API src

Found 26298 results.

Similar terms

s/may/map/gi

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

Luftdaten der Station Bielefeld-Ost (DENW067) in Bielefeld

Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Kohlenmonoxid (CO), Cadmium im Feinstaub (Cd), Blei im Feinstaub (Pb), Feinstaub (PM₁₀). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.

Luftdaten der Station Cottbus, Bahnhofstr. (DEBB044) in Cottbus

Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Kohlenmonoxid (CO), Blei im Feinstaub (Pb), Feinstaub (PM₁₀). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.

Trends der Niederschlagshöhe

<p>Seit 1881 hat die mittlere jährliche Niederschlagsmenge in Deutschland um rund 9 Prozent zugenommen. Dabei verteilt sich dieser Anstieg nicht gleichmäßig auf die Jahreszeiten. Vielmehr sind insbesondere die Winter deutlich nasser geworden, während die Niederschläge im Sommer geringfügig zurückgegangen sind.</p><p>Teilweise sehr regenreiche Jahre seit 1965</p><p>Die Zeitreihe der jährlichen Niederschläge in Deutschland (Gebietsmittel) zeigt einen leichten Anstieg, der mit einer Irrtumswahrscheinlichkeit von 5 % statistisch signifikant ist. Dieser Anstieg ist im Wesentlichen darauf zurückzuführen, dass bis etwa 1920 nur selten überdurchschnittlich niederschlagsreiche Jahre aufgetreten sind. Im Anschluss an eine Übergangsphase mit mehreren leicht überdurchschnittlich feuchten Jahren traten ab Mitte der 1960er Jahre dann auch einige sehr regenreiche Jahre auf (siehe Abb. „Mittlere jährliche Niederschlagshöhe in Deutschland 1881 bis 2024). Dies entspricht genau der Zeit, seit der die Auswirkungen des Klimawandels global deutlich zu beobachten sind. Im globalen Durchschnitt steigt mit den Temperaturen auch die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠ von Wasser an, was in der globalen Summe zu größeren Niederschlagsmengen führt, jedoch mit regional und saisonal sehr großen Unterschieden - von Dürren bis Überschwemmungen.</p><p>Seit 2011 wurden in Deutschland einige ausgesprochen trockene Jahre beobachtet. In den Jahren 2023 und 2024 wurde jedoch überdurchschnittlich viel Niederschlag registriert. Der Niederschlagsüberschuss im Jahr 2024 resultierte vor allem aus den Monaten Februar, Mai und September. Im Mai kam es in Rheinland-Pfalz und im Saarland in Folge von Schauern und Gewittern zu Überschwemmungen. Ende Mai und Anfang Juni führten viele Flüsse in Baden-Württemberg und Bayern nach langanhaltenden Niederschlägen Hochwasser.</p><p>Noch stärker als bei den mittleren Temperaturen ist dieser Trend also nicht gleichmäßig in allen Jahreszeiten ausgeprägt. Er beruht im Wesentlichen darauf, dass die mittleren Winterniederschläge zugenommen haben. Im Winter 2023/2024 lag mit 279,7 mm Niederschlag die Abweichung zum historischen Referenzzeitraum 1881-1910 bei +131,5 mm. Frühling und Herbst zeigen ebenfalls eine leichte, aber im Gegensatz zum Winter nicht signifikante Zunahme, während die Niederschläge im Sommer geringfügig zurückgegangen sind (siehe nachfolgende Tabellen und Abbildungen).</p><p>Bemerkenswert ist aus klimatologischer Sicht, dass mit den Jahren 2023 und 2024 die Serie von sehr trockenen Jahren unterbrochen wurde. Mit dem Juni bzw. September wurden jeweils die niederschlagsreichsten 12-Monatsperioden beobachtet. Am Ende des Jahres lagen die Niederschlagsmengen wieder unter dem Durchschnitt</p><p>Mit 902 mm belegt 2024 auf der Rangliste der nassesten Jahre seit 1881 den 12. Platz (siehe Karte „Jährliche Niederschläge in Deutschland im Jahr 2024").</p><p>Bei der Betrachtung der Einzelmonate sind erhebliche Unterschiede erkennbar: Im Jahresverlauf wiesen 8 Monate überdurchschnittliche Niederschlagsmengen auf (Januar, Februar, April, Mai, Juni, Juli, September, Oktober) und 4 Monate unterdurchschnittliche Niederschläge (März, August, November, Dezember). Über das Jahr ergibt sich ein Niederschlagsüberschuss von 14 %.</p><p>Und auch regional unterscheidet sich die Niederschlagsverteilung im Jahr 2024 sehr stark: Besonders die Bundesländer im Nordwesten (Schleswig-Holstein, Niedersachsen, Rheinland-Pfalz) erreichten Platzierungen unter den zehn nassesten Jahren, während Sachsen nur auf Platz 88 von 144 Jahren landete (siehe Karte „Veränderung der jährlichen Niederschläge in Deutschland im Jahr 2024).</p><p><em>Wir danken dem</em><a href="https://www.dwd.de/DE/Home/home_node.html"><em>Deutschen Wetterdienst</em></a><em>für die Bereitstellung der Daten.</em></p>

