Der Erftverband betreibt seit 2004 die Membranbelebungsanlage (MBA) in Kaarst-Nordkanal für das Abwasser von rund 80.000 Einwohnern. Die Nachrüstung der MBA mit einer anaeroben Schlammbehandlung anstelle der bisherigen simultan-aeroben Schlammstabilisierung hat den Energieverbrauch auf das Niveau herkömmlicher Kläranlagen gesenkt, ohne die hohe Reinigungsleistung der MBA zu beeinträchtigen. Dazu wurden von April 2016 bis März 2019 ein Vorklärbecken, eine Schlammfaulung, eine BHKW-Anlage und eine Deammonifikation errichtet. Nach Inbetriebnahme betrug der jährliche Stromverbrauch 3.173 MWh/a und sank damit von 69 kWh je Einwohner im Jahre 2008 auf 39,7 kWh je Einwohner im Jahr 2019. Der Anteil der Eigenstromproduktion betrug 34%. Der anfallende Klärschlamm ist sehr gut entwässerbar. Aus dem Vorhaben lassen sich Hinweise und Empfehlungen zur Ertüchtigung kommunaler Kläranlagen, insbesondere kommunaler Membranbelebungsanlagen ableiten. Die Konzentration an Belebtschlamm in MBA kann abhängig von den klärtechnischen Anforderungen zwischen < 5 und 12 gTS/l variiert werden. Niedrige TS-Gehalten senken den Energiebedarf der biologischen Reinigung überproportional und verbessern die Prozessbedingungen für die Filtration. Die Lebensdauer der Membranfilter beträgt mittlerweile mehr als 17 Jahre. Quelle: Forschungsbericht
Die Albert Köhler GmbH & Co. KG ist ein mittelständisches Unternehmen, das Pappen zu 96 Prozent aus Altpapier herstellt. Ziel des Vorhabens ist es, durch eine für die Papierbranche neuartige Anlage sein Abwasser so aufzubereiten, dass es in den Produktionskreislauf zurückgeführt werden kann. Zugleich soll die im Abwasser gespeicherte Wärme zur Deckung des Energiebedarfs im Unternehmen beitragen. Insgesamt werden rund 2.000 Tonnen klimaschädliches Kohlendioxid pro Jahr eingespart. Das Vorhaben wird im Rahmen der Klimaschutzinitiative des Bundesumweltministeriums gefördert. Das Unternehmen plant, das vorgereinigte Abwasser zukünftig in zwei weiteren Stufen, einem Membranbioreaktor und einer nachgeschalteten Teilstrombehandlung mittels Umkehrosmose, zu reinigen. Der Membranbioreaktor ist eine Kombination von konventionellem Belebungsverfahren und Ultrafiltration. Bis zu 94 Prozent des Abwassers können dem Produktionskreislauf wieder zugeführt werden. Dementsprechend sinkt der Frischwasserbedarf. Zugleich wird die Schadstofffracht verringert und ein Beitrag zum Gewässerschutz geleistet. Durch den Wiedereinsatz des warmen Abwassers in der Produktion verringert sich der Bedarf an Primärenergie. Zu dieser Verringerung trägt auch das Vorwärmen des zugesetzten Frischwassers bei. Die dafür erforderliche Energie wird mit Hilfe von Wärmetauschern aus dem Abwasser gewonnen. Branche: Papier und Pappe Umweltbereich: Wasser / Abwasser Fördernehmer: Albert Köhler GmbH & Co. KG Bundesland: Baden-Württemberg Laufzeit: 2008 - 2010 Status: Abgeschlossen
Der Erftverband betreibt im linksrheinisch gelegenen Einzugsgebiet der Erft über 30 kommunale Kläranlagen worunter sich auch drei Membranbelebungsanlagen (MBA) befinden. Die größte dieser drei Anlagen in Kaarst-Nordkanal behandelt Abwasser für 80.000 Einwohner und ist seit 2004 in Betrieb. MBA haben das Potenzial, mit einem einzigen Verfahren weitergehende Anforderungen an die Behandlung kommunalen Abwassers, einschließlich der Reduzierung von Mikroschadstoffen, mikrobiellen Krankheitserregern und auch Mikroplastik zu erfüllen. Unter Einsatz der Membrantechnik