Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.
Die Bildung der Eis Phase in der Troposphäre stellt einen wichtigen Fokus der aktuellen Atmosphärenforschung dar. Durch heterogene Nukleation entstehen bei Temperaturen oberhalb von -37°C primäre Eiskristalle an sogenannten eiskeimbildenden Partikeln (INP, engl, ice nucleating particles). Die räumliche Verteilung der INP und deren Quellen variieren stark. In der Atmosphäre finden sich INP nur in sehr geringer Anzahlkonzentration, oft weniger als ein Partikel pro Liter, und sie stellen nur eine kleine Untergruppe des gesamten atmosphärischen Aerosols dar. Ziel dieses Antrages ist es die Anzahlkonzentrationen von eiskeimbildenden Partikeln und deren Variabilität in der Atmosphäre zu messen. Außerdem sind Laborstudien geplant, in denen unser Verständnis über die chemischen und biologischen Eigenschaften der Partikel, die die Eisbildung initiieren, verbessert werden soll. Mit dem von unserer Arbeitsgruppe entwickelten Eiskeimzahler FINCH (Fast Ice Nucleaus CHamber) sollen die atmosphärischen Anzahlkonzentrationen von INP bei verschiedenen Gefriertemperaturen und Übersättigungen an mehreren Standorten gemessen werden. Die Kopplung von FINCH mit einem virtuellen Gegenstromimpaktor (CVI, engl, counter-flow virtual impactor, Kooperation mit RP2), die während lNUIT-1 entwickelt und getestet wurde, soll nun weiter charakterisiert und Messungen damit fortgesetzt werden. Bei dieser Methode werden die Eispartikel, die in FINCH gebildet werden, von den unterkühlten Tröpfchen und inaktivierten Partikeln separiert und mit weiteren Messmethoden untersucht. In Kooperation mit RP2 und RP8 planen wir hierbei die Charakterisierung der INP mittels Größen- und Aerosolmassenspektrometer sowie die Sammlung der INP auf Filtern oder Impaktorplatten zur anschließenden Analyse mit einem Elektronenmikroskop (ESEM, engl. DFG fomi 54.011 -04/14 page 3 of 6 Environmental Scanning Electron Microscopy). Die Feldmessdaten werden von umfangreichen Laborstudien an den Forschungseinrichtungen AIDA (RP6) und LACIS (RP7) ergänzt. Dort soll das Immersionsgefrieren von verschiedenen Testpartikeln aus biologischem Material (z.B. Zellulose), porösem Material (z.B. Zeolith) und Mineralstaub mit geringem organischem Anteil im Detail untersucht werden. Des Weiteren planen wir Labormessungen, bei denen eine verbesserte Charakterisierung der Messunsicherheiten von FINCH erarbeitet werden soll. Außerdem werden regelmäßige Tests und Kalibrierungen mit FINCH durchgeführt, für die Standardroutinen festgelegt werden sollen. Um die Rolle der INP bei der Wolken- und Niederschlagsbildung sowie bei den Wolkeneigenschaften abzuschätzen, werden die gewonnenen Messergebnisse am Ende als Eingabeparameter für erweiterte Wolkenmodelle (Kooperation mit WP-M) dienen.
Das Edelgasradioisotop 39Ar ist einzigartig, da es das einzige Isotop ist, das den wichtigen Altersbereich von ca. 50 bis 1000 Jahren abdeckt. Damit ist es von großem Interesse für die Datierung in Ozeanagraphie, Glaziologie und Hydrogeologie. Die Entwicklung der Atom Trap Trace Analysis (ATTA) hat 81Kr Datierung möglich gemacht und hat das Potenzial, fundamental neue Anwendungen von 39Ar zu eröffnen. In einem Vorgängerprojekt haben wir zum ersten Mal gezeigt, dass die Messung von 39Ar an natürlichen Proben mit ATTA möglich ist. Aufbauend auf der im vorherigen Projekt und weiteren Vorarbeiten erworbenen Erfahrung soll das vorliegende Projekt die intellektuellen und instrumentellen Grundlagen von ATTA für 39Ar (ArTTA) als neues Werkzeug der Isotopenhydrologie schaffen. Wir zielen darauf ab, ArTTA vom proof-of-principle Stadium zu einer voll etablierten Methode voranzubringen und seine erste umfassende Anwendung durchzuführen. Basierend auf der vorhandenen Expertise in Grundwasser- und Paläoklimaforschung und unter Nutzung der Vorteile von Grundwasser als Testfeld für ArTTA, planen wir, die erste detaillierte Paläotemperaturzeitreihe für das letzte Jahrtausend aus Grundwasser zu gewinnen. Wir haben die folgenden zwei zentralen Ziele identifiziert: 1. Signifikante Verbesserung der Effizienz der ArTTA Apparatur. Eine Erhöhung der Zählrate ist notwendig, um den Probendurchsatz sowie die erreichbare Messgenauigkeit zu verbessern. 2. Realisierung der ersten kompletten Studie zur 39Ar-Datierung von Grundwasser mit ArTTA, um Grundwasser-Altersverteilung und Paläoklimaentwicklung auf der Zeitskala von Jahrhunderten zu bestimmen.