Luftdaten der Station Bielefeld Stapenhorststraße 14 (DENW414) in Bielefeld

Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: . Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.

Strategische Lärmkarten

Für den Ballungsraum Berlin umfasst die Lärmkartierung folgende Hauptverkehrslärmquellen: Straßenverkehr (gesamtes Hauptverkehrsstraßennetz): Bundesautobahn/Bundesstraße (349,3 km) Stadtstraße (1.420,80 km) Straßenbahn- und oberirdischer U-Bahnverkehr Straßenbahn (205,9 km) U-Bahn (28,6 km) Industrie-/Gewerbelärm (IED-Anlagen): 18 Kraftwerksstandorte S-Bahn- und Eisenbahnverkehr (Zuständigkeit Eisenbahn-Bundesamt) Flughafen Berlin Brandenburg (BER) Die strategischen Lärmkarten zeigen, dass der Straßenverkehr nach wie vor die Hauptverkehrslärmquelle im Stadtgebiet ist, gefolgt vom Schienenlärm und dem südöstlichen Einwirkbereich des Flughafens Berlin Brandenburg (BER). Der Industrielärm, der durch die kartierungspflichtigen Anlagen verursacht wird, ist dagegen vergleichsweise von sehr geringer Bedeutung. Ausführliche Informationen zu den strategischen Lärmkarten finden Sie im Umweltatlas Berlin . Karten im Geoportal Berlin

