Black carbon (BC) particles have gathered worldwide attention due to their impacts on climate and adverse health effects on humans in heavily polluted environments. Such is the case in megacities of developing and emerging countries in Southeast Asia, in which rapid urbanization, vehicles of obsolete technology, outdated air quality legislations, and crumbling infrastructure lead to poor air quality. However, since measurements of BC are generally not mandatory, its spatial and temporal characteristics, especially in developing megacities, are poorly understood. To raise awareness on the urgency of monitoring and mitigating the air quality crises in megacities, we present the results of the first intensive characterization experiment in Metro Manila, Philippines, focusing on the spatial and diurnal variability of equivalent BC (eBC). The average mass concentration of eBC at the urban background station (UBS) was 7.0 - 4.8 ng m'3 while at roadside (RS), hourly concentrations reached maximum values of 138 ng m'3, levels that are significantly higher than in European cities. At RS, the diurnal cycles of eBC mass concentration were connected most strongly with traffic dynamics and street configuration, while a notable influence of planetary boundary layer evolution was observed in the UBS. Results of mobile measurements conducted multiple times along two fixed routes showed high spatial variability ranging from 3-80 ng m'3 within a 500-m radius. Alarmingly, the highest concentrations were found in the most crowded areas where people spend more than eight hours a day. Quelle: http://www.aaqr.org
Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects. In this work, we combine data on fine and ultrafine refractory particle number concentrations (BC proxy), and activity patterns to derive the respiratory tract deposited amounts of BC particles for the population of the highly polluted metropolitan area of Manila, Philippines. We calculated the total DD of refractory particles based on three metrics: refractory particle number, surface area, and mass concentrations. The calculated DD of total refractory particle number in Metro Manila was found to be 1.6 to 17 times higher than average values reported from Europe and the U.S. In the case of Manila, ultrafine particles smaller than 100 nm accounted for more than 90% of the total deposited refractory particle dose in terms of particle number. This work is a first attempt to quantitatively evaluate the DD of refractory particles and raise awareness in assessing pollution-related health effects in developing megacities. We demonstrate that the majority of the population may be highly affected by BC pollution, which is known to have negative health outcomes if no actions are taken to mitigate its emission. For the governments of such metropolitan areas, we suggest to revise currently existing environmental legislation, raise public awareness, and to establish supplementary monitoring of black carbon in parallel to already existing PM10 and PM2.5 measures. © 2019 The Authors. Published by Elsevier B.V.
BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (Hrsg.) 2011: Klimawandel, Extremwetterereignisse und Gesundheit. Konferenzbericht zur Internationalen Fachkonferenz 29. und 30.11.2010 in Bonn, Bonn. Böhme, C., Bunge, C., Bunzel, A., Preuß, T. 2013: Umweltgerechtigkeit im städtischen Raum – Zwischenergebnisse eines Forschungsvorhabens, Umwelt und Mensch – Informationsdienst (UMID), Vol. 1, 35-41. Internet: www.umweltbundesamt.de/sites/default/files/medien/419/publikationen/umweltgerechtigkeit_im_staedtischen_raum.pdf (Zugriff 08.01.2016) Breitner, S., Schneider, A., Peters, A. 2013: Thermische Belastung, Feinstaub und Ozon – Gesundheitliche Auswirkungen und mögliche Wechselwirkungen. In: Jahn, H.J., Krämer, A. und Wörmann, T. (Hrsg.), Klimawandel und Gesundheit. Internationale, nationale und regionale Herausforderungen. Berlin, Heidelberg, 39-62. Burkart, K., Canário, P., Scherber, K., Breitner, S., Schneider, A., Alcoforado, M. J., Endlicher, W. 2013: Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon, Environmental Pollution, Vol. 183, 54-63. Dugord, P.-A., Lauf, S., Schuster, C., Kleinschmit B. 2014: Land use patterns, temperature distribution, and potential heat stress risk – The case study Berlin, Germany. Computers, Environment and Urban Systems, 48, 86–98. Eis, D., Helm, D., Laußmann, D., Stark, K. 2010: Klimawandel und Gesundheit – Ein Sachstandsbericht, Robert Koch-Institut (Hrsg.), Berlin. Internet: www.rki.de/DE/Content/Gesund/Umwelteinfluesse/Klimawandel/Klimawandel-Gesundheit-Sachstandsbericht.pdf?__blob=publicationFile (Zugriff 08.01.2016) Fenner, D., Meier, F., Scherer, D., Polze, A. 2014: Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001-2010. Urban Climate 10 (2), 308–331. Fenner, D., Mücke, H.-G., Scherer, D. 2015: Innerstädtische Lufttemperatur als Indikator gesundheitlicher Belastungen in Großstädten am Beispiel Berlins. Umwelt und Mensch – Informationsdienst (UMID), Vol. 1, 30-38. Internet: www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/innerstaedtische_lufttemperatur_30-38.pdf (Zugriff 08.01.2016) Gabriel, K. 2009: Gesundheitsrisiken durch Wärmebelastung in Ballungsräumen. Eine Analyse von Hitzewellen-Ereignissen hinsichtlich der Mortalität im Raum Berlin-Brandenburg, Dissertation, Geographisches Institut, Humboldt-Universität zu Berlin, Berlin. Internet: edoc.hu-berlin.de/dissertationen/gabriel-katharina-2009-11-20/PDF/gabriel.pdf (Zugriff 08.01.2016) Gabriel, K., Endlicher, W. 2011: Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany, Environmental Pollution, Vol. 159, 2044-2055. Jehn, M., Gebhardt, A., Liebers, U., Kiran, B., Scherer, D., Endlicher, W., Witt, C. 2014: Heat Stress is Associated with Reduced Health Status in Pulmonary Arterial Hypertension: A Prospective Study Cohort. Lung, 1-6. Jehn, M., Donaldson, G., Kiran, B., Liebers, U., Mueller, K., Scherer, D., Endlicher, W., Witt, C. 2013: Telemonitoring reduces exacerbation of COPD in the context of climate change—a randomized controlled trial, Environmental Health: A Global Access Science Source, 12(1), 99. Jendritzky G. 2007: Folgen des Klimawandels für die Gesundheit. In: Endlicher W., Gerstengarbe F.