen mit hervorragenden Merkmalen, erhöhter Vitalität und Trockenheitstoleranz ergänzt werden. Zur vegetativen Vermehrung der Genotypen wird die somatische Embryogenese (SE) genutzt, welche für die Lärche bereits etabliert ist. Neben der hohen Vermehrungsrate ermöglicht die SE in Kombination mit Kryokonservierung eine Langzeitlagerung zur nachfrageangepassten Bereitstellung von Pflanzgut. Ziel ist ein hochproduktives und teilautomatisiertes Verfahren zur Anzucht von in vitro vermehrtem Pflanzenmaterial, welches als Routineverfahren in Baumschulbetriebe eingebunden werden kann. Die Markteinführung dieser Strategie soll durch Öffentlichkeitsarbeit begleitet werden. Ein wichtiges Teilziel des Vorhabens ist die Anlage von Klonprüfungen zur Zulassung des Ausgangsmaterials nach Forst-Vermehrungsgutgesetz (FoVG). Ebenso notwendig ist die eindeutige Identifizierbarkeit der Genotypen anhand molekularer Markerverfahren. Zu diesem Zweck sollen die Vorteile verschiedener Markersysteme verknüpft und klonspezifische Fingerprints auf einer Plattform hinterlegt werden. Diese Daten werden mit phänotypischen Charakteristika zu umfassenden Klonbeschreibungen kombiniert. Damit wird eine Identitätsprüfung sowie die Möglichkeit der kontinuierlichen Erweiterung der Datenbasis als Voraussetzung für die Nutzung in Forschung und Praxis ermöglicht.
Origin | Count |
---|---|
Bund | 145 |
Type | Count |
---|---|
Förderprogramm | 145 |
License | Count |
---|---|
offen | 145 |
Language | Count |
---|---|
Deutsch | 145 |
Englisch | 16 |
Resource type | Count |
---|---|
Keine | 140 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 91 |
Lebewesen und Lebensräume | 81 |
Luft | 63 |
Mensch und Umwelt | 144 |
Wasser | 57 |
Weitere | 145 |