Conductivity-temperature-depth profiles were measured using a CTD. The CTD was equipped with duplicate sensors for temperature, conductivity and oxygen. All sensors are calibrated irregularly.
Langjährige Pegelaufzeichnungen aus dem Gebiet der südöstlichen Nordsee zeigen seit Mitte des 20. Jahrhunderts signifikante Veränderungen im lokalen Tideregime. Während der mittlere Meeresspiegel (englisch: Mean Sea Level, MSL) über die vergangenen 150 Jahre generell dem globalen Mittel gefolgt ist, deuten Auswertungen der mittleren Tidehoch- und Tideniedrigwasser auf signifikant abweichende Trends hin. So sind die Tidehochwasser signifikant schneller als der MSL angestiegen, während die Tideniedrigwasser deutlich geringere oder teils negative Trends aufzeigen. Daraus resultierte eine gleichzeitige Zunahme des Tidehubs (die Differenz aus Tidehoch- und Tideniedrigwasser) von ca. 10 % seit 1955. Derartige Veränderungen haben direkte Auswirkungen auf den Küstenschutz. So ergeben sich bei einem Anstieg der mittleren Tidehochwasser größere Wassertiefen, wodurch das Wellenklima insbesondere im Bereich der Wattflächen und Außensände in der Deutschen Bucht beeinflusst wird. Größere Wellenhöhen und damit höhere Orbitalgeschwindigkeiten und Brandungsenergien sind die unmittelbare Folge, die zu großflächigen Erosionen führen kann. Gleichzeitig beeinflussen geringere Tideniedrigwasser die Schiffbarkeit der flachen Küstengewässer. Durch den vergrößerten Tidehub treten größere Tidestromgeschwindigkeiten auf, die z.B. Ausräumungen der Tiderinnen, verstärkte Erosionen an Inselsockeln, Strandräumungen und im Zusammenhang mit Sturmfluten Dünen- und Kliffabbrüchen verursachen können. Dies verdeutlicht, dass neben den global wirkenden übergeordneten Veränderungen im MSL (Massenänderungen, thermale Expansion) auch regionale Phänomene und Prozesse eine wichtige Rolle für die Ausprägung der Wasserstände spielen. Eine Berücksichtigung solcher Faktoren in den Projektionen zukünftiger Wasserstände setzt voraus, dass vergangene Entwicklungen und zugrunde liegende Prozesse ausreichend verstanden sind. Das übergeordnete Ziel von TIDEDYN besteht daher in der Analyse der in der Vergangenheit bereits aufgetreten Veränderungen im lokalen Tideregime der Nordsee. Die beobachtete Zunahme des Tidehubs ist in ihrer starken Ausprägung ein weltweit einzigartiges Phänomen, welches bis heute nicht erklärt werden kann. Als mögliche (aber bisher unerforschte) Ursachen kommen z.B. langfristige Änderungen im MSL, morphologische Änderungen im Küstenvorfeld (natürlich oder anthropogen, z.B. Ausbaggerungen oder Baumaßnahmen wie Eindeichungen) oder saisonale Änderungen in der thermohalinen Schichtung des Ozeans in Frage. Durch die integrierte Analyse von hochauflösenden numerischen Modellen (barotrop und baroklin) und Beobachtungsdaten mit robusten Methoden der Zeitreihenanalyse, sollen die Änderungen im Tideregime der Nordsee über die vergangen 60-70 Jahre beschrieben, modelliert und systematisch erforscht werden sowie einzelne Prozesse mittels Sensitivitätsstudien voneinander abgegrenzt werden.