ist eine Ablaufqualität erreichbar, deren Belastung mit Keimen niedriger ist, als es die EU-Badegewässerrichtlinie fordert. Trotz dieser Vorteile wird ein breiter Einsatz der Membrantechnik zur Abwasserbehandlung in Deutschland vielfach durch die Diskussion um die Energiekosten gedämpft. In den Jahren 2011 bis 2015 wurden bereits im Rahmen des UIP-Förderschwerpunkts „Energieeffiziente Abwasseranlagen“ auf der Anlage Nordkanal Maßnahmen zur prozess- und verfahrenstechnischen Verbesserung der Membranfiltration durchgeführt und dadurch der Energieverbrauch MBA deutlich reduziert ( Link zum Förderprojekt ). Ziel des vorliegenden Vorhabens war es nun, den Energieverbrauch der Anlage noch weiter zu senken. Gleichzeitig sollten die Reinigungsleistung der MBA erhalten und in Bezug auf neue Reinigungsziele weiterentwickelt werden. Die bestehende MBA wurde dazu 2019 um ein Vorklärbecken, eine anaerobe Schlammfaulung zur Klärgasproduktion, ein Blockheizkraftwerk (BHKW) sowie um eine Teilstrombehandlung des Schlammwassers mittels Deammonifikation ergänzt. Im Ergebnis der Umrüstung ging der Energiebedarf der Anlage weiter zurück. Bis zu 40 Prozent der benötigten elektrischen Energie am Klärwerkstandort werden aus Klärgas und Fotovoltaik erzeugt. Der Strombezug der MBA Kaarst-Nordkanal sank gegenüber dem Zustand vor Optimierung und Umbau um mehr als 60 Prozent. Im Jahr 2019 betrug der Stromverbrauch 3.173 Megawattstunden und sank damit von 69 Kilowattstunden je Einwohner im Jahre 2008 auf 39,7 Kilowattstunden je Einwohner. Für 2020 wurde ein Stromverbrauch 2.900 Megawattstunden prognostiziert. Der jährliche CO 2 -Fußabdruck der Abwasserbehandlungsanlage reduzierte sich so von rund 3.200 Tonnen auf rund 1.000 Tonnen. Im Rahmen des Vorhabens konnten neue Grundsätze für die Auslegung von kommunalen MBA entwickelt werden, die eine erhebliche Leistungssteigerung und Energieeinsparung bewirken. Durch die Biogasverwertung und die PAK-Dosierung in die MBR stellt das Membranbelebungsverfahren derzeit die einzige wirtschaftliche Technologie dar, mit der gleichzeitig weitergehende Reinigungsziele inkl. Wasserwiederverwendung ohne Reihung weiterer zusätzlicher Verfahrensstufen realisiert werden kann. Das energieeffiziente Membranbelebungsverfahren eröffnet neue, zukunftsorientierte Sanierungsmöglichkeiten für bestehende Kläranlagen. Die Reinigungsleistung in Bezug auf antibiotikaresistente Keime und andere mikrobielle Krankheitserreger wurde in einem begleitenden Vorhaben evaluiert. In einem aktuellen Forschungsprojektes des Erftverbandes „MBR AKTIV“ wird zurzeit erfolgreich die Entfernung von Mikroschadstoffen durch die Zugabe von Pulveraktivkohle (PAK) direkt in den Membranbioreaktor untersucht. Die Untersuchungsergebnisse werden Mitte 2021 veröffentlicht. Branche: Öffentliche Verwaltung, Erziehung, Gesundheitswesen, Erholung Umweltbereich: Wasser / Abwasser Fördernehmer: Erftverband KöR Bundesland: Nordrhein-Westfalen Laufzeit: 2014 - 2019 Status: Abgeschlossen