-W. (Hrsg.): Der Klimawandel – Einblicke, Rückblicke und Ausblicke. Potsdam-Institut für Klimafolgenforschung e.V., Potsdam: 108–118. Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Weihs, P., Batchvarova, E., DeDear, R. 2009: Der Thermische Klimaindex UTCI, Klimastatusbericht Deutscher Wetterdienst, 96-101. Internet: www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb2009_pdf/artikel11.pdf?__blob=publicationFile&v=1 (Zugriff 08.01.2016) Kim, K. R., Yi, C., Lee, J.-S., Meier, F., Jänicke, B., Fehrenbach, U., Scherer, D. 2014: BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality. Die Erde, 145(1), 62–79. Internet: www.die-erde.org/index.php/die-erde/article/view/118/78 (Zugriff 08.01.2016) Koppe, C. 2005: Gesundheitsrelevante Bewertung von thermischer Belastung unter Berücksichtigung der kurzfristigen Anpassung der Bevölkerung an die lokalen Witterungsverhältnisse, Dissertation, Albert-Ludwigs-Universität, Freiburg i. Brsg.. Internet: www.freidok.uni-freiburg.de/data/1802 (Zugriff 08.01.2016) Koppe, C., Kovats, S., Jendritzky, G., Menne, B. 2004: Heat-waves: risks and responses, WHO Europe (Hrsg.), Copenhagen. Internet: www.euro.who.int/__data/assets/pdf_file/0008/96965/E82629.pdf (Zugriff 08.01.2016) Kuttler, W. 1998: Stadtklima. In: Sukopp, H., Wittig, R. (Hrsg.), Stadtökologie. Ein Fachbuch für Studium und Praxis. Stuttgart, Jena, Lübeck, Ulm, 125-167. Landesamt für Gesundheit und Soziales (LAGeSo) (Hrsg.) 2014: Verzeichnis der Krankenhäuser und Privatentbindungsanstalten, Stand 06/2014, Berlin. Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Potsdam. Internet: geobasis-bb.de/lgb/de/geodaten/liegenschaftskataster/alkis/ (Zugriff 28.07.2020) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013a: Digitales Geländemodell (DGM), Potsdam. Internet: geobasis-bb.de/lgb/de/geodaten/3d-produkte/gelaendemodell/ (Zugriff 28.07.2020) Laschewski, G. 2008: Das Humanbioklima: Wirkungen und Wandel. In: Lozán, J.L., Graßl, H., Jendritzky, G., Karbe, L., Reise, K. und Maier, W.A. (Hrsg.), Warnsignal Klima: Gesundheitsrisiken. Gefahren für Menschen, Tiere und Pflanzen. Hamburg, 35-43. Michelozzi, P., Accetta, G., De Sario, M., D’Ippoliti, D., Marino, C., Baccini, M., Biggeri, A., Anderson, H. R., Katsouyanni, K., Ballester, F., Bisanti, L., Cadum, E., Forsberg, B., Forastiere, F., Goodman, P. G., Hojs, A., Kirchmayer, U., Medina, S., Paldy, A., Schindler, C., Sunyer, J., Perucci, C. A., PHEWE Collaborative Grp 2009: High Temperature and Hospitalizations for Cardiovascular and Respiratory Causes in 12 European Cities, American Journal of Respiratory and Critical Care Medicine, Vol. 179, 5, 383-389. Mücke, H.-G., Straff, W., Faber, M., Haftenberger, M., Laußmann, D., Scheidt-Nave, C., Stark, K. 2013: Klimawandel und Gesundheit. Allgemeiner Rahmen zu Handlungsempfehlungen für Behörden und weitere Akteure in Deutschland. Robert-Koch-Institut, Umweltbundesamt (Hrsg.), Berlin. Internet: www.rki.de/DE/Content/Kommissionen/UmweltKommission/Stellungnahmen_Berichte/Downloads/klimawandel_gesundheit_handlungsempfehlungen_2013.pdf?__blob=publicationFile (Zugriff 19.02.2018) MUNLV (Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen) (Hrsg.) 2010: Handbuch Stadtklima. Maßnahmen und Handlungskonzepte für Städte und Ballungsräume zur Anpassung an den Klimawandel. MVI (Ministerium für Verkehr und Infrastruktur Baden-Württemberg) (Hrsg.) 2012: Städtebauliche Klimafibel. Hinweise für die Bauleitplanung. Scherber, K. 2014: Auswirkungen von Wärme- und Luftschadstoffbelastungen auf vollstationäre Patientenaufnahmen und Sterbefälle im Krankenhaus während Sommermonaten in Berlin und Brandenburg. Dissertation, Geographisches Institut, Humboldt-Universität zu Berlin, Berlin. Internet: edoc.hu-berlin.de/dissertationen/scherber-katharina-2014-06-13/PDF/scherber.pdf (Zugriff 08.01.2016) Scherber, K., Langner, M., Endlicher, W. 2014: Spatial analysis of hospital admissions for respiratory diseases during summer months in Berlin taking bioclimatic and socio-economic aspects into account, Die Erde, 144 (3), 217-237. Internet: www.die-erde.org/index.php/die-erde/article/view/63/pdf_2 (Zugriff 08.01.2016) Scherber, K. 2016: Stadtklima und Gesundheit, Beitrag zum Begleittext zur Umweltatlaskarte 04.11 (Ausgabe 2016), im Auftrag der Senatsverwaltung für Stadtentwicklung und Umwelt, Berlin. Internet: /umweltatlas/klima/klimabewertung/2015/exkurs/index.php (Zugriff 25.01.2016) Scherer, D. 2007: Viele kleine Parks verbessern Stadtklima. Mit Stadtplanung Klima optimieren. TASPO Report Die grüne Stadt, 15. Scherer, D., Fehrenbach, U., Lakes, T., Lauf, S., Meier, F., Schuster, C. 2013: Quantification of heat-stress related mortality hazard, vulnerability and risk in Berlin, Germany. Die Erde, 144 (3-4), 238-259. Internet: www.die-erde.org/index.php/die-erde/article/view/49/pdf_3 (Zugriff 08.01.2016) Scherer, D., Fehrenbach, U., Fenner, D., Jänicke, B., Holtmann, A., Meier, F., 2015: © Fachgebiet Klimatologie, Institut für Ökologie, Technische Universität Berlin, Rothenburgstr. 12, 12165 Berlin. Internet: www.klima.tu-berlin.de (Zugriff 15.02.2018) Schneider, A., Breitner, S., Brüske, I., Wolf, K., Rückerl, R., Peters, A. 2011: Health Effects of Air Pollution and Air Temperature. In: Krämer, A., Khan, M.H. und Kraas, F. (Hrsg.), Health in Megacities and Urban Areas, Heidelberg, 119-134. Schneider, A., Breitner, S., Wolf, K., Hampel, R., Peters, A., Wichmann, H.-E. 2009: Ursachenspezifische Mortalität, Herzinfarkt und das Auftreten von Beschwerden bei Herzinfarktüberlebenden in Abhängigkeit von der Lufttemperatur in Bayern (MOHIT), Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie (Hrsg.), München. Schuster, C., Burkart, K., Lakes T. 2014: Heat mortality in Berlin – Spatial variability at the neighborhood scale. Urban Climate, 10 (1), 134-147. Internet: www.sciencedirect.com/science/article/pii/S2212095514000807 (Zugriff 19.02.2018) SenGUV (Senatsverwaltung für Gesundheit, Umwelt und Verbraucherschutz) (Hrsg.) 2011: Basisbericht 2010/2011. Gesundheitsberichterstattung Berlin, Daten des Gesundheits- und Sozialwesens, Berlin. Internet: www.berlin.de/sen/gesundheit/_assets/service/publikationen/gesundheitsberichterstattung/bb_20102011.pdf (Zugriff 24.09.2020) SenStadt (Senatsverwaltung für Stadtentwicklung) (Hrsg.) 2009: Lebensweltlich orientierte Räume (LOR) in Berlin Internet: www.berlin.de/sen/sbw/stadtdaten/stadtwissen/sozialraumorientierte-planungsgrundlagen/lebensweltlich-orientierte-raeume/ (Zugriff 22.03.2023) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010: Flächennutzung und Stadtstruktur – Dokumentation der Kartiereinheiten und Aktualisierung des Datenbestandes, Berlin. Internet: /umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2010.pdf (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2011: Stadtentwicklungsplan Klima. Internet: www.stadtentwicklung.berlin.de/planen/stadtentwicklungsplanung/de/klima/ (Zugriff 26.10.