Makronährstoffe, wie Phosphor, sind wichtig für das Wachstum von Meeresmikroorganismen, wie Phytoplankton. Diese sind sehr bedeutsam für die marine Nährstoffkette und Biologie. Verschiedene Phytoplanktonarten emittieren klimarelvante organische Verbindungen, z.B. DMS, welches in der Atmosphäre zu Schwefelsäure oxidiert wird und anschließend zur Bildung neuer Aerosolpartikel beiträgt. Diese können weiterhin als potentielle Wolkenkondensaktionskeime dienen. Informationen über die Verfügbarkeit von Phosphor für diese Mikroorganismen sind somit essentiell für ein besseres Verständnis der Ozean-Atmosphären-Wechselwirkung. Der Haupteintrag von Phosphor in den offenen Ozean erfolgt vorwiegend über atmosphärische Deposition. Informationen über atmosphärische Phosphorkonzentrationen, die Bioverfügbarkeit und Quellen sind notwendig, um den Verbleib in den Ozeanen zu verstehen. Dabei werden vor allem in den Regionen des tropischen Nord- und Südost-Atlantik immer noch Daten benötigt. Die wenigen verfügbaren Daten basieren zumeist auf kurzzeitigen Schiffsmessungen, die in ihrer Anwendung auf langfristige Prognosen und jahreszeitlichen Zyklen sehr begrenzt sind. Um das Verständnis über die Phosphorverfügbarkeit, -quellen, und -bioverfügbarkeit in diesen ozeanischen Gebieten zu verbessern, sollen größenaufgelöste Langzeitmessungen zur Bestimmung des Phosphorgehalts von Aerosolpartikeln durchgeführt werden. Weiterhin werden analytische Methoden entwickelt und optimiert (basierend auf der Kombination von drei Techniken). Diese sollen eine empfindliche Bestimmung von löslichem als auch dem Gesamtphosphor in feinen Partikeln ermöglichen, aufgrund der geringen Aerosolmasse in dieser Größenfraktion. Die ermittelten Daten werden benutzt, um wichtige Quellen des Phosphors in diesen Regionen zu charakterisieren, die Rolle von unterschiedlichen Quellen wie Mineralstaub, Biomassenverbrennung, sowie anthropogenen Verbrennungsaerosols auf die Speziation (organische und anorganische Zusammensetzung), Löslichkeit und atmosphärische Prozessierung des Phosphors, sowie ihre saisonale Variabilität zu untersuchen. Darüber hinaus soll eine regionale Staubmodellsimulation angewendet werden, um den Aerosoltransport und die Staupdeposition in diesen Regionen besser zu beschreiben. Die Ergebnisse sind wichtig für kombinierte Modelle zur Ozean-Atmosphäre Wechselwirkung und das Verständnis der wichtigsten Faktoren, die den Verbleib von atmosphärischem Phosphor im Ozean beeinflussen.
Ziel dieses Projektvorhabens ist es, einen Einblick in die räumliche und zeitliche Variabilität des Auftretens von Meereisrinnen im Antarktischen Meereis während der Wintermonate zu erhalten. Meereis-Rinnen zeichnen sich dadurch aus, dass es in ihrem Einflussbereich zu einem starken Austausch von Wärme, Feuchte und Impuls zwischen dem relativ warmen Ozean und der kalten Atmosphäre kommt. In Meereis-Rinnen bildet sich demnach neues, dünnes Eis und trägt damit zur Meereis-Massenbilanz bei. Wir beabsichtigen auf einer Methode aufzubauen, die entwickelt wurde, um Eisrinnen in der Arktis automatisch aus Thermal-Infrarot Satellitendaten zu identifizieren. Diese Methode muss für eine Anwendung auf Satellitendaten der Antarktis neu implementiert und erweitert werden. In diesem Rahmen gilt es auch, hemisphärische Besonderheiten in den Meereiseigenschaften und atmosphärischen Einflüssen zu berücksichtigen. Darum werden Anpassungen im ursprünglichen Algorithmus mit Hilfe detaillierter Fallstudien vorzunehmen sein. Als Ergebnis erwarten wir umfangreiche Erkenntnisse darüber, wann und wo Meereis-Rinnen gehäuft in der Antarktis auftreten, und wie diese Auftrittsmuster durch atmosphärische und ozeanische Antriebe gesteuert werden.