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von SGS Aqua Technologies GmbH durchgeführt. In herkömmlichen Kläranlagen wird das Abwasser in drei Stufen gereinigt. In Membran Bio-Reaktoren (MBR) wird anstatt einer konventionellen Nachklärung eine Membranfiltration eingesetzt, wodurch eine Wiederverwertung des gereinigten Abwassers möglich wird. Bei MBR Anlagen tritt das Problem des Bio-Fouling, des 'Bewuchses' der Membrane mit einer organischen Schicht, auf. Um diese organische Schicht abzulösen wird kontinuierlich mechanisch durch Einsatz einer Crossflow Belüftung gereinigt. Der Einsatz einer Crossflow Belüftung ist sehr energieintensiv, da diese kontinuierlich durchgeführt werden muss. Die Aufgabe dieses Forschungsvorhabens ist es daher, eine energieoptimierte Reinigung der Membranen in MBR und MBR-ähnlichen Kläranlagen zu entwickeln. Der Ansatz hierzu ist die Crossflow Belüftung durch Ultraschallwellen zu ersetzen. Es ist geplant im Verbund SGS und IOSB-AST gemeinsam eine Anlage zu entwickeln. SGS ist für die Konzipierung der Anlage, für die Verfahrenstechnik und für die Durchführung von Versuchen sowie für die Herstellung der Versuchs- und Pilotanlagen zuständig. IOSB-AST unterstützt bei der Konzipierung der Anlage als solche, konzipiert die komplette Steuerungstechnik und ist verantwortlich für das Steuerungskonzept der Anlage. Das Projekt wird in drei Phasen wie folgt gegliedert:: -Phase 1: Grundlagenerhebung, Anlagenplanung, - Phase 2: Versuchsphase, Versuche, Maßnahmenprogramme und Strategien, - Phase 3: Umsetzungsphase, Implementierung
Das Projekt "Teilprojekt 9" wird vom Umweltbundesamt gefördert und von Microdyn-Nadir GmbH durchgeführt. In diesem Teilprojekt wird eine Pilotanlage nach dem Membranbelebungsverfahren, mit der die zu untersuchenden Abwässer biologisch behandelt werden können, entworfen und gebaut. Zudem wird der Betrieb der Anlage vor Ort durch fachkundiges Personal unterstützt. Im Membranbioreaktor kommt eine getauchte Ultrafiltrations-Flachmembran aus Polyethersulfon zum Einsatz, die durch ihre Porengrößen im Bereich von 0,04 mym einen vollständigen Rückhalt aller Feststoffe und Bakterien sicherstellt. Damit steht eine Ablaufqualität zur Verfügung, die sich hervorragend für nachfolgende Behandlungsschritte (Bestrahlung mit UV-Licht, Adsorption an Aktivkohle, Oxidation mit Ozon) eignet.
Das Projekt "Teilprojekt 11" wird vom Umweltbundesamt gefördert und von Xylem Services GmbH durchgeführt. Charakterisierung, Kommunikation und Minimierung von Risiken durch neue Schadstoffe und Krankheitserreger im Wasserkreislauf (TransRisk) Im AP 4 besteht die Hauptaufgabe von ITT in der Optimierung der Verfahrenskonzepte für die Kombination der Ozonung mit biologischen Prozessen. Im Pilotmaßstab wird eine Ozonungsstufe, die für diese Versuche neu konzipiert wird, mit verschiedenen biologischen Prozessstufen getestet. Dazu zählt die Kreislaufführung mit biologischen Stufen wie Belebtschlammbiologie mit klassischer Nachklärung sowie Belebtschlammbiologie mit Membranen (MBR). Ziel hier ist die optimierte Dosierung von Ozon zur Teiloxidation der unerwünschten Schadstoffe und Krankheitserreger und anschließender biologischer Weiterbehandlung. So kann die Ozondosis minimiert werden und eventuell entstehende Nebenprodukte der Oxidation können biologisch weiter abgebaut werden. Weiterhin sollen auch mögliche positive Effekte auf den Betrieb der Membran im MBR (verbesserte Spülrate, Flux-Rate) getestet werden. Neben der Kreislaufführung sollen auch die Abläufe der biologischen Stufe mit Ozon behandelt werden und die Kombination mit nachfolgenden biologisch aktiven Filterstufen (A-Kohle, Blähton) optimiert werden. Die Innovation ist in einer neuartigen Kombination von Biologie und Ozonung zu sehen, wobei ITT die Bedingungen der Ozonung einstellt und derart optimiert, dass die Risiken durch Schadstoffe und Krankheitserreger minimiert werden.