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2013: Weniger Schadstoffe. Mehr Lebensqualität. Der Luftreinhalteplan 2011-2017 des Landes Berlin. Internet: www.berlin.de/sen/uvk/umwelt/luft/luftreinhaltung/luftreinhalteplan-2-fortschreibung/download/ (Zugriff 22.03.2023) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015: Planungshinweiskarte Stadtklima 2015 -Begleitdokument zur Online-Version, Berlin. Internet: /umweltatlas/_assets/literatur/planungshinweise_stadtklimaberlin_2015.pdf (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015b: GEO-NET Umweltconsulting GmbH, Hannover: GIS-gestützte Modellierung von stadtklimatisch relevanten Kenngrößen auf der Basis hochaufgelöster Gebäude- und Vegetationsdaten; EFRE Projekt 027 Stadtklima Berlin, Abschlussbericht. Internet: fbinter.stadt-berlin.de/fb_daten/umweltatlas/download/Projektbericht_StadtklimaBerlin_SenStadtUm_IIID_2015.pdf (Zugriff 07.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015e: PRISMA – Planungsraumbezogenes Informationssystem für Monitoring und Analyse, Berlin. Internet: www.berlin.de/sen/sbw/stadtdaten/stadtwissen/sozialraumorientierte-planungsgrundlagen/prisma/ (Zugriff 22.03.2023) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2016: Anpassungskonzept an die Folgen des Klimawandels (AFOK), Berlin. Internet: www.berlin.de/sen/uvk/_assets/klimaschutz/anpassung-an-den-klimawandel/programm-zur-anpassung-an-die-folgen-des-klimawandels/afok_zusammenfassung.pdf (Zugriff 24.09.2020) SenStadtUm/AfS (Senatsverwaltung für Stadtentwicklung und Umwelt, Amt für Statistik Berlin-Brandenburg) (Hrsg.) 2012: Bevölkerungsprognose für Berlin und die Bezirke 2011-2030, Kurzfassung, Berlin. Internet: www.berlin.de/sen/sbw/stadtdaten/stadtwissen/bevoelkerungsprognose-2021-2040/ (Zugriff 22.03.2023) Statistik BBB 2014: Amt für Statistik Berlin-Brandenburg: ‘Melderechtlich registrierte Einwohnerinnen und Einwohner am Ort der Hauptwohnung am 30.06.2014’. Turowski, E., Haase, C. 1987: Meteoropathologische Untersuchung über die Klima- und Wetterabhängigkeit der Sterblichkeit, Dissertation, Humboldt-Universität zu Berlin, Berlin. Turowski, E. 1998: Klima- und Wettereinfluss. In: Moriske, H.-J. und Turowski, E. (Hrsg.), Handbuch für Bioklima und Lufthygiene. Mensch, Wetter, Klima, Innenraum- und Außenlufthygiene, Grundlagen, Forschungsergebnisse, Trends, II-4, Landsberg am Lech, 1-44. VDI (Verband Deutscher Ingenieure) 2015: Richtlinie 3787, Blatt 1 Umweltmeteorologie – Klima- und Lufthygienekarten für Städte und Regionen. Internet: www.vdi.de/richtlinie/vdi_3787_blatt_1-umweltmeteorologie_klima_und_lufthygienekarten_fuer_staedte_und_regionen/ (Zugriff 26.11.2015) Wichert von, P. 2004: Hitzefolgekrankheiten: Bericht zu einer Stellungnahme der Kommission „Hitzetote“ der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), Epidemiologisches Bulletin, Vol. 24, 189-191. Karten: SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010a: Digitaler Umweltatlas Berlin, Ausgabe 2010, Karte 01.08 Geländehöhen, Berlin. SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010b: Digitaler Umweltatlas Berlin, Ausgabe 2010, Karte 04.12 Klimawandel und Wärmebelastung der Zukunft, Berlin. Internet: /umweltatlas/klima/klimawandel/2008/karten/index.php (Zugriff 08.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2011a: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2011, Karte 06.07 Stadtstruktur, Berlin. Internet: /umweltatlas/nutzung/flaechennutzung/2010/karten/artikel.950242.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2012: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2012, Karte 01.02 Versiegelung, Berlin. Internet: /umweltatlas/boden/versiegelung/2011/karten/index.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2013a: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2013, Karte 01.11.3 Naturnähe, Berlin. Internet: /umweltatlas/boden/bodenfunktionskriterien/2010/karten/artikel.951908.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2014: Digitaler Umweltatlas Berlin, Ausgabe 2014, Karte 06.10 Gebäude- und Vegetationshöhen, Berlin. Internet: /umweltatlas/nutzung/gebaeude-und-vegetationshoehen/2012/karten/index.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2014a: Detailnetz Berlin, Stand 11.2014, aktueller Stand verfügbar über Geoportal Berlin, Berlin. Internet: fbinter.stadt-berlin.de/fb/index.jsp (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015a: Digitaler Umweltatlas Berlin, Ausgabe 2015, Karte 04.13 Langjährige Entwicklung ausgewählter Klimaparameter, Berlin. Internet: /umweltatlas/klima/entwicklung-von-klimaparametern/2013/zusammenfassung/ (Zugriff 13.04.2023) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015c: Automatisierte Liegenschaftskarte Berlin (ALK), Stand 01.06.2014, aktuelle Version verfügbar im neuen Standard ALKIS (Amtliches Liegenschaftskatasterinformationssystem) über Geoportal Berlin, Berlin. Internet: fbinter.stadt-berlin.de/fb/index.jsp (Zugriff 08.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015d: Digitaler Umweltatlas Berlin, Ausgabe 2015, Karte 09.01 Umweltgerechtigkeit, Berlin. Internet: /umweltatlas/mensch/umweltgerechtigkeit/2013/karten/index.php (Zugriff 26.11.2015) Weiterführende Quellen zum Exkurs „Gesundheit und Stadtklima“ Berlin: Buchin, O., Hoelscher, M.-T., Meier, F., Nehls, T., Ziegler F. 2015: Evaluation of the health-risk reduction potential of countermeasures to urban heat islands. Energy and Buildings, im Druck. Endlicher, W., Jendritzky, G., Fischer, J., Redlich, J.