Beobachtungen zeigen drastische Veränderungen in der Arktis bedingt durch den Klimawandel. In den Regionen, in denen der Anteil des mehrjährigen Eises an der Eisdecke abnimmt, weist das Meereis erhöhte Driftgeschwindigkeiten auf, da das dünnere und mechanisch schwächere einjährige Eis stärker auf den Windantrieb reagiert.Ein besseres Verständnis der Meereisdynamik ist daher notwendig um dessen Entwicklung und Variabilität im Zuge des Klimawandels besser vorhersagen zu können. Insbesondere auf lokaler Skala hängt die dynamische Entwicklung des Meereises von seiner Belastung und Deformation ab, welche umgekehrt wieder für die Veränderung des Eises, beispielsweise für das Aufbrechen der Eisdecke und für die Dispersion des Eises verantwortlich sind.In dieser Studie planen wir die Kinematik des Meereises anhand der Finite Scale Lyapunov Exponents (FSLEs) durch Beobachtungen von auf dem Meereis ausgebrachten Bojen zu untersuchen. Zunächst werden statistische Methoden zur Ausbreitung von Partikeln, wie Wahrscheinlichkeitsdichtefunktionen und Frequenzspektren, analysiert. Die FSLEs können beispielsweise für eine Charakterisierung von Dynamiken, welche eine vielskalige Natur besitzen, wie es bei Meereis der Fall ist, genutzt werden. Die Tatsache, dass die FSLEs die Einheit Hertz haben, lässt den Rückschluss zu, dass diese als Indikator für die Vorhersagbarkeit der Strömung genutzt werden können: Das Inverse stellt eine typische Zeitskala für die Separation von Teilchen und daher auch für die Deformierung von Meereis dar. FSLEs stehen außerdem in direktem Zusammenhang mit der horizontalen Dispersion von Teilchen (Bojen) und können anzeigen, ob die Separation der Bojen im Laufe der Zeit exponentiell (chaotisch) oder linear (diffusiv) verläuft oder ob sie einer anomalen Diffusion unterliegt. Die Wiederholung der Berechnungen für unterschiedliche Regionen und Jahre wird hoffentlich die Abhängigkeit der dynamischen Merkmale von unterschiedlichen klimatischen Bedingungen aufzeigen.
Es sollen Techniken entwickelt werden um die Kopplung zwischen Atmosphäre und Ozean durch die Formation und das Brechen von Oberflächenwellen im Ozean zu quantifizieren. Diese Techniken beinhalten eine numerische Implementierung von diffusen Grenzflächenmethoden für eine thermodynamisch konsistente und voll gekoppelte Simulationen der Grenzfläche zwischen Luft und Wasser, sowie Feldexperimente zur gleichzeitigen Messung von Luftstrom, der Ozeanwellenkopplung, und der turbulenten Energiedissipation im oberen Ozean.
Die Studie zielt ab auf die Untersuchung von momentanen und vergangenen Meeresspiegeländerungen auf regionaler Skala. Hierbei sollen Ursachen und Mechanismen identifiziert werden, die diese Variationen erklären können; dabei werden freie Klima-Moden ebenso berücksichtigt wie externe Antriebe, einschließlich anthropogene Einflüsse. Dadurch werden Methoden und Wissen entwickelt, mit denen in regionale Meeresspiegelbeobachtungen jeweils natürliche Variationen und anthropogenen Effekten identifiziert werden können. Erzielte Erkenntnisse werden verwendet werden, um Ursachen und Mechanismen von Meeresspiegelvariationen um die zweiten Untersuchungsgebiete des SPP herum (dem westlichen tropischen Pazifik und Indonesischem Archipel ebenso wie der Nordsee) zu analysieren.