In diesem Projekt wurde ein hochgenaues Temperaturerfassungssystem zur Durchfuehrung von Langzeitmessungen an den Erdkollektoren einer Luft/Wasser-Waermepumpe entworfen und aufgebaut. Zur Zeit werden die vorgesehenen Langzeitmessungen durchgefuehrt.
Während der letzten Jahre wurde Salpetrige Säure (HONO) als eine Hauptquelle von OH-Radikalen in der unteren Atmosphäre erkannt. Da das OH Radikal für den Abbau der meisten Schadstoffe und die Bildung von Photooxidantien, wie z.B. Ozone, verantwortlich ist, sind die Identifizierung und die Quantifizierung von atmosphärischen HONO-Quellen von großer Bedeutung. Basierend auf Laborstudien wurden hauptsächlich bodennahe HONO-Quellen vorgeschlagen, um die unerwartet hohen HONO-Tageskonzentrationen in der unteren Atmosphäre zu erklären. Daraus resultierende vertikale Flussmessungen von HONO über atmosphärischen Oberflächen werden jedoch nur selten durchgeführt. Zudem wird hierbei auf Grund fehlender schneller und empfindlicher HONO-Messgeräte meist nur die aerodynamische Gradientenmethode eingesetzt, die mit großen Unsicherheiten behaftet ist. Daher soll im Rahmen des hier beantragten Projektes ein REA (Relaxed Eddy Accumulation) System, zur Quantifizierung vertikaler Flüsse salpetriger Säure (HONO) entwickelt und erprobt werden. Es soll ein Zweikanal-Messgerät aufgebaut werden, das auf dem LOPAP (Long Path Absorption Photometer)-Messprinzip basiert und das mit einem mikrometeorologischen Einlasssystem gekoppelt wird. Hierbei werden zwei schnelle Magnetventile mit Hilfe eines Ultraschallanemometers gesteuert und somit die beiden Kanäle für jeweils auf- und absteigende Luftmassen beprobt. Zusätzlich werden in einem dritten Kanal chemische Interferenzen bestimmt und zur Korrektur der Messsignale verwendet. Parallel zum Aufbau der Hardware soll für die Steuerung der Ventile und die Datenerfassung der meteorologischen Daten eine passende Software entwickelt werden. Das Gerät wird zunächst an der BUW auf seine technische Funktionalität getestet und optimiert. Zum Ende des Projektes sollen dann mit Hilfe des Messgerätes und begleitenden anderen Spurengasmessungen Tagesquellen von HONO über einem landwirtschaftlich genutzten Feld in Grignon (Frankreich) identifiziert und quantifiziert werden. Die gewonnenen Daten sollen mit Ergebnissen aus HONO-Gradientenmessungen verglichen werden, die im Rahmen eines früheren DFG-Projekts des Antragstellers am selben Messort gewonnen wurden.
The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.
Es soll untersucht werden, ob die spezielle Zusammensetzung und insbesondere die Reinheit von Traegern, stationaeren und fluessigen Phasen der chromatographischen Trennverfahren einen Einfluss auf die Genauigkeit und Reproduzierbarkeit von Analysenergebnissen in der Umweltanalytik haben. Insbesondere soll festgestellt werden, inwieweit die Reinheit von Test- und Standardsubstanzen von Einfluss auf die Genauigkeit quantitativer Analysenergebnisse ist.