-P. 2008: Heat Waves, Urban Climate and Human Health. In: Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M. und Bradley, G. (Hrsg.), Urban Ecology. New York, 269-278. Endlicher, W., Lanfer, N. 2003: Meso- and microclimatic aspects of Berlin’s urban climate, Die Erde, Vol. 134, 147-168. Freie Universität Berlin – AG Stadtklima und Gesundheit 2016: Internet: www.geo.fu-berlin.de/met/ag/Stadtklima/index.html (Zugriff 08.01.2016) Innovationsnetzwerk Klimaanpassung Brandenburg Berlin (INKA BB) 2016: Internet: www.inka-bb.de/ (Zugriff 08.01.2016) Jänicke, B. 2015: Stadtklima und Hitzestress. Anpassungsmaßnahmen müssen die Komplexität von Städten berücksichtigen. Umwelt Aktuell, Vol. 10, 2-3. Jänicke, B., Meier, F., Hoelscher, M., Scherer, D. 2015: Evaluating the Effects of Façade Greening on Human Bioclimate in a Complex Urban Environment. Advances in Meteorology, Vol. 2015, Article ID 747259. KiezKlima – Gemeinsam für ein besseres Klima im Brunnenviertel 2016: Internet: e-p-c.de/kiezklima/2015/ (Zugriff 08.01.2016) Scherer, D., Endlicher W. 2014: Special Issue: Urban climate and heat-stress. Part 2. Die Erde, Vol. 145, No 1-2. Internet: www.die-erde.org/index.php/die-erde/issue/view/13 (Zugriff 08.01.2016) Scherer, D., Endlicher W. 2013: Special Issue: Urban climate and heat-stress. Part 1. Die Erde, Vol. 144, No 3-4. Internet: www.die-erde.org/index.php/die-erde/issue/view/12 (Zugriff 08.01.2016) Schubert, S., Grossman-Clarke S. 2013: The Influence of Green Areas and Roof Albedos on Air Temperatures during Extreme Heat Events in Berlin, Germany. Meteorologische Zeitschrift, 22 (2), 131-143. Internet: pubman.mpdl.mpg.de/pubman/item/escidoc:2043067:2/component/escidoc:2043071/Met-Z-80283.pdf (Zugriff 08.01.2016) UCaHS (Urban Climate and Heat Stress) – Stadtklima und Hitzestress in Städten der Mittelbreiten in Anbetracht des Klimawandels 2016: Internet: www.ucahs.org/?lan=de (Zugriff 08.01.2016) Walikewitz, N., Jänicke, B., Langner, M., Endlicher, W. 2015: Assessment of indoor heat stress variability in summer and during heat warnings: A case study using the UTCI in Berlin, Germany. International Journal of Biometeorology, 1-14. Walikewitz, N., Jänicke, B., Langner, M., Meier, F., Endlicher, W. 2015: The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Building and Environment, 84, 151-161. Deutschland: Aktionsprogramm Umwelt und Gesundheit (APUG) 2016: Internet: www.apug.de/ (Zugriff 08.01.2016) Amt für Umweltschutz Stuttgart – Abteilung Stadtklimatologie 2016: Internet: www.stadtklima-stuttgart.de (Zugriff 08.01.2016) Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Hrsg.) 2008: Deutsche Anpassungsstrategie an den Klimawandel (DAS). www.bmuv.de/download/deutsche-anpassungsstrategie-an-den-klimawandel (Zugriff 25.05.2023) DWD (Deutscher Wetterdienst) 2016: Klima und Umweltberatung – Gesundheit. Internet: www.dwd.de/DE/klimaumwelt/ku_beratung/gesundheit/gesundheit_node.html (Zugriff 08.01.2016) DWD (Deutscher Wetterdienst) 2016: Fachnutzer – Gesundheit. Internet: www.dwd.de/DE/fachnutzer/gesundheit/gesundheit_node.html (Zugriff 08.01.2016) GERICS (Climate Service Center Germany) (Hrsg.) 2014: Gesundheit und Klimawandel. Handeln, um Risiken zu minimieren. Internet: www.climate-service-center.de/imperia/md/content/csc/csc_broschueren/broschure_gesundheit_und_klimawandel.pdf (Zugriff 08.01.2016) GERICS (Climate Service Center Germany) 2016: Stadtbaukasten, Herausforderungen erkennen, rechtzeitig handeln – Module für eine nachhaltige, klimaangepasste Stadtplanung. Internet: www.climate-service-center.de/imperia/md/content/csc/projekte/stadtbaukasten_kompakt_20151022.pdf (Zugriff 19.02.2018) GERICS (Climate Service Center Germany) 2016a: Climate-Focus-Paper “Cities and Climate Change”. Internet: www.climate-service-center.de/products_and_publications/fact_sheets/climate_focus_paper/index.php.de (Zugriff 19.02.2018) Klimaanpassungsschule der Charité – Universitätsmedizin Berlin 2016: Internet: www.klimawandelundgesundheit.de NABU (Naturschutzbund Deutschland e.V.) 2010: StadtKlimaWandel. Rezepte für mehr Lebensqualität und ein besseres Klima in der Stadt. Internet: www.nabu.de/imperia/md/content/nabude/Stadtklimawandel/nabu_broschuere_stadtklimawandel_finalweb.pdf (Zugriff 08.01.2016) Stadtklimalotse 2016: Internet: www.stadtklimalotse.net/ (Zugriff 19.02.2018) UBA (Umweltbundesamt) 2016: KlimaExWoSt – Urbane Strategien zum Klimawandel. Internet: www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/werkzeuge-der-anpassung/projektkatalog/klimaexwost-urbane-strategien-klimawandel (Zugriff 08.01.2016) Europa: European Commission, Public health responses to heat waves 2016. WHO (World Health Organization Europe) (Hrsg.) 2008: Heat-health action plans, Guidance, Copenhagen. Internet: www.euro.who.int/__data/assets/pdf_file/0006/95919/E91347.pdf (Zugriff 08.01.2016) WHO (World Health Organization Europe) (Hrsg.) 2009: Improving public health responses to extreme weather/heat-waves – EuroHEAT. Technical summary, Copenhagen. Internet: www.euro.who.int/__data/assets/pdf_file/0010/95914/E92474.pdf (Zugriff 08.01.2016)
© Sentinel-1-Aufnahme des Naturparks Kellerwald-Edersee in Hessen; ESA Copernicus © Sentinel-2-Echtfarbendarstellung Frankfurt a.M.; ESA Copernicus © Sentinel-2-Falschfarbendarstellung Frankfurt a.M.; ESA Copernicus © Sentinel-2-Echtfarbendarstellung mit in hellblau hervorgehobenen Schnee- und Wasserflächen in Hessen; ESA Copernicus © Sentinel-1-Aufnahme von Wiesbaden in Hessen; ESA Copernicus Aus der Ferne kann man manches besser erkennen: Riesige Wirbelstürme, die sich in den Tropen zusammenbrauen, das Ausmaß der Regenwaldabholzung im Amazonas oder das Wachstum von Megastädten. Der Einfluss des Menschen auf unseren Planeten wird aus dem All besonders deutlich. Mit beeindruckenden Bildern hat die Fernerkundung zu einem globalen Bewusstsein für Nachhaltigkeit beigetragen. Auch für regionale Fragestellungen ist die Fernerkundung heute zu einem wichtigen Werkzeug geworden – so auch für uns in Hessen. Fernerkundung bedeutet, dass Informationen kontaktfrei erfasst werden. Mit der Fernerkundung messen wir die Eigenschaften von Objekten aus der Ferne mit unterschiedlichen Sensoren. Diese können auf Satelliten, Flugzeugen oder Drohnen befestigt sein. Historisch hat man zunächst Bilder aus der Luft – aus Ballons und Zeppelinen oder sogar mit Tauben - aufgenommen und