Langfristige Veränderungen von Gezeiten zählen zu den bemerkenswertesten Facetten der Ozeandynamik. Zur Entschlüsselung dieser Signale wird im vorliegenden Projekt ein mehrschichtiger Modellierungsansatz auf globalen und regionalen Skalen entwickelt, der Meeresspiegelvariationen, Veränderungen der ozeanischen Dichtestruktur und Migrationsbewegungen von antarktischem Schelfeis in klassische Gezeitensimulationen einflechtet. Die Reaktion primärer Partialtiden auf diese Antriebsmechanismen wird in einer ersten Ausbaustufe von ~1970 bis 2015 erarbeitet, wobei hochauflösende barokline (3D) Simulationen im Nordostatlantik und um Australien rigoros in globale barotrope (2D) Vorwärtsläufe eingebettet werden. Die Validierung der Simulationsergebnisse gegenüber robusten und großräumigen Gezeitentrends aus Wasserstandsbeobachtungen legt den Grundstein für konkrete Projektionen von Ozeangezeiten bis zum Jahr 2100 unter Annahme realistischer Emissionsszenarien. Veränderte Randbedingungen in globalen und regionalen Gezeitenläufen einhergehend mit Meeresspiegelanstieg, Ozeanerwärmung und ausdünnendem Schelfeis werden hierzu in konsistenter Weise aus gekoppelten Klimamodellen abgeleitet. Erweiterte barokline und globale Sensitivitätsexperimente liefern einen Überblick über Küstenabschnitte, in denen mit nennenswerten Gezeitenentwicklungen durch großflächige Veränderungen der Dichtestruktur zu rechnen ist. Neben dem reinen Prozessverständnis soll auch Augenmerk auf die Abschätzung von Unsicherheiten der numerisch modellierten Tidenvariabilität in den kommenden Dekaden gelegt werden. Das Projekt ebnet in seiner Gesamtheit den Weg für eine verlässlichere Quantifizierung von säkularen Gezeitensignalen in Anwendungsbereichen (z.B. Küstenschutz) und der Ozeanographie nahestehenden Wissenschaftsdisziplinen.
The research centre 'Ocean Margins' at the University of Bremen was established in July 2001 to geoscientifically investigate the transitional zones between the oceans and the continents. The work of the research centre is a cooperative effort, with expertise provided by the geosciences department and other departments of the university, as well as by MARUM (Center for Marine Environmental Sciences), the Alfred Wegener Institute for Polar and Marine Research, the Max Planck Institute for Marine Microbiology, the Center for Marine Tropical Ecology, and the Senckenberg Research Institute in Wilhelmshaven. Funded by the DFG, the studies focus on four main research fields: Paleoenvironment, Biogeochemical processes, Sedimentation Processes, and Environmental Impact Research. The term 'Ocean Margin' encompasses the region from the coast, across the shelf and continental slope, to the foot of the slope. Over 60 percent of the world's population live in coastal regions. These people have a long history of exploitation of coastal waters, including the recovery of raw materials and food. Human activity has recently been expanding ever farther out into the ocean, where the ocean margins have become more attractive as centers for hydrocarbon exploration, industrial fishing, and other purposes. The research themes of the centre range from environmental changes in the Tertiary to the impact of recent coastal construction, and from microbial degradation in the sediment to large-scale sediment mass wasting along continental margins. New full professorships and junior professorships have been established within the framework of this research centre. In addition to the primary research activities, a research infrastructure will be made available to outside researchers. Graduate education and the public understanding of science also play an important role. In the course of the first two rounds of the Excellence Initiative, the Research Centre was promoted to that status of a cluster of excellence, which has increased the amount of funding it receives up to the average amount of 6.5 million per annum received by clusters of excellence.