Solaranlagen 2024

Erneuerbare Energien, also vorrangig Solarenergie, Geothermie, Biomasse und Windkraft, sind als unerschöpfliche Quellen elementar wichtig für die heutige und zukünftige Energieversorgung Berlins. Der Ausbau der Solarenergienutzung wird dabei als besonders wichtiger Baustein in der Klimaschutzstrategie Berlins hervorgehoben. Der Senat von Berlin strebt eine klimaneutrale Energieversorgung der Stadt bis 2045 an. Daher wurde der Ausbau der erneuerbaren Energien, insbesondere die Nutzung der Solarpotenziale, im Berliner Energie- und Klimaschutzprogramm 2030 (BEK 2030) durch den Berliner Senat beschlossen. Eine wichtige Grundlage, die zum Abbau der bestehenden Hemmnisse der Solarenergie beitragen soll, ist der „Masterplan Solarcity“ . Am 06. Mai 2025 wurde der Masterplan in seiner zweiten Umsetzungsphase 2025-2030 durch die federführende Senatsverwaltung für Wirtschaft, Energie und Betriebe nach einem breiten Beteiligungsprozess veröffentlicht. Der Maßnahmenkatalog ist damit weiterhin die Basis für den weiteren Ausbau der Solarenergie in Berlin. Berlin nähert sich dem Ziel, bis 2035 einen Solarstromanteil von 25% an der Berliner Stromerzeugung zu erreichen ( Masterplan Solarcity ). Seit 2020 werden jährlich Monitoringberichte zum Masterplan Solarcity veröffentlicht (SenWEB 2025). Im Berliner Klimaschutz- und Energiewendegesetz vom 19. August 2021 (EWG Bln 2021) § 19 ist die vermehrte Erzeugung und Nutzung von erneuerbaren Energien auf öffentlichen Gebäuden als Ziel festgesetzt. Die Senatsverwaltung für Wirtschaft, Energie und Betriebe unterstützt insbesondere die Bezirke mit dem Förderprogramm SolarReadiness, unter anderem Statik und Anschlüsse an die Anforderungen von Solaranlagen anzupassen. Durch den so beschleunigten Ausbau von Solaranlagen erfüllt das Land Berlin die Vorbildrolle der öffentlichen Hand. Auf privaten Gebäuden greift außerdem seit dem 01. Januar 2023 bei wesentlichen Dachumbauten sowie bei Neubauten die Solarpflicht nach dem Solargesetz Berlin vom 05. Juli 2021. Bei einer Nutzungsfläche von mehr als 50 Quadratmetern sind Eigentümer:innen zur Installation und zum Betrieb einer Photovoltaikanlage verpflichtet. Weitere Informationen und einen Praxisleitfaden zum Solargesetz finden Sie hier . Zur Unterstützung bei der Erfüllung der Solarpflicht, sowie um die Wirtschaftlichkeit von Photovoltaikanlagen zu verbessern, fördert Berlin mit dem Förderprogramm SolarPLUS als Teil des Masterplan Solarcity den Photovoltaikausbau. So wurden seit Start des Programms im September 2022 bis Mai 2025 24.153 Zuwendungen aus SolarPLUS bewilligt. Im Mai 2019 wurde das Solarzentrum Berlin eröffnet, das als unabhängige Beratungsstelle rund um das Thema Solarenergie arbeitet ( Solarzentrum Berlin ). Das Zentrum wird von der Deutschen Gesellschaft für Sonnenenergie (DGS), Landesverband Berlin Brandenburg, betrieben und von der Senatsverwaltung für Wirtschaft, Energie und Betriebe als Maßnahme des Masterplans Solarcity finanziert. Auf Bundesebene wurden durch das Jahressteuergesetz 2022 die Umsatzsteuer für Lieferungen sowie die Installation von Solarmodulen, einschließlich der für den Betrieb notwendigen Komponenten und der Speicher, auf 0 Prozent gesenkt (JStG 2022, UStG § 12 Abs. 3). Diese Regelung betrifft Anlagen auf Wohngebäuden, öffentlichen Gebäuden und Gebäuden, die für dem Gemeinwohl dienende Tätigkeiten genutzt werden. Die Voraussetzungen für die Befreiung gelten als erfüllt, wenn die Anlagenleistung 30kWp nicht überschreitet. Der