interpretiert. Heute kennt man Luftbilder als Hintergrundkarten in Google Maps oder OpenStreetMap. Und in der Meteorologie wird schon seit den 1960er Jahren mit Satellitendaten gearbeitet. Als Querschnittstechnologie kann die Fernerkundung Fachthemen des HLNUG unterstützen. Wir analysieren, welche Informationen aus Fernerkundungsdaten abgeleitet werden können: Verschiedene Satelliten umkreisen die Erde, ihre Sensoren scannen regelmäßig die Erdoberfläche und deren Veränderungen im Laufe der Zeit. Viele Daten sind frei verfügbar und ermöglichen einen kostengünstigen Einsatz. Dazu trägt auch das Copernicus-Programm der Europäischen Union und der Europäischen Raumfahrtagentur ESA bei. Im Fokus von Copernicus steht die Flotte der Sentinel-Satelliten („Sentinel“ heißt Wächter), jeder Satellit hat dabei seine eigene Mission: Sentinel-1 überwacht zum Beispiel Bodenbewegungen oder macht Überflutungen besonders deutlich. Mit Sentinel-2 lässt sich Vegetation sehr gut erkennen und so lassen sich zum Beispiel die Auswirkungen von Dürren kartieren oder die Zusammensetzung von Biotopen . Die Fernerkundung liefert Informationen über den Zustand der Atmosphäre, der bebauten Infrastruktur, der Fließgewässer und Seen , des Bodens, der Wälder und anderer Ökosysteme, aber auch über die Schneebedeckung. Durch die großen Datenmengen (Big Data) ergeben sich auch technische Herausforderungen: Beispielsweise müssen Konzepte entwickelt werden, wie und wo die großen Mengen an Daten gespeichert werden und wie sie effizient ausgewertet werden können, um neue Informationen zu extrahieren. Dabei helfen uns auch Methoden des Maschinellen Lernen und der Künstlichen Intelligenz, die in die bestehenden IT-Infrastruktur der GIS-Zentrale eingebunden werden. Unsere Augen sehen Strahlung, die von der Sonne ausgesendet und an Objekten reflektiert wird. Vegetation reflektiert zum Beispiel viel grünes Licht, deshalb sehen wir gesunde Blätter in dieser Farbe, Weil wir blaues, grünes und rotes Licht sehen können, nennen wir es auch Sichtbare Strahlung oder Licht. Satelliten sind unsere Augen im All, denn auch sie zeichnen elektromagnetische Strahlung auf. Anders als unsere Augen „sehen“ Sensoren aber auch Strahlung mit anderen Wellenlängen und helfen uns dabei, Unsichtbares sichtbar zu machen. Ein Sensor zeichnet die Strahlung auf, die von den Objekten der Erdoberfläche (z.B. Bäume, Häuser oder Wasserflächen) zurückgesendet wird. Die so gewonnenen Daten werden anschließend in Informationen umgewandelt, mit denen wir Wissen erlangen und nachhaltig handeln können. Das elektromagnetische Spektrum steht im Mittelpunkt der Fernerkundung: Es erstreckt sich von Bereichen mit ganz kleinen Wellenlängen (Gamma- oder Röntgenstrahlen), über mittlere Wellenlängenbereiche wie das Sichtbare Licht hin zu den großen Wellenlängen wie Mikrowellen oder Radiowellen. Mit ihm können wir die Strahlung, mit der die Sensoren arbeiten, einteilen. Gesunde Vegetation ist grün, denn sie absorbiert rotes und blaues Licht – es wird zur Photosynthese benötigt - und nur grünes Licht wird reflektiert. In der Fernerkundung sind aber auch die Bereiche des elektromagnetischen Spektrums interessant, die das menschliche Auge nicht sehen kann, so wie beispielweise das Nahe Infrarot – und hier reflektiert Vegetation besonders stark. Die Fernerkundung macht sich zu Nutze, dass jedes Material auf der Erdoberfläche die elektromagnetische Strahlung anders reflektiert: Jede Oberfläche besitzt ihren ganz charakteristischen „Spektralen Fingerabdruck“. Boden, Vegetation und Wasser haben im elektromagnetischen Spektrum verschiedene Eigenschaften, so dass sie sich voneinander trennen lassen. Jede Wellenlänge erlaubt uns, unterschiedliche Eigenschaften von Objekten zu erkennen. Für eine grobe Einteilung unterscheidet man in der Fernerkundung drei Bereiche des elektromagnetischen Spektrums: optisch, thermal und RADAR. Die optische Fernerkundung umfasst den Sichtbaren Bereich, das Nahe Infrrot und das Ferne Infrarot. Zu den optischen Satelliten gehören z.B. die beiden Sentinel-2-Satelliten des Copernicus-Programms der ESA. Die Sensoren auf Sentinel-2 scannen die Oberfläche der Erde in 13 Bereichen des elektromagnetischen Spektrums (spektrale Kanäle) und machen im Abstand von 5 Tagen Aufnahmen von Hessen. Die Erdoberfläche sieht man aber nur, wenn keine Wolken vorhanden sind. Für die Beobachtung der Landbedeckung ist Sentinel-2 besonders interessant: Die Sensoren sind wegen ihrer Kanäle im Nahen Infrarot besonders sensitiv für Vegetation. Mit ihnen kann man beispielsweise feststellen, ob die Vegetation unter Wassermangel leidet oder ob in einem See Algen wachsen. Auch wenn sich die Blätter im Herbst verfärben, verändert sich der spektrale Fingerabdruck. Satellitendaten haben den Vorteil, dass man zu vielen Zeitpunkten große Flächen erfassen kann. Man kann aus der Vogelperspektive Strukturen erkennen und unterscheiden. Stellt man das Bild in Falschfarben dar, also nimmt man einen Spektralkanal dazu, den unsere Augen nicht sehen können, dann kann man für Vegetation noch besser Vitalitätsunterschiede erkennen. Sentinel-2 umkreist die Erde bereits seit dem Jahr 2015. Dadurch können wir uns auch ansehen, wie sich Gebiete in Hessen über die Zeit verändern. Im Gegensatz zu den optischen Sensoren, die nur Strahlung empfangen, senden RADAR-Systeme die Strahlung selbst aus. Sie empfangen dann diese Signale als Energiepulse, die je nach Oberfläche unterschiedlich stark ausfallen. Ein RADAR-Bild sieht ganz anders aus als ein optisches Bild und ist schwerer zu interpretieren, weil es nicht dem entspricht, was wir mit dem Auge sehen können. Der große Vorteil aber ist, dass RADAR unabhängig von der Wolkendecke ist und zu jeder Tages- und Nachtzeit Informationen über die Erdoberfläche aufzeichnen kann. Die Aufbereitung bedarf aber viel Übung und bringt einen hohen Aufwand in der Prozessierung der Daten mit sich. Anwendungen von RADAR sind zum Beispiel die Erfassung von Bodenbewegung oder die Erkennung von Wasserflächen und damit auch Hochwasser. Die thermale Fernerkundung erlaubt das Messen von Temperaturen von Objekten. Das ist zum Beispiel spannend, weil man innerhalb einer Stadt im Sommer wärmere und kühlere Plätze identifizieren kann. Hier wird nicht die Temperatur der Luft gemessen, sondern die der Objekte. Diese ist oft sehr viel wärmer als die Luft. Dr. Carina Kübert-Flock Tel.: 0611 6939-472 Die Kompetenzstelle Fernerkundung ist zentraler Ansprechpartner zum Thema Fernerkundung. Eine Arbeitsgruppe mit Beteiligung aller Fachabteilungen und der Informationstechnologie testet und analysiert geeignete Daten und identifiziert Anwendungsmöglichkeiten. Sie übernimmt unter anderem die Koordination und Betreuung von Projekten, sowohl in Zusammenarbeit mit anderen hessischen Behörden als auch im Austausch mit anderen Landesumweltämtern und Bundesbehörden. Satellitenfernerkundung in Hessen - Mit Hitzekarten Hessens Hot-Spots erkennen