Störungen des Kohlenstoffkreislaufs, sowohl natürlichen als auch anthropogenen Ursprungs, führen zu globale Erwärmung, Ozeanversauerung (OA) und Sauerstoffzehrung des Tiefenwassers. Natürliche Störungen des Kohlenstoffkreislaufs sind als Hauptursache von mindestens 4 von 5 Massensterben in der Erdgeschichte identifiziert wurden (z.B. Hönisch et al, 2009, Bijma et al.., 2013).Anthropogene Aktivitäten setzten CO2 zehnmal schneller frei als jedes andere Ereignis in den letzten 65 Mio. Jahren - vielleicht sogar während der letzten 300 Mio Jahren. Dies macht den heutigen CO2 Ausstoß zu einer der größten gesellschaftlichen Herausforderungen. Um die Auswirkungen der anthropogenen Störungen vorhersagen zu können, ist es zwingend erforderlich, die natürlichen Speicher und Dynamik des Kohlenstoffsystems zu verstehen. Dies erfordert die genaue Rekonstruktion der marinen Karbonatchemie für Zeiträume mit natürlichen Änderungen. In diesem Projekt wollen wir Veränderlichkeit am Übergang Glazial/Interglazial untersuchen weil die Änderungen der Karbonatchemie in der gleichen Größenordnung wie heute lagen. Da das Reservoir an anorganischem Kohlenstoff im Ozean ungefähr 60 mal größer ist als das der Atmosphäre, sind Rekonstruktionen der Veränderungen der Kohlenstoffsenke/-speicherung in der Tiefsee ein Schlüssel, um die glazialen/interglazialen Schwankungen im atmosphärischen CO2 - wie sie in Eisbohrkernen beobachtet werden - zu erklären. Prozesse im Südozean, wo der Großteil des Tiefenwassers ventiliert wird, spielen hierbei vermutlich eine zentrale Rolle. Man vermutet, dass der träge glaziale Süd Ozean mehr Kohlenstoff einlagern konnte, die Biologische Pumpe effektiver war und dass eine höhere Wassermassen-Stratifizierung das Entweichen von CO2 in die Atmosphäre verringert hat. Nach dem glazialen Maximum wird mit dem Rückzug des Meereises die Tiefsee Kohlenstoff - Pumpe wieder mit der Atmosphäre verbunden und führt zu einer erhöhten CO2-Freisetzung. Bislang ist dies, wenn auch von Indizienbeweisen unterstützt, nur eine Hypothese, zum Beweis bedarf es der Rekonstruktionen der glazialen/interglazialen variierenden Karbonatchemie. Dies ist das übergreifende Ziel unseres Antrags. Auf dem Weg zur Rekonstruktion des glazialen/interglazialen Kohlenstoffpools liegen 3 Zwischenziele: 1) Rekonstruktion von Oberflächenwasser-Tiefsee- CO2-Gradienten, glaziale Kohlenstoffspeicherung und deglaziale Entgasung mittels Bor-Isotopen und B/Ca fossiler Foraminiferen als Hauptvariablen. 2) Erstellen der ersten Kalibrationen von Bor-Isotopen und B/Ca Ratio für Cibicides wuellerstorfi (Tiefseeforaminifere) unter in-situ Druck. 3) Entwicklung von analytischen Methoden, welche die Analyse von einzelnen Foraminiferen Schalen erlauben.
Origin | Count |
---|---|
Bund | 1167 |
Land | 46 |
Wissenschaft | 650 |
Type | Count |
---|---|
Ereignis | 10 |
Förderprogramm | 1110 |
Messwerte | 359 |
Strukturierter Datensatz | 369 |
Taxon | 1 |
Text | 2 |
unbekannt | 239 |
License | Count |
---|---|
geschlossen | 5 |
offen | 1524 |
unbekannt | 201 |
Language | Count |
---|---|
Deutsch | 971 |
Englisch | 856 |
Resource type | Count |
---|---|
Archiv | 45 |
Datei | 409 |
Dokument | 195 |
Keine | 627 |
Unbekannt | 1 |
Webseite | 693 |
Topic | Count |
---|---|
Boden | 1263 |
Lebewesen & Lebensräume | 1258 |
Luft | 1036 |
Mensch & Umwelt | 1730 |
Wasser | 1466 |
Weitere | 1706 |