Das Projekt "Teilprojekt: Atech" wird vom Umweltbundesamt gefördert und von atech innovations gmbh durchgeführt. Ziel des Projektes ist ein Membranbioreaktor für die effektive Synthese von Biobutanol aus lignozellulosehaltigen Rohstoffen zu entwickeln. Dabei sollen aus einem neuartigen zweistufigen Fermentationsprozess mittels neuer, nanoporöser Membranen kontinuierlich Butanol abgetrennt werden, was zu einer erheblichen Effektivierung des Gesamtprozesses führen wird. Basis ist ein am Institute of Chemical Technology (ICT) in Entwicklung befindliches Verfahren zur Umsetzung lignozellulosehaltiger Rohstoffe in Butanol. Für dieses Verfahren werden im AP 1 durch das Fraunhofer IKTS und Atech innovations GmbH (Atech) neuartige, nanoporöse Membranen zur kontinuierlichen Butanolabtrennung aus dem laufenden Fermentationsprozess entwickelt. Im AP 2 erfolgt in Kooperation zwischen ICT und IKTS das grundlegende Engineering, im AP 3 durch IKTS und Vidyan Biocommerce Pvt. Ltd. (VBC) die praktische Einbindung des Membranverfahrens in den Fermentationsprozess. Der Membranreaktorprozess wird im AP 4 durch ICT im Labormaßstab intensiv untersucht. In Kooperation aller Partner mit Privi Biotechnologies Pvt. Ltd. (PBL) soll in AP 5 ein erster scaling-up-Schritt in den Technikumsmaßstab realisiert werden. Ein Membranbioreaktor zur Biobutanolsynthese aus lignozellulosehaltigen Rohstoffen ist nicht existent, weshalb ein hohes Entwicklungsrisiko besteht. Dem Risiko wird durch Zusammenarbeit von Partnern ausgewiesener Kompetenz sowie durch Anwendung eines (Text gekürzt)
Das Projekt "Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. In ecological sanitation, the wastewater is considered not only as a pollutant, but also as a resource for fertiliser, water and energy and for closing water and nutrients cycles (Otterpohl et. al., 1999; Otterpohl et. al., 2003; Elmitwalli et al. 2005). The ecological sanitation based on separation between grey and black water (and even between faeces and urine), is considered a visible future solution for wastewater collection and treatment. Grey water, which symbolises the wastewater generated in the household excluding toilet wastewater (black water), represents the major volume of the domestic wastewater (60- 75 percent) with low content of nutrients and pathogens (Otterpohl et. al., 1999; Jefferson et al., 1999; Eriksson et al., 2002). Most of grey-water treatment plants include one or two-step septic-tank for pre-treatment (Otterpohl et al., 2003). The grey-water treatment needs both physical and biological processes for removal of particles, dissolved organic-matters and pathogens (Jefferson et al., 1999). Recently, many researchers have studied the grey-water treatment either by application of high-rate aerobic systems, like rotating biological contactor (Nolde, 1999), fluidised bed (Nolde, 1999), aerobic filter (Jefferson et al., 2000), membrane bioreactor (Jefferson et al., 2000), or by application of low-rate systems, like slow sand filter (Jefferson et al., 1999), vertical flow wetlands (Otterpohl et. al., 2003). Although high-rate anaerobic systems, which are low-cost systems, have both physical and biological removal, no research has been done until now on grey water in these systems. The grey water contains a significant amount (41 percent) of chemical oxygen demand (COD) in the domestic wastewater (Otterpohl et al., 2003) and this amount can be removed by the highrate anaerobic systems. Although high-rate anaerobic systems have been successfully operated in tropical regions for domestic wastewater treatment, the process up till now is not applied in lowtemperature regions. The COD removal is limited for domestic wastewater treatment in high-rate anaerobic systems at low temperatures and, therefore, a long HRT is needed for providing sufficient hydrolysis of particulate organic (Zeeman and Lettinga, 1999; Elmitwalli et al. 2002). The grey water has a relatively higher temperature (18-38 degree C), as compared to the domestic wastewater (Eriksson et al. 2002), because the grey water originates from hot water sources, like shower (29 degree C), kitchen (27-38 degree C) and laundry (28-32 degree C). Therefore, high-rate anaerobic systems might run efficiently for on-site grey water treatment, even in low-temperature regions. The upflow anaerobic sludge blanket (UASB) reactor is the most applied system for anaerobic domestic waster treatment. Accordingly, the aim of this research is to study the feasibility of application of UASB reactor for the treatment of grey water at low and controlled (30 degree C) temperatures.
