API src

Found 217 results.

Biopolymere als industrielle Rohstoffe bzw. Produkte - Spezifikation und Qualitätssicherung via Spektroskopie und Chemometrie, FH-Kooperativ 2-2023:Biopolymere als industrielle Rohstoffe bzw. Produkte - Spezifikation und Qualitätssicherung via Spektroskopie und Chemometrie (PolySpeC)

EXC 2147: Komplexität und Topologie in Quantenmaterialien (CT.QMAT)

Neue Materialien mit maßgeschneiderten Funktionalitäten bilden die Grundlage moderner Hochtechnologien, von der Informationsverarbeitung über die Energieversorgung bis zur Medizintechnik. Im zuständigen Wissenschaftsbereich, der Festkörperphysik, wurde im 21. Jahrhundert die revolutionäre Entdeckung gemacht, dass das mathematische Konzept der Topologie ein fundamentaler Schlüssel für das Verständnis quantenmechanischer Materiezustände ist. Diese Erkenntnis hat weltweite Forschungsaktivitäten ausgelöst und zur Entdeckung zahlreicher topologischer Materialien und Phänomene geführt, mit Schlüsselbeiträgen aus Würzburg (Quanten-Spin-Hall-Effekt) und Dresden (Vorhersage magnetischer Monopole in Spin-Eis). Für dieses junge Forschungsgebiet wird die Einrichtung eines Exzellenz-Clusters 'Komplexität und Topologie in Quantenmaterialien (ct.qmat)' zur umfassenden Untersuchung solcher Systeme und ihres Anwendungspotentials vorgeschlagen. In ct.qmat werden Forschende aus Physik, Chemie und Materialwissenschaften gemeinsam daran arbeiten, diese fundamental neuen Zustände von Quantenmaterie zu verstehen, zu steuern und anzuwenden. Die vielfältigen, sich ergänzenden Fachexpertisen und Forschungsstrukturen in Würzburg und Dresden bilden dabei die Basis für ein breites Forschungsprogramm - von der Materialsynthese über die experimentelle und theoretische Untersuchung topologischer Phänomene und ihrer funktionellen Kontrolle bis zum Entwurf und Test von Anwendungskonzepten. Hierfür ist der Cluster in vier Teilbereiche gegliedert, von denen sich drei mit der Rolle von Topologie und Komplexität in verschiedenen physikalischen Kontexten befassen, nämlich (A) beim Ladungstransport, (B) in magnetischen Systemen und (C) in der Licht-Materie-Wechselwirkung. Bereich (D) verfolgt das übergeordnete Ziel, aus den topologischen Phänomenen Funktionalitäten abzuleiten und deren Anwendungspotential zu untersuchen, z.B. für verlustfreie Elektronik oder für Quantencomputer. Dieses Programm gründet auf bereits existierenden Forschungskooperationen zwischen beiden Universitäten und ihren Partnerinstituten und wird sie erheblich erweitern. Zu den Strukturelementen des Clusters gehören die Schaffung neuer Professuren und Nachwuchsgruppen, die die Teilbereiche stärken und als Brücken zwischen ihnen dienen sollen, sowie die synergetische Nutzung gemeinsamer Forschungsinfrastruktur. Besonderes Augenmerk liegt auf der nachhaltigen Förderung des wissenschaftlichen Nachwuchses, von der Promotion bis zur Juniorpofessur, sowie auf der Förderung von Chancengleichheit und Vielfalt in der Wissenschaft. Mit den zusätzlichen Synergien aus der Zusammenarbeit beider Universitäten ergeben sich insgesamt ausgezeichnete Ausbildungs- und Forschungsbedingungen. Dies ist ein entscheidendes Moment im Wettbewerb um die besten Köpfe und wesentliche Voraussetzung für das strategische Ziel, mit ct.qmat ein weltweit führendes Zentrum für die Erforschung von Quantenmaterialien zu schaffen.

Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Werkstofftechnische Optimierung entlang der Prozesskette der additiven Fertigung martensitischer Chromstähle

Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.

Steigerung der Material- und Energieeffizienz durch Implementierung innovativer Heißkanaltechnologie im Mg-Thixomolding, Teilprojekt: Erforschung Multiheißkanal

PHA-Biopolymere aus CO2 für Verpackungsmaterialien, Teilprojekt E - Umsetzungsphase

Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute

Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.

Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Pulverqualifizierung und zirkuläre Kreislaufwirtschaft von Stahlpulvern für die additive Fertigung

Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.

Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Erforschung der energieeffizienten, additiven Fertigung innovativer Schneidwaren

Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.

Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Erforschung energieeffizienter Urformungsprozesse von Chromstahlpulvern für die additive Fertigung

Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.

Optimierung der Energieeffizienz, Obsoleszenz und zirkulären Wirtschaft der additiven Fertigungsroute am Beispiel innovativer martensitischer Chromstähle, Teilvorhaben: Erforschung der energieeffizienten, additiven Fertigung innovativer Instrumente für die Medizintechnik

Der Megatrend des Additive Manufacturing (AM) ermöglicht im Produktdesign neben einer erhöhten Flexibilität, geometrischen Designfreiheit, insbesondere eine Erhöhung der Energie- und Ressourceneffizienz. Im Rahmen dieses Vorhabens wird die Wertschöpfungskette des AM ausgehend von der Herstellung der Rohmaterialien bis zum fertigen AM-Bauteil für die Branchen der Medizintechnik und der Schneidinstrumente durchdrungen. Als AM-Verfahren wird hierbei das pulverbettbasierte Laserstrahlschmelzen genutzt. Über höchste Verschleiß- und Korrosionsbeständigkeit kann eine hohe Lebensdauer der Endprodukte hier nur durch die martensitischen Chrom-Stähle erreicht werden. Diese lassen sich bisher jedoch nicht mittels Laserstrahlschmelzen verarbeiten. Zudem ist die ökologische Effizienz der AM-Route nur scheinbar hoch. Handlungsbedarf besteht, angefangen von der Pulverurformung bis zur Veredlung des AM-Produktes beim Endkunden an jedem Glied der Wertschöpfungskette. Hierbei lassen sich die Themenbereiche i) Ressourceneffizienz der Pulverurformung, ii) Verfahren zur Vorhersage und Optimierung der Qualität und Obsoleszenz der Metallpulver, iii) Vorhersage und Steigerung der Lebensdauer AM-gefertigter Produkte, iv) Designstrategie zur Erhöhung der Ressourceneffizienz der AM Route, sowie v) Etablierung einer geschlossenen Circular Economy, extrahieren. Das zentrale Anliegen des Projekts ist es einen ganzheitlichen Ansatz zur Effizienzsteigerung der Fertigungskette von additiv gefertigten Produkten aus martensitischen Cr-Stählen erstmalig zu ermöglichen. Angefangen von der Pulverurformung, der AM-Verarbeitung bis hin zum Endanwender werden die Herausforderungen entlang der Wertschöpfungskette adressiert. Das übergeordnete Ziel ist es, die Energieeffizienz vollständig über die Wertschöpfungskette zu analysieren und zu steigern. Hierbei sollen die energetische Effizienz aller Prozessschritte und Zwischenprodukte einzeln, aber besonders auch durch deren Zusammenwirken, erhöht werden.

1 2 3 4 520 21 22