Wissenschaftler fordern Neubewertung der Ressource Land Pressefoto Udo Dreier: (v.l.n.r.) Seibert (ART), Czilla (FAU), Ulm (LK Forchheim), Standecker (Metropolregion Nürnberg), Göppel (DVL), Kroder (LK Nürnberger Land), Geißendörfer (ART) Quelle: METROPOLNEWS der Metropolregion Nurnberg, Pressemitteilung Nr. 39 / 30.07.2019 Forschungsprojekt ReProLa – Regionalproduktspezifisches Landmanagement zog beim Kick-off erste Bilanz des Flächenverbrauchs in der Metropolregion 70.000 Hektar landwirtschaftliche Flächen sind in den letzten Jahren in der Metropolregion Nürnberg verloren gegangen. Sie wurden in Flächen für Wälder (33 Prozent), Siedlungen oder Verkehrsinfrastruktur (25 Prozent) umgewandelt. Hier setzt das Forschungsprojekt „ReProLa – Regionalproduktspezifisches Landmanagement in der Metropolregion Nürnberg" an. Es wird durch die Geschäftsstelle der Metropolregion Nürnberg koordiniert. Beim Kick-off am 30. Juli in Erlangen stellten die Projektpartner von der Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), die Forschungsgruppe Agrar- und Regional-entwicklung Triesdorf (ART), die Fraunhofer-Arbeitsgruppe für Supply Chain Services (SCS) und die Stadt Nürnberg erste Ergebnisse und Forderungen zur Neubewertung landwirtschaftlicher Flächen vor. „Ziel von ReProLa ist eine umfassende Bewertung von Flächen, die neben ökonomischen, auch soziale und ökologische Leistungen der Flächennutzung berücksichtigt", sagt der politische Sprecher des Projektes, Landrat Dr. Hermann Ulm. „So können wir am Ende den Wert von Anbauflächen typischer Regionalprodukte, wie z.B. der Süßkirsche, genau beziffern und uns für nachhaltiges Flächenmanagement in der Region stark machen." Um Entscheidungsgrundlagen für nachhaltiges Flächenmanagement zu liefern, untersucht die FAU unter Federführung von Prof. Dr. Tobias Chilla die Wertschöpfung ausgewählter Regionalprodukte in der Metropolregion. Als besonders relevante Regionalprodukte werden u.a. Süßkirschen, Spargel, Karpfen sowie Sommergerste und Hopfen für die Bierherstellung untersucht. Damit werden für Kommunen relevante Daten und Argumente für die Steuerung der Flächennutzung bzw. für die Sicherung der Ressource Land für landwirtschaftliche Flächen geliefert. Das Forschungsteam der Forschungsgruppe Agrar- und Regionalentwicklung Triesdorf (ART) rund um Prof. Dr. Otmar Seibert und Prof. Dr. Manfred Geißendörfer erfasst die Flächennutzungsveränderungen für die Metropolregion Nürnberg in den letzten 15 Jahren und entwickelt ein Flächennutzungs-Monitoring, welches die Flächenrelevanz ausgewählter Regionalprodukte systematisch erfasst. Das Monitoring-Tool soll dann in den Kommunen eingesetzt werden können und ein umfassendes Bild von Flächennutzung und Flächenrelevanz in der Region zeichnen. Dabei werden neben den ökologischen Effekten wie dem Beitrag zur Biodiversität auch Ökosystemdienstleistungen bewertet. Die Forschungsergebnisse sollen auch in konkrete Projekte überführt werden. In Zusammenarbeit mit Fraunhofer und der Biometropole Nürnberg werden ab 2021 neue Vermarktungs- und Vertriebswege für Regionalprodukte, die Optimierung der Logistik und Projekte zur Bewusstseinsbildung (begehbare und erlebbare Wertschöpfungsketten) entwickelt und umgesetzt. Mit der Regionalkampagne Original Regional gibt es hier bereits Anknüpfungspunkte. Am Ende des Forschungsprojektes soll zudem ein Leitbild für ein großräumiges Flächenmanagement in der Metropolregion Nürnberg stehen, das den Kommunen als Richtlinie und Handlungsempfehlung dient. Im Leitbildprozess werden unter anderem Landschaftspflegeverbände, Regionalplanung, Flächenmanager und Regionalmanagements mit einbezogen. Erster Schritt des Leitbildprozesses ist die Kick-off-Veranstaltung in der Orangerie in Erlangen. Hier diskutierten rund 100 Teilnehmende aus Wissenschaft, Politik, Verwaltung und Gesellschaft über das Flächenmanagement der Zukunft. In seiner Keynote sprach Josef Göppel, Vorsitzender des Deutschen Verbandes für Landschaftspflege über aktuelle Herausforderungen und Lösungen im Umgang mit der knappen Ressource Fläche. Außerdem referierten die wissenschaftlichen Partner der Friedrich-Alexander-Universität und der Forschungsgruppe Agrar- und Regionalentwicklung Triesdorf. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt ReProLa im Rahmen der Fördermaßnahme „Stadt-Land-Plus" für fünf Jahre mit 2,74 Millionen Euro. Mehr Informationen unter www.reprola.de Ansprechpartnerin Europäische Metropolregion Nürnberg Dr. Christa Standecker Geschäftsführerin Theresienstraße 9, 90403 Nürnberg Tel. 0911 – 231 10 5 11 geschaeftsstelle@metropolregion.nuernberg.de Über die Metropolregion Nurnberg Metropolregion Nürnberg, das sind 23 Landkreise und 11 kreisfreie Städte – vom thüringischen Landkreis Sonneberg im Norden bis zum Landkreis Weißenburg-Gunzenhausen im Süden, vom Landkreis Kitzingen im Westen bis zum Landkreis Tirschenreuth im Osten. 3,5 Millionen Einwohner erwirtschaften ein Bruttoinlandsprodukt von 134 Milliarden Euro jährlich – das entspricht in etwa der Wirtschaftskraft von Ungarn. Eine große Stärke der Metropolregion Nürnberg ist ihre polyzentrale Struktur: Rund um die dicht besiedelte Städteachse Nürnberg-Fürth-Erlangen-Schwabach spannt sich ein enges Netz weiterer Zentren und starker Landkreise. Die Region bietet deshalb alle Möglichkeiten einer Metropole – jedoch ohne die negativen Effekte einer Megacity. Bezahlbarer Wohnraum, funktionierende Verkehrsinfrastruktur und eine niedrige Kriminalitätsrate macht die Metropolregion Nürnberg für Fachkräfte und deren Familien äußerst attraktiv. Die Pressemeldung zum Download als PDF finden Sie hier .