Nullsteuersatz gilt seit dem 1. Januar 2023. Am 15. Mai 2024 ist das Solarpaket I in Kraft getreten und hat Maßnahmen eingeführt, die den Ausbau der Photovoltaik (PV) in Deutschland erleichtern und beschleunigen soll. Ein Fokus liegt dabei auf sogenannten Balkonkraftwerken, also steckerfertigen Solaranlagen für den Eigengebrauch. Zusätzlich wurde ermöglicht, dass Solarstrom vom eigenen Dach vergünstigt an Mieterinnen und Mieter weitergegeben werden kann. Überschussstrom, der nicht selbst genutzt wird, kann kostenfrei und ohne Vergütung an Netzbetreiber abgegeben werden, wodurch Betreiber kleinerer Anlagen entlastet werden. Anlagenzertifikate sind bei größeren Leistungen (ab 270 kW Einspeisung oder 500 kW Erzeugung) erforderlich. Zum Stand Ende 2024 liegt der Solarstromanteil in Berlin bei 4,7 Prozent (SenWEB2025). Da die räumliche Darstellung und Nutzung von energierelevanten Daten, wie z. B. Solardaten, in Berlin zuvor uneinheitlich und durch verschiedene Angebote realisiert wurde, steht mit dem Energieatlas Berlin seit Juli 2018 ein Fachportal zur Unterstützung der Energiewende bereit, das die wichtigsten Daten benutzerfreundlich und anschaulich präsentiert sowie regelmäßig aktualisiert. Die im Umweltatlas an dieser Stelle dargestellten Inhalte für Photovoltaik (PV), d.h. der direkten Umwandlung von Sonnenenergie in elektrische Energie, und Solarthermie (ST), d.h. der Wärmegewinnung aus der solaren Einstrahlung, beziehen sich auf die im Energieatlas veröffentlichten Daten und deren Erfassungsstände: 07.10.2024 für die Standortdaten der Photovoltaik-Anlagen und 31.12.2015 bzw. 29.03.2023 (aggregierte BAFA-Daten) für diejenigen der Solarthermie. Im Rahmen der Fortführung des Energieatlas Berlin werden die Aktualität und Güte der Daten im Bereich der Solaranlagen, vor allem derjenigen mit Photovoltaik, kontinuierlich verbessert. Im Vergleich zur Solarthermie gibt es in Berlin deutlich mehr erfasste Photovoltaikanlagen. So wurden bis zum 31.12.2024 41.723 Anlagen installiert, die zusammen eine installierte Leistung von rund 380,6 MWp aufweisen. Der darüber jährlich zu produzierende Stromertrag kann nur geschätzt werden und wird bei ca. 343 GWh/a liegen (abzüglich 5 % bei der Generatorleistung und durchschnittlichem Stromertrag von 900 kWh/a pro kW). Theoretisch können mit dieser Leistung rund 131.000 Haushalte mit einem angenommenen mittleren Stromverbrauch von je 2.500 kWh/a versorgt werden. Seit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Auswertungen. Abbildung 1 verdeutlicht die unterschiedlichen Ausbauzahlen je nach Bezirk (Abb. 1a), vor allem Stadtgebiete mit großräumiger Einzel- und Zweifamilienhausbebauung zeigen die größten Anteile. Dazu passend überwiegt mit rund 37.438 von 38.798 Anlagen die geringste Leistungsklasse mit bis zu 30 kWp (Abb. 1b), die auf kleinen Dächern und Balkonkraftanlagen bevorzugt eingesetzt werden. Im Jahr 2019 stieg der jährliche Zuwachs für Anlagen nach dem EEG erstmals wieder auf über 100.000 neuen Anlagen. Zum 01. Juli 2022 wurde die EEG-Umlage auf Null gesetzt und mit der EEG-Novelle 2023 komplett abgeschafft. Im Jahr 2024 wurden nach Daten der Bundesnetzagentur mit 15.556 neuen Anlagen der bis dahin größte Anstieg verzeichnet. Die aktuellsten Informationen über Photovoltaikanlagen in Berlin, wie beispielsweise ihre Standorte oder statistische Auswertungen zum Ausbau in den Bezirken, sind im Energieatlas Berlin in Form von Karten und Diagrammen abrufbar: https://energieatlas.berlin.de/ . Abb. 1a: Entwicklung nach Bezirken (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Abb. 1b: Entwicklung nach Leistungsklassen (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Der öffentlichen Hand kommt beim PV-Ausbau eine besondere Vorbildfunktion zu. Mit der Novellierung des Berliner Klimaschutz- und Energiewendegesetzes (EWG Bln) im Jahr 2021 ist bei öffentlichen Neubauten die Errichtung von Solaranlagen auf der gesamten technisch nutzbaren Dachfläche Pflicht. Bei öffentlichen Bestandsgebäuden ist grundsätzlich bis zum 31.12.2024 eine Solaranlage nachzurüsten. Ausnahmen gelten u. a. für Dachflächen, die aufgrund ihrer Lage und Ausrichtung ungeeignet sind oder wenn öffentlich-rechtliche Vorschriften der Errichtung von Solar-Anlagen entgegenstehen. Laut Masterplanstudie zum Masterplan Solarcity Berlin ist das Land Berlin Eigentümerin von 5,4 % der Berliner Gebäude, auf deren Dachfläche 8,3 % des Solarpotenzials entfällt (SenWEB 2019). Eine Übersicht über den aktuellen Stand des Solaranlagenausbaus auf öffentlichen Gebäuden in Berlin ist über den folgenden Link im Energieatlas einsehbar: https://energieatlas.berlin.de/?permalink=PGieokF . Auf den öffentlichen Gebäuden Berlins befinden sich 1029 PV-Anlagen mit einer gesamten installierten Leistung von 64,6 MWp (Stand 31.12.2024, Solarcity Monitoringbericht). Es entfielen im Jahr 2024 ca. 17 % der installierten Leistung auf PV-Anlagen auf öffentlichen Gebäuden des Landes Berlin (Erfassungsstand 21.12.2024). Die meisten der 42.723 PV-Anlagen in Berlin befinden sich auf Gebäuden, die natürlichen Personen gehören (92 %). Dabei ist zu beachten, dass zwar die Gebäude Eigentum von natürlichen Personen sind, die PV-Anlagen jedoch nicht zwangsläufig ihnen gehören müssen, weil Gebäudeeigentümer ihre Dachfläche zur Nutzung an Dritte verpachten können. Auf den Gebäuden von Unternehmen und Genossenschaften sind 5 % der PV-Anlagen installiert. Die PV-Anlagen in Eigentum von natürlichen Personen machen einen Anteil von etwa 55 % der gesamten installierten Leistung aus, weitere 31,3 % entfallen auf PV-Anlagen auf Gebäuden von Unternehmen und Genossenschaften. Diese beiden Akteursgruppen zusammen sind demnach für den Großteil der installierten PV-Leistung verantwortlich. Abb. 2: Eigentümerstruktur als Anteil an der Anzahl der Anlagen sowie an der installierten Leistung (Datenstand 31.12.2024, Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Mit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Darstellungen. Im Land Berlin gab es zum Stand 31.12.2024 rd. 8.900 solarthermische Anlagen. Derzeit wird deren Zubau nicht für Berlin erfasst. Weitere Lücken ergaben sich durch die Übergabe der Förderung von Solarthermieanlagen von der BAFA an die KfW. Die Entwicklung in Abbildung 3 verdeutlicht, dass sich der Zuwachs an Neuinstallationen ab etwa 2013 im Vergleich zu den Vorjahren stark verringert hat. Insgesamt zeigt sich somit seitdem ein abnehmender Trend. Hauptsächlich werden solarthermische Anlagen in Berlin für die Warmwasserbereitung sowie zur Heizungsunterstützung genutzt. Darüber hinaus gibt es einige größere Solaranlagen für die Trinkwasser- und Schwimmbadwassererwärmung sowie für solare Luftsysteme und Klimatisierung. Vergleichbar der Verteilung bei den PV-Anlagen ist ein eindeutiger Schwerpunkt in den Außenbereichen der Stadt in den dort noch überwiegend vorhandenen landschaftlich geprägten Siedlungstypen sichtbar (vgl. Darstellung auf Postleitzahlebene im Geoportal Berlin , Karte Solaranlagen – Solarthermie, Ebene „Summe der solarthermischen Anlagen pro Postleitzahl“). Abb. 3: Entwicklung solarthermischer Anlagen im Land Berlin nach Anlagenanzahl pro Bezirk (Erfassungsstand 20.02.2024), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Aufgrund der lückenhaften Erfassung von Anlagen für Warmwasserbereitung kann von einer höheren Gesamtanzahl solarthermischer Anlagen in Berlin ausgegangen werden. Für die Mehrheit der Anlagen wurden Flachkollektoren gewählt. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Für die Jahre nach 2015 liegen für Berlin keine Einzelangaben, nur noch höher aggregierte Daten des Bundesamtes für Wirtschaft und Ausfuhrkontrolle (BAFA) vor, die keine Rückschlüsse nach Kollektorarten, Gebäudetypen oder Kollektorflächen mehr zulassen. Der Zubau neuer solarthermischer Anlagen ist in Berlin seit 2013 gegenüber den Vorjahren deutlich gesunken. Die Anzahl der Solarthermieanlagen im Jahr 2024 beläuft sich auf ca. 8.900 Anlagen mit einer Gesamtkollektorfläche von ca. 94.300 m² (SenWEB/Monitoringbericht 2024 zum Masterplan Solarcity). Dieser Wert bildet jedoch nicht vollständig die tatsächliche Anzahl der in den vergangenen Jahren neu errichteten Solarthermieanlagen in Berlin ab, sodass von einem höheren Anlagenbestand auszugehen ist. Deutschlandweit hat sich der Zubau der Thermie-Kollektorfläche seit 2015 verlangsamt und bis zum Jahresende 2024 auf einen Zuwachs von Rd. 0,22 Mio. qm reduziert. Insgesamt flacht die Kurve an Zuwachsfläche und Anlagen seit einigen Jahren deutlich ab (Bundesverband Solarwirtschaft 2024). Die flächendeckende Analyse der solaren Einstrahlung liefert die Grundlage zur Berechnung der nutzbaren Strahlung und wird als Jahressumme dargestellt. (IP SYSCON 2022). Für den Berliner Raum wird vom Deutschen Wetterdienst (DWD) für den aktuellen langjährigen Betrachtungszeitraum 1991-2020 eine mittlere Jahressumme der Globalstrahlung, also der Summe wechselnder Anteile aus direkter und diffuser Sonneneinstrahlung, auf eine horizontale Fläche in Höhe von 1081-1100 kWh/m² angegeben. Der Berliner Raum liegt damit ziemlich exakt im Mittel der in Deutschland vorkommenden Bandbreite an Einstrahlungswerten (vgl. Abb. 4). Im Vergleich der beiden letzten Referenzzeiträume 1981-2010 zu 1991-2020 nahm die solare Einstrahlung im Zuge des Klimawandels in Berlin und Brandenburg um 40 bis 50 kWh/m² pro Jahr, also rund 5 %, zu. Die Einstrahlung auf eine horizontale Fläche wird je nach örtlicher Lage von verschiedenen Faktoren beeinflusst (vgl. Methode). Abb. 4: Mittlere Jahressummen der Globalstrahlung in Deutschland für den langjährigen Zeitraum 1991-2020 (unveränderte Wiedergabe; Quelle: Deutscher Wetterdienst (DWD) 2022)

Luftdaten der Station Stuttgart Arnulf-Klett-Platz (DEBW099) in Stuttgart

Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Kohlenmonoxid (CO), Cadmium im Feinstaub (Cd), Arsen im Feinstaub (As), Blei im Feinstaub (Pb), Feinstaub (PM₁₀). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.

Luftdaten der Station Trier-Ostallee (DERP020) in Trier

Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Nickel im Feinstaub (Ni), Kohlenmonoxid (CO), Arsen im Feinstaub (As), Feinstaub (PM₁₀). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.

Luftdaten der Station Görlitz (DESN020) in Görlitz

Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Nickel im Feinstaub (Ni), Kohlenmonoxid (CO), Blei im Feinstaub (Pb), Feinstaub (PM₁₀). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.

1 2 3 4 52628 2629 2630