Das Projekt "Development of strategies for increase of plant availability of membrane bioreactors in waste paper using paper mills" wird vom Umweltbundesamt gefördert und von Papiertechnische Stiftung München durchgeführt. The objective of the research project is an increased availability of membrane bioreactor systems with submerged ultra filtration membranes. This aim should be gained by identification of organic und inorganic substances, MBR operating conditions and sludge properties causing membrane layers. Knowing the substances efficient cleaners and cleaning strategies should be elaborated and tested in continuous operation on-site. Guideline values should be defined showing the limits for economic operation. Inappropriate criteria will be expressed if waters, substances or operating conditions affecting the plant performance avoiding economic operation. Effluent samples from 10 different paper mills have been examined in laboratory tests using different membrane material, pressure and filtration volume. Filterability seems to depend on the content of soluble ingredients. Filter material, pore size and pressure have less influence. criteria for estimation of filterability have been established based on the flux rate. The developed method for early evaluating filterability of effluents can only be used as a rough estimation. Trials with laboratory MBR plant had been operating on-site in three mills. Operation depends on the quality of the biological treatment process and the water composition. Some water ingredients, e.g. acrylates might cause problematic layers in case of polymerisation. Incomplete biological degradation forces development of EPS. EPS is a basis for biofilm and therefore a serious factor causing biofouling. Sole scaling is the least blocking problem. It can be removed using effective reagents, defined by analytic examination of effluent ingredients and laboratory trials. Fouling and biofouling effects are more serious in treatment. Therefore lifting the overlay in the first step is most important than treatment with the right reagents. Using the effective reagents is important for the second step. In most cases fouling/biofouling layers are more difficult in removing. Early cleaning improves the cleaning success.
Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von MARTIN Membrane Systems AG durchgeführt. Internationale Partnerschaften für nachhaltige Klimaschutz- und Umwelttechnologien und -dienstleistungen - CLIENT. Zur Erreichung dringender wasserwirtschaftlicher Ziele in China wurde unter Leitung des chinesischen Umweltministeriums und Einbindung sechs weiterer chinesischer Ministerien der Zentralregierung das 'Major Program of Science and Technology for Water Pollution Control and Governance' ins Leben gerufen. Das Programm hat eine Laufzeit von 2006 bis 2020. Das Verbundprojekt SINOWATER beschäftigt sich mit zwei der drei wichtigsten und am stärksten belasteten chinesischen Wasserkörper, dem Liao-Fluss und dem Dian-See im Bereich der Metropolen Shenyang bzw. Kunming. Die Gesamtziele von SINOWATER sind die Verbesserung der Wasserqualität in den chinesischen Gewässersystemen Liao-Fluss und Dian-See sowie die Entwicklung und Optimierung von Good Water Governance. Diese Ziele sollen mit dem Einsatz deutscher, innovativer Wassertechnologien und der Verbesserung wasserwirtschaftlicher Managementelemente erreicht werden. Technologien und Managementkonzepte: Die Besonderheit von SINOWATER liegt in der Verbindung eines Technologieteils und eines Managementteils. Diese Projektkonstellation geht auf einen besonderen Wunsch der verantwortlichen chinesischen Seite zurück. Das seit 2010 bestehende Sino-German Research Center for Water Management (SiGeWa) in Chengdu ermöglicht eine reibungslose organisatorische Betreuung für die beiden weit voneinander entfernten Regionen Shenyang und Kunming. Zur Verbesserung von Wasserqualität: SINOWATER soll durch die Anwendung deutscher Erfahrungen und Produkte in Form von administrativen Managementkonzepten und nachhaltigen technischen Lösungen dazu beitragen, die Wasserqualität am Liao-Fluss und am Dian-See nachhaltig zu verbessern. Die technischen Lösungen betreffen das Stormwatermanagement und Maßnahmen zur verbesserten Behandlung industrieller und kommunaler Abwässer. Im Rahmen von SINOWATER wird an der Fortschreibung des Masterplans am Dian-See unter besonderer Berücksichtigung technisch-organisatorischer Maßnahmen zur Seensanierung mitgewirkt. SINOWATER entwickelt unter Einbringung spezifischer deutscher Erfahrungen ein nachhaltiges Klärschlammkonzept für die Region Shenyang. Die Einführung eines integrierten Wasserressourcenmanagements (IWRM) soll durch organisatorische Maßnahmen zur verbesserten Analyse- und Entscheidungsfähigkeit im normativen und operativen Management des Wassersektors auf Basis kooperativer, partizipativer und spezifischer ökologischer Untersuchungsansätze.
Origin | Count |
---|---|
Bund | 97 |
Type | Count |
---|---|
Förderprogramm | 96 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 3 |
offen | 94 |
Language | Count |
---|---|
Deutsch | 97 |
Englisch | 21 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 53 |
Webseite | 42 |
Topic | Count |
---|---|
Boden | 73 |
Lebewesen & Lebensräume | 66 |
Luft | 46 |
Mensch & Umwelt | 97 |
Wasser | 89 |
Weitere | 96 |