Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleinere Erzeugungsanlagen möglich und beschrieben. Für Großerzeugungsanlagen wird dazu im Projekt MeGA ein Konzept entwickelt und bis zum Feldtest gebracht. Der Schwerpunkt der THU liegt in der Konzeption und der Durchführung von Tests der im Projekt entwickelten Anwendungen im Smart-Grid-Labor und der Simulationsumgebung der THU auf der Informations-, Kommunikations- und Funktionsebene. Im Smart-Grid-Labor der THU wird dazu eine virtualisierte Simulationsumgebung eingerichtet, die die Implementierung und das Testen von Anwendungen und Komponenten der Smart-Meter-Infrastruktur ermöglicht. Die THU wird auch aus akademischer Sicht Unterstützung bei der Klärung von Anforderungen und der Spezifikation der Systemimplementierung leisten. Darüber hinaus können die im MeGA-Projekt geplanten Neuentwicklungen mit der aufgebauten Simulationsumgebung getestet und validiert werden. Insbesondere für die CLS-Steuerung in Kombination mit dem SMGW wird ein Virtualisierungskonzept entwickelt und erprobt, welches die Skalierbarkeit der Erzeugungseinheiten auf der Basis der Nutzung internationaler Normen und Standards (z.B. IEC 61850 und SunSpec-Modbus) berücksichtigt. Die THU kann auf bestehende Lösungen und breite Erfahrungen im Bereich der Integration von Smart-Meter-Infrastruktur, SMGW, CLS-Steuerbox, CLS-Backend und die Einbindung in Verteilnetzleittechnik zurückgreifen.
An den Depositionsmessstationen werden ganzjährig im regelmäßigen Zyklus (28 Tage) mit verschiedenen Messeinrichtungen Parameter zum Monitoring von Schadstoffen aus der Luft erfasst. Zum Monitoring eutrophierender und versauernder Einträge sind elektrisch gekühlte Niederschlagssammler (Elektrisch gekühlter Bulk, Wet only) sowie Passivsammler für die Ermittlung gasförmiger Ammoniak- und NO2-Konzentrationen installiert. Der Eintrag von Metallen wird über die Sammlung des Staubniederschlags (Bergerhoff-Methode) ermittelt. Messdaten sind gegen Bereitstellungsgebühr bei der Datenstelle des LfU erhältlich.
Zielsetzung: Im Kontext von Klimawandel und Energiekrise sind Fragen der Energiebilanz und -effizienz von Gebäuden besonders relevant. Die Baudenkmalpflege trägt durch ihre wirtschaftlichen, ökologischen und soziokulturellen Aspekte der nachhaltigen Ressourcenverwendung und damit direkt zum Klimaschutz bei. Historische Bauten, die überwiegend aus dauerhaften Materialien und Konstruktionen bestehen, sind ein gutes Beispiel für Green Culture durch energie-schonende Nutzung und bestandsorientierte Weiterentwicklung. Die beim Bau alter Gebäude bereits eingesetzte (graue) Energie muss bei sorgfältiger und schonender Erneuerung, u.a. durch Einsatz nachhaltiger Baustoffe, nicht noch einmal aufgewendet werden. Holz war schon immer ein nachhaltiger, ressourcen- und energieschonender Werkstoff und gehört zu den ältesten Baukulturen weltweit. Allein in Deutschland gilt die Holzarchitektur (Fachwerkhäuser, Dachwerke) als prägend. Es ist daher sowohl im Sinne der Denkmalpflege als auch zur zukünftigen Nutzung von Holz als Baumaterial wichtig, Eigenschaften, Zustand und Veränderung dieses Materials zu beobachten und zu verstehen. Dazu stehen heute vielversprechende Technologien wie optische 3D-Messtechnik und KI-basierte Datenanalyse zur Verfügung, die in diesem Sektor bisher noch kaum eingesetzt werden. Ziel dieses Vorhabens ist, ein Verfahren zur automatisierten Bauteildokumentation und -kontrolle für Altholzbauten im Bestand zu entwickeln. Dies beinhaltet: - Entwicklung eines prototyphaften optischen Messsystems zur Bestands- und Merkmalsaufnahme; - Entwicklung eines Automatisierungsverfahrens zur Merkmalsdetektion; - Automatisierung des Informationstransfers in digitales 3D-Modell. Im Laufe des Projektes werden folgende Ergebnisse angestrebt: - Messverfahren bestehend aus innovativer Hardware (RTI-Sensor, patentiert) und Software (KI-gestützte Merkmalserkennung) zur objektiven und dokumentierten Festigkeitsanalyse von verbautem Altholz; - Schnittstelle zur automatischen Übertragung von Holzkenngrößen an einen Digitalen Zwilling (basierend auf BauWolke-Software/BauCAD); - Zukünftige Vermarktungsmöglichkeiten durch Sensor/Software und erweitertes Dienstleistungsangebot durch Gutachter.
Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleiner Erzeugungsanlagen möglich und beschrieben. Für Großerzeugungsanlagen werden wir dafür im Projekt MeGA ein Konzept entwickeln und bis zum Feldtest bringen. Mit unserem Projekt ermöglichen wir damit die Basis für die Nutzung des Cyber-Security-Konzepts des Smart Meter Gateways (SMGW) in zusätzlichen Anwendungsbereichen. Die Stadtwerke Pforzheim hat den Schwerpunkt ihrer Arbeiten in der praktischen Erprobung der Vorhabenziele. Konkret werden wir uns intensiv im Labortest und Feldversuch beteiligen.
Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleinere Erzeugungsanlagen möglich und beschrieben. Im Projekt MeGA werden wir unser Smart Meter Gateway und damit interagierende Steuerlösungen für die Anwendung in Großerzeugungsanlagen mit einer installierten Leistung über 100 kW weiterentwickeln. Dabei werden Anforderungen des Anlagenbetreibers, des Marktes und des Netzes sowie der Regulatorik analysiert und in das Lastenheft für eine entsprechende SMGW-Weiterentwicklung aufgearbeitet. Im Ergebnis soll der durch das MsbG bereits gesetzlich adressierte Einsatzbereich der Erzeugungsanlagen über 100 kW mit dem Projekt MeGA auch technisch erschlossen werden, so dass entsprechende SMGW und Steuerlösungen dem Markt bereitgestellt werden können.
Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
Im Fachgebiet Abfalltechnik steht eine Technikumsverbrennungsanlage (TVA), die Speziell für die Energie-, Massen- und Schadstoffbilanzierung von Verbrennungsversuchen entwickelt und in den letzten Jahren mehrfach modifiziert wurde. Die Energie- und Massenbilanzierung wird seit Jahren erfolgreich genutzt. Im Rahmen dieses Projektes konnte als erstes die Qualität der Schadstoffbilanzierung mit Hilfe der in dieser Untersuchung durchgeführten Verbrennungsversuche am Beispiel Chlor gezeigt werden. Dazu wurden Verbrennungsversuche an der TVA durchgeführt, bei denen Holz/PVC-Mischungen und Holz/NaCl-Mischungen, die bis zu 6 Ma-Prozent Chlor enthielten, eingesetzt wurden. Um die Widerfindungsraten von Chlor bei den Verbrennungsversuchen in der TVA zu bestimmen und um zusätzlich Aussagen über den Transfer des Chlors in die verschiedenen Fraktionen machen zu können, wurden die Chloranteile in den einzelnen Fraktionen Rauchgas, Asche und Flugstaub ermittelt. Die HCI-Konzentrationen im Rauchgas wurden mit dem OPSIS-Messsystem analytisch bestimmt. Die Staub- und Aschegehalte wurden ermittelt und der Flugstaub und die Asche auf ihre Chlorgehalte untersucht. In den drei Fraktionen Rauchgas, Asche und Flugstaub konnten 95,1 bis 101,7 Prozent des eingesetzten Chlors wieder gefunden werden. Es wurden bei den Holz/PVC-Mischungen 82 bis 85 Prozent des Chlors im Rauchgas, 11 bis 14 Prozent in der Asche und etwa 1,4 Prozent im Flugstaub ermittelt. Bei anschließenden Vergleichen zeigten diese Transferkoeffizienten eine gute Übereinstimmung mit hochgerechneten Transferkoeffizienten aus Laboruntersuchungen von Schirmer (2005). Damit wurde gezeigt, dass die Veränderungen und Umbauten an der TVA in den letzten Jahren zu einer Verbesserung der Schadstoffbilanzierung geführt haben und diese dadurch erfolgreich durchgeführt werden kann. Damit