Internationales BMBF Projekt gestartet Mit der Pressemeldung vom 9. April 2019 gibt Heike Hensel, Presse- und Öffentlichkeitsarbeit, des Leibniz-Institut für ökologische Raumentwicklung e. V. ein auch für Stadt-Land-Plus interessantes neues Forschungsvorhaben bekannt: Quelle IDW-Meldung Die rasante Urbanisierung in vielen Ländern hat nicht nur Folgen für die Städte. Auch die vormals ländlichen Regionen im Umland wachsender Mega-Cities erleben einen Wandel. Das Verbundvorhaben „Urban-Rural Assembly“, an dem das Leibniz-Institut für ökologische Raumentwicklung (IÖR) mitwirkt, untersucht diesen Wandel von Stadt-Umland-Regionen. Als Beispiel dient die Region Huangyan-Taizhou in China. Strategien und Instrumente für eine gemeinsame nachhaltige Entwicklung, die das Projekt-Team mit Partnern vor Ort entwickelt, sollen aber auch andere Stadt-Umland-Regionen nutzen können. Ging es bisher in der Forschung um den weltweiten Trend zur Urbanisierung, so standen meist die Städte selbst im Mittelpunkt wissenschaftlicher Untersuchungen. Doch dies ist eine verkürzte Sichtweise, sind sich die Partner im chinesisch-deutschen Verbundprojekt „Urban-Rural Assembly“ (URA) einig. Gefördert vom Bundesministerium für Bildung und Forschung (BMBF) untersuchen sie nun, welche Auswirkungen das rasante Wachstum von Städten auch für die umliegenden ländlichen Regionen hat. „Für eine nachhaltige Raumentwicklung ist es entscheidend, Städte, ihr Umland und die vielfältigen Beziehungen, die es zwischen beiden gibt, gemeinsam zu betrachten“, erläutert Wolfgang Wende, der im IÖR für das Projekt zuständig ist. Beispiel-Region Huangyan-Taizhou Wie vielfältig Städte und ihr Umland miteinander verknüpft sind, untersuchen die Wissenschaftler verschiedener deutscher und chinesischer Projektpartner an einem Fallbeispiel an Chinas Ostküste. Die Region Huangyan-Taizhou entwickelt sich sehr dynamisch. Vielfältige und scheinbar widersprüchliche Transformationsprozesse geschehen gleichzeitig und in unmittelbarer Nähe zueinander. Ziel der Wissenschaftler ist es zum einen, die vielschichtigen Verknüpfungen zwischen Stadt und Land aufzudecken. In den Blick nehmen sie soziale, kulturelle, ökologische und wirtschaftliche Aspekte sowie Schnittstellen zwischen diesen (Nexus-Ansatz). Zugleich möchte das Projektteam mit Akteuren vor Ort Instrumente und Strategien entwickeln, wie sich Stadt und Umland künftig nachhaltiger weiterentwickeln können. Damit zielen sie darauf ab, die von den Vereinten Nationen in der Agenda 2030 formulierten Nachhaltigkeitsziele (SDG) und die Ziele der New Urban Agenda in einen Stadt-Umland-Kontext zu integrieren. Instrumente und Strategien, die im Projekt entwickelt werden, sollen in drei verschiedenen Reallaboren in der Region Huangyan-Taizhou umgesetzt und getestet werden. Später sollen sie auch andere Stadt-Umland-Regionen in China und in anderen Ländern nutzen können. Leistungen der Natur für Stadt-Umland-Regionen Für die Lebensqualität in Städte und Regionen ist auch der Zustand der Natur entscheidend. Welche Folgen die Urbanisierung für Ökosysteme und ihre Leistungen, wie Reinigung von Luft und Wasser oder Erholungsraum für die Menschen, in der Region Huangyan-Taizhou hat, untersucht das IÖR in einem Teilprojekt des Forschungsvorhabens. Entlang einer Linie (Transekt) vom Stadtkern über den suburbanen Raum bis in das ländliche Umland wollen die Wissenschaftler mithilfe von Geodaten zunächst erheben, wie sich die Naturräume in der Region entwickelt haben. Dabei wollen sie die aktuelle Situation darstellen, aber auch eine Rückschau auf die Entwicklungen der vergangenen Jahre vornehmen. Das Kartenmaterial, das dabei entsteht, dient in der Hauptphase des Projektes ab Oktober 2020 dazu, die Folgen der Urbanisierung für die Ökosystemleistungen zu bewerten und neue Instrumente zu entwickeln, die helfen, die Ökosysteme zu schützen und zu stärken. Hintergrund Das Projekt „Urban-Rural Assembly – Transformation zu nachhaltigen Stadt-Land-Ökonomien“ wird gefördert vom Bundesministerium für Bildung und Forschung (BMBF) nach Förderrichtlinie „Nachhaltige Entwicklung urbaner Regionen“. Nach einer Initiierungsphase von April 2019 bis September 2020 folgt ab Oktober 2020 bis März 2026 die Hauptphase. In diesem Zeitraum werden erste entwickelte Maßnahmen und Instrumente umgesetzt und getestet. Projektpartner auf deutscher Seite: Technische Universität Berlin (Projektleitung); Leibniz-Institut für ökologische Raumentwicklung; Bauhaus-Universität Weimar; ICLEI – Local Governments for Sustainability e. V., Bonn. Projektpartner auf chinesischer Seite: Tongji-Universität, Shanghai; Zhejiang Universität, Hangzhou; China Agricultural University, Peking; Zhejiang University of Technology, Hangzhou. Förderkennzeichen: 01LE1804B Kontakt: Prof. Dr. Wolfgang Wende, E-Mail: W.Wende[at]ioer.de, Tel.: (0351) 46 79-218 http://www.ioer.de/projekte/ura/ - Informationen zum Projekt auf der Internetseite des IÖR
Das Projekt "Sub project H" wird vom Umweltbundesamt gefördert und von Ingenieurgesellschaft F.A.S.T. für angewandte Sensortechnik mit beschränkter Haftung durchgeführt. Im Teilprojekt D2 'Kontinuierliche und automatische Lecksuche' wird die Minimierung der Wasserverluste im Verteilungsnetz der chinesischen Stadt Suzhou angestrebt. Ziel ist es Leckagen im Versorgungsnetz in Echtzeit zu erkennen und mit einem geringen Personalaufwand aufzuspüren. Aus diesen Ergebnissen und Erfahrungen soll ein exportfähiges Gesamtsystem entwickelt werden, dass in andere (chinesische) Städte übertragen werden kann. Das Teilprojekt D2 gliedert sich in 7 Arbeitspakete. 1. geht es um die Erfassung relevanter Daten und Informationen über den Einsatz der Technik im Versorgungsnetz der chinesischen Stadt Suzhou, mit dem Ziel die Machbarkeit des Projektes zu zeigen. 2. wird ein Arbeitsprogramm in Abstimmung mit den Partnern von Suzhou City Water und Tongji Universität entwickelt, welches eine effiziente Projektbearbeitung sicherstellen soll. 3. werden unsere chinesischen Partner im Umgang mit der Technik (Datenlogger, Transreceiver) geschult. 4. ist das Wissen im Umgang mit der Software 'Watercloud' zu übermitteln. 5. muss die 'Watercloud' auf die chinesischen Verhältnisse angepasst werden um ein exportfähiges Gesamtsystem zu erhalten. 6. zeitgleich mit 5. wird in enger Zusammenarbeit mit dem TZW Dresden der bereits für Deutschland entwickelte Spülstand 'Flushinspect' für die Bedingungen der Netzspülungen in Suzhou angepasst. 7. es erfolgt die Erprobung und Modifikation des Gesamtsystems (Watercloud) mit dem Ziel dieses in andere Versorgungsnetze zu exportieren.