Die Oberflächen aller im Freien befindlichen Kulturgüter sind in mehr oder minder stark atmosphärischen Einflüssen ausgesetzt, die zu einer Beschädigung führen können, sofern keine Schutzmaßnahmen ergriffen werden oder diese nicht die gewünschte Wirkung entfalten. In Bezug auf Gesteinsoberflächen sind dabei hauptsächlich physische Beschädigungen zu beobachten, die zu einem Abtrag der Gesteinssubstanz führen. Eine frühzeitige Erkennung von Art, Verteilung und Umfang solcher Beschädigungen ist eine wichtige Voraussetzung zur gezielten und adäquaten Ergreifung von Gegenmaßnahmen, die den Erhalt der wertvollen Objektsubstanz erreichen sollen. Angesichts der schleichenden Charakteristik solcher Zerfallsprozesse ist eine qualitative wie quantitative Bewertung problematisch, da in kurzen Zeitabständen oftmals nur minimale Veränderungen auftreten. Andererseits besteht gerade für langsame Prozesse eine gute Chance die Oberflächen zu erhalten, wenn die ablaufenden Prozesse frühzeitig erkannt und bewertet werden können. Dies erfordert allerdings eine sehr detaillierte Analyse der Oberfläche und der sich darin abspielenden morphologischen Veränderungen. Die Basis für solche Analysen müssen sehr genaue geometrische und ggf. farbliche oder spektrometrische Messungen sein, die den morphologischen und optischen Zustand der Oberflächen dokumentieren und eine belastbare Datengrundlage für die Erkennung von Veränderungen liefern. In Kontext des Flächenmonitorings arbeiten das Institut für Steinkonservierung und das Institut für Raumbezogene Informations- und Messtechnik (i3mainz) zusammen, um das Potenzial moderner Messverfahren auszuloten und exemplarisch zur Überwachung von ausgewählten Objektflächen einzusetzen. In einer ersten Phase wurde dazu das Potenzial verschiedener Messverfahren analysiert und charakterisiert, um eine bestmöglich geeignete Technik für die in der zweiten Phase sich anschließende exemplarische Anwendung auswählen zu können. Eine Gegenüberstellung der unterschiedlichen Techniken wie Digitale Stereophotogrammetrie, Streifenprojektionsverfahren, scannende Systeme und Strukture from Motion erfolgte nach speziellen Eigenschaften und Parametern. Die zweite Projektphase dient der Anwendung der aus der ersten Phase heraus definierten Messtechnik an weiteren Objekten, die in unterschiedlicher Weise und verursacht durch verschiedene Faktoren mehr oder weniger starken Zerfallsprozessen unterworfen sind. Die ausgewählten Objekte weisen jeweils unterschiedliche Charakteristika auf und wurden entsprechend den vorab festgelegten Anforderungen erfasst. Für eine Visualisierung von Schadstellen und witterungsbedingter Veränderungen sind unterschiedliche Analyseverfahren (GIS, 3D Analysetools, usw.) untersucht und an den Beispielobjekten angewandt worden.
Fuer die Ermittlung der schiffbaren Wassertiefe (hierzu zaehlt auch die 'Nautische Tiefe') sowie auch z.B. fuer Baggermassnahmen oder Sedimentverlagerungen ist die Kenntnis ueber die Gewaessersohle (Zusammensetzung, Struktur und Tiefenlage) erforderlich. Echolote werden standardmaessig fuer die Messung grosser Wassertiefen (i.d.R. groesser 2,50m) eingesetzt, aber je nach verwendeter Ultraschallfrequenz werden unterschiedliche Tiefen an ein und demselben Messort ermittelt. Die Frequenzen umfassen den Bereich von 1...1000 kHz, wobei 15...200 kHz die am haeufigsten benutzten Frequenzen sind. Im allgemeinen dringen niedrige Frequenzen in den Gewaessergrund ein, waehrend hohe Frequenzen (groesser 100 kHz) bereits an der Sohlenoberflaeche reflektiert werden. Die Eindringtiefe des Ultraschallsignals ist abhaengig von der Dichte und der Scherfestigkeit des Sohlenmaterials, der Messfrequenz, der Impulslaenge und der Verstaerkung des Echolotsignals. Die funktionale Abhaengigkeit ist bisher nur teilweise untersucht worden.
Origin | Count |
---|---|
Bund | 698 |
Type | Count |
---|---|
Förderprogramm | 696 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 696 |
Language | Count |
---|---|
Deutsch | 636 |
Englisch | 114 |
Resource type | Count |
---|---|
Keine | 406 |
Webseite | 292 |
Topic | Count |
---|---|
Boden | 465 |
Lebewesen und Lebensräume | 441 |
Luft | 436 |
Mensch und Umwelt | 698 |
Wasser | 406 |
Weitere | 698 |