ist die TVA für weitere Schadstoffermittlungen von unbekannten Ersatzbrennstoffen gut geeignet. Neben der Ermittlung von Ersatzbrennstoffen wurde die TVA in jüngster Zeit auch für die Bestimmung der Chlorfreisetzung ins Rauchgas eingesetzt: die kontinuierliche Erfassung der Schadstoffkonzentrationen im Rauchgas mit dem Messsystem OPSIS ermöglicht die zeitliche Schadstofffreisetzung ins Rauchgas zu bewerten, da aufgrund der semikontinuierlichen Brennstoffzugabe charakteristische Konzentrationsverläufe gewonnen werden.
Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleiner Erzeugungsanlagen möglich und beschrieben. Für Großerzeugungsanlagen werden wir dafür im Projekt MeGA ein Konzept entwickeln und bis zum Feldtest bringen. Mit unserem Projekt ermöglichen wir damit die Basis für die Nutzung des Cyber-Security-Konzepts des Smart Meter Gateways (SMGW) in zusätzlichen Anwendungsbereichen. Das erste Teilvorhaben der VIVAVIS adressiert die Containerisierung der Funktionalität einer FNN-konformen Steuerbox mit den notwendigen Anpassungen im Backendsystem. Das zweite Teilvorhaben adressiert zukünftig notwendige Erweiterungen im Umfeld der Netzleittechnik für die Aufgabe zur Auswahl einer nutzbaren Flexibilitätsoption und die Korrelation der Auswahl mit Präventionsmechanismen aus KI-gestützter Prognosefähigkeit.
Der unbeabsichtigte Luftaustausch durch die Gebäudehülle ist eine der wesentlichen Quellen für Wärmeverluste in Gebäuden und deren Energieverbrauch. Die Quantifizierung und Identifikation einzelner Leckagen in der Gebäudehülle ist mit Stand-der-Technik Verfahren bisher anspruchsvoll, zeitaufwändig und hängt stark von der Erfahrung des jeweiligen Energieberaters ab. Das schnelle und sichere Auffinden von Leckagen spielt allerdings eine entscheidende Rolle bei einer zügigen und großflächigen Sanierung von Bestandsgebäuden. In diesem Projekt soll ein Messsystem sowie eine dafür geeignete Ultraschallquelle entwickelt werden, mit dem Ziel, Leckagen in Gebäudehüllen schnell und für Bewohner möglichst störungsfrei zu identifizieren. Das System basiert auf der Kombination von Schallquellenortung mittels Mikrofon-Array-Technologie ('Akustische Kamera') und Infrarotthermografie. Durch die kombinierte Auswertung von Akustik und Thermografie können die Vorteile beider Verfahren kombiniert und die spezifischen Nachteile der einzelnen Verfahren verringert werden. Im Labor wird untersucht, wie mit dieser Methode die energetische Relevanz (Luftaustauschrate) verschiedener Leckagen bestimmt werden kann. Entwicklungsbegleitende Tests an Sanierungsbaustellen sollen Praxisanforderungen gewährleisten und zu einer Beschleunigung der Prozesse der seriellen Gebäudesanierung führen. Abschließend ist ein Ergebnisvergleich des Systems mit einer professionellen Luftdichtheitsprüfung nach Stand der Technik geplant. Das DLR übernimmt die Koordination des Vorhabens. Neben der Durchführung von Voruntersuchungen im Feld, sowie von Praxistests und der Validierung liegt der fachliche Schwerpunkt des DLR auf den Laborarbeiten. Hier werden insbesondere die Ortung und Quantifizierbarkeit diverser Leckage-Setups im Labor bei unterschiedlichen Anregungsarten im Laborprüfstand untersucht.