Das Projekt "Smart Water Future India (SWF India)" wird vom Umweltbundesamt gefördert und von trAIDe GmbH durchgeführt. Die Bundesrepublik Deutschland und Indien sind wichtige Handelspartner, das bilaterale Handelsvolumen lag 2014/15 bei knapp 16 Mrd. Euro . Indien entwickelt sich sehr dynamisch, insbesondere die zunehmende Urbanisierung stellt das Land vor große Herausforderungen. Der Wassersektor spielt dabei eine bedeutende Rolle. Im letzten Jahrzehnt hat sich weltweit die Erkenntnis durchgesetzt, dass eine sektorale Sichtweise bei dynamischen Entwicklungen nicht zu optimalen Lösungen führt. Vielmehr sind integrierte, vernetzte Ansätze notwendig, um einer so komplexen Aufgabe wie der Stadtentwicklung gerecht zu werden (z.B. Nexus-Ansatz, Smart City, Morgenstadt). Diese integrierten Lösungen haben im Wassersektor das Potenzial, zahlreichen deutschen Unternehmen einen neuen bzw. erweiterten Absatzmarkt zu bieten, wenn diese in der Lage sind, sich darauf einzustellen.
Das Projekt "Smart Water Future India (SWF India)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik durchgeführt. Die Bundesrepublik Deutschland und Indien sind wichtige Handelspartner, das bilaterale Handelsvolumen lag 2014/15 bei knapp 16 Mrd. Euro . Indien entwickelt sich sehr dynamisch, insbesondere die zunehmende Urbanisierung stellt das Land vor große Herausforderungen. Der Wassersektor spielt dabei eine bedeutende Rolle. Im letzten Jahrzehnt hat sich weltweit die Erkenntnis durchgesetzt, dass eine sektorale Sichtweise bei dynamischen Ent-wicklungen nicht zu optimalen Lösungen führt. Vielmehr sind integrierte, vernetzte Ansätze notwendig, um einer so komplexen Aufgabe wie der Stadtentwicklung gerecht zu werden (z.B. Nexus-Ansatz, Smart City, Morgenstadt). Diese integrierten Lösungen haben im Wassersektor das Potenzial, zahlreichen deutschen Unternehmen einen neuen bzw. erweiterten Absatzmarkt zu bieten, wenn diese in der Lage sind, sich darauf einzustellen.
Das Projekt "Phase 1 - Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut IWAR, Fachgebiet Abwassertechnik durchgeführt. In schnell wachsenden Großstädten (Megastädten) stellt sich das Problem, dass die notwendige Infrastruktur (Energie, Wasser/Abwasser etc.) mit dem Wachstum der Städte nicht mithalten kann. Aufgrund fehlender Kapazitäten stehen Strom und Wasser nicht fortlaufend oder flächendeckend zu Verfügung und anfallendes Abwasser bleibt aufgrund mangelnder Reinigungskapazitäten unbehandelt. Vor diesem Hintergrund sind Konzepte gefragt, die die erforderlichen Infrastrukturkapazitäten entsprechend des urbanen Wachstums mitwachsen lassen können, was besonders bei den konventionell vordimensionierten zentralen aber auch bei kleinteiligen dezentralen Lösungen schwer umsetzbar ist. Als mögliche Lösung wurde der Ansatz Semizentral in den vergangenen 9 Jahren unter der Federführung des Fachgebietes Abwassertechnik des Institutes IWAR der Technischen Universität Darmstadt in enger Zusammenarbeit mit zahlreichen Industriepartnern in Deutschland, aber auch mit wissenschaftlichen Partnern in Deutschland und China entwickelt. Angefangen mit grundlegenden technischen und räumlich-strukturellen Fragestellungen haben die Forschungsergebnisse ein Niveau erreicht, dass die Implementierung im Realmaßstab ermöglicht. Das Verbundvorhaben SEMIZENTRAL umfasst die Begleitforschung zur Implementierung eines semizentralen Ver- und Entsorgungssystems im Rahmen eines Neubaugebietes in der Nähe der World Horticulture Exposition Qingdao 2014 (WHE) (Welt-Gartenbauausstellung). Die von chinesischer Seite finanzierte Implementierung SEMIZENTRAL sieht vor, die im Siedlungsgebiet anfallenden Abwasserströme getrennt zu erfassen und semizentralen in einem Ver- und Entsorgungszentrum (VEZ) zu behandeln. Das im Siedlungsgebiet anfallende Grauwasser wird im VEZ aufbereitet und anschließend den Wohneinheiten im Siedlungsgebiet als Brauchwasser für Toilettenspülungen zur Verfügung gestellt. Hierdurch reduziert sich der häusliche Trinkwasserbedarf um mindestens 30 Prozent. Ein geringerer Wasserverbrauch reduziert gleichzeitig die Abwasserableitung ebenfalls um mindestens 30 Prozent. In Kombination mit dem bei der Grau- und Schwarzwasserbehandlung anfallenden Klärschlamm wird der Bioabfall thermophil behandelt. Während des Stabilisierungsprozesses des Abfall-Klärschlammgemischs im Faulreaktor entsteht Biogas, welches zur Eigenenergieerzeugung verstromt wird. Somit wird ein energieautarker Betrieb des VEZ gewährleistet und eine Abhängigkeit von, meist aus fossilen Ressourcen, erzeugter Primärenergie vermieden. Hierdurch kann das VEZ bilanziell nahezu klimaneutral betrieben werden. Der entstehende Gärrest ist hochwertig (Biosolids) und kann als Bodenverbesserer wirtschaftlich genutzt werden. Insgesamt kann so auf eine Deponierung des Klärschlamms sowie des Bioabfalls verzichtet werden und die nährstoffreichen Stoffe dem natürlichen Kreislauf zurückgeführt werden. (Text gekürzt)
Origin | Count |
---|---|
Bund | 121 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 117 |
Text | 4 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 6 |
offen | 117 |
Language | Count |
---|---|
Deutsch | 121 |
Englisch | 29 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 62 |
Webseite | 61 |
Topic | Count |
---|---|
Boden | 96 |
Lebewesen & Lebensräume | 123 |
Luft | 85 |
Mensch & Umwelt | 123 |
Wasser | 94 |
Weitere | 123 |