Für eine nachhaltige Energieversorgung mit regenerativen Erzeugungsanlagen kommt dem intelligenten Messsystem, auch Smart Meter genannt, eine zentrale Rolle zu. Smart Meter Gateways bieten mit der BSI-konformen CLS-Schnittstelle (Controllable-Local-Systems) eine sichere Verbindung zu Kundenanlagen. Allerdings sind die steuernden Geräte häufig nicht CLS-konform, Echtzeitsteuerungen stoßen bei vielen Kommunikationsnetzen an ihre Grenzen oder sind nicht wirtschaftlich und die Implementation BSI-konformer Energiedienste ist aufwendig. Hier setzt das Projekt an, indem es sichere und effiziente Kommunikationslösungen und Verfahren zur flexiblen Energieoptimierung auf Basis des Smart Meter Gateways erarbeitet und eine Toolbox für eine einfache Orchestrierung sektorenübergreifender Energiedienste bereitstellt. Diese Toolbox umfasst Module für die Kommunikation auf Geräte-, Daten- und Dienstebene. Als Querschnitts-Ziel wird hierbei Datensicherheit und Datenschutz auf allen Ebenen adressiert. Die Verfügbarkeit von IoT-Geräten schwankt und sie müssen dynamisch in die Netze eingebunden werden. SECProMo entwickelt Verfahren für die Auswahl und einfache Konfiguration von Schedulern in Kommunikationsnetzen, um die jeweiligen Anforderungen hinsichtlich Zuverlässigkeit, Echtzeit, Datenvolumen und -häufigkeit zu gewährleisten. Hierbei werden insbesondere die 5G Profile uRLLC und mMTC eingesetzt und für ihren realen Einsatz erprobt. SECProMo erweitert standardisierte Datenmodelle, um Energieflexibilität zu repräsentieren und für KI-basierte Prädiktions- und Regelungsalgorithmen zu nutzen. SECProMo entwickelt wiederverwendbare Dienstmodule mit geeigneten Schnittstellen, um einfach neue Dienste für sektorenübergreifende Optimierungen der Energieeffizienz in unterschiedliche Anwendungsszenarien zu realisieren. Die entwickelten Verfahren und Werkzeuge werden in Feldtests innerhalb eines Quartiers demonstriert und evaluiert, um daraus technische und wirtschaftliche Handlungen abzuleiten.
Origin | Count |
---|---|
Bund | 1424 |
Land | 216 |
Wissenschaft | 44 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Daten und Messstellen | 46 |
Ereignis | 2 |
Förderprogramm | 1252 |
Gesetzestext | 1 |
Text | 144 |
Umweltprüfung | 27 |
unbekannt | 199 |
License | Count |
---|---|
geschlossen | 309 |
offen | 1338 |
unbekannt | 24 |
Language | Count |
---|---|
Deutsch | 1557 |
Englisch | 313 |
Resource type | Count |
---|---|
Archiv | 27 |
Bild | 7 |
Datei | 26 |
Dokument | 165 |
Keine | 961 |
Multimedia | 1 |
Unbekannt | 9 |
Webdienst | 6 |
Webseite | 521 |
Topic | Count |
---|---|
Boden | 1033 |
Lebewesen und Lebensräume | 1052 |
Luft | 958 |
Mensch und Umwelt | 1666 |
Wasser | 993 |
Weitere | 1671 |