Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025
Global Cloud-Top Height (CTH) as derived from the Sentinel-5P/TROPOMI instrument. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud-top height is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.
Immissionskonzentrationen setzen sich stets aus den Anteilen vieler Verursacher zusammen. Industrieanlagen und Kraftwerke, Verkehr, Hausbrand und Fernverfrachtung verursachen Schadstoffkonzentrationen in der Luft, deren Messung keinen Rueckschluss auf ihre Herkunft zulaesst. Um eine solche Situation zu beurteilen und gezielte Massnahmen zur Verminderung von Luftverunreinigungen zu ermoeglichen, ist die Kenntnis der Emissions - Immissionsbeziehung fuer einzelne Emittenten notwendig. Informationen darueber koennen mit der SF6-Tracermethode erhalten werden. SF6 ist ein chemisch inertes, ungiftiges Gas, das noch in Konzentrationen bis zu 10-12 cm3/SF6/cm3 Luft mittels Gaschromatographie gemessen werden kann. Das Prinzip der Tracermethode ist es, den Abgasen waehrend der Versuchsdauer gleichmaessig eine geringe Menge dieses Gases, das in der Natur und in anderen Abgasfahnen nicht vorkommt, beizumischen. Die markierte Abgasfahne kann durch Messung des zugegebenen Gases selektiv und ohne Beeinflussung durch andere Abgasfahnen nachgewiesen werden. Die Messungen erfolgen in Windrichtung an einem Netz von Messpunktken, wo die jeweilige Konzentration des Markierungsgases ermittelt wird. Waehrend der Messung werden kontinuierliche Wetterdaten registriert, da die Ausbreitung einer Abgasfahne von den meteorologischen Bedingungen abhaengt. Die Tracermethode wird einerseits angewendet, um die Ausbreitung von Abgasfahnen bei verschiedenen Wetterlagen zu untersuchen und damit die Gueltigkeit von Ausbreitungsmodellen zu ueberpruefen. Andererseits kann mit dieser Methode der Anteil einzelner Emittenten an einer Schadstoffkonzentration im Einzugsbereich mehrerer Anlagen...
Zu den übergeordneten Zielen des Projektvorhabens gehört die Reduzierung des CO2-Fußabdrucks der in Europa erzeugten oder nach Europa importierten Textilien. Die hier geplante Forschung und Entwicklung kann den CO2-Fußabdruck im entscheidenden Maße beeinflussen. Gleichzeitig kann mit der Textilbranche die zweitgrößte Konsumgüterbranche der Welt einen wesentlichen Beitrag zum Klimaschutz leisten. Dazu soll im Rahmen des Forschungsvorhabens ein Spannrahmentrockner für die Textilveredlung entwickelt werden, der bei Bereitstellung unterschiedlicher Erdgas-Wasserstoff-Gemische - bis hin zu 100% Wasserstoff in der Brenngasversorgung - zuverlässig arbeitet und Produkte mit hoher Qualität herstellt. Im Zentrum des Vorhabens steht mit dem Spannrahmentrockner eine der am häufigsten in der Textilveredlung zum Einsatz kommende Thermomaschine. Hierbei handelt es sich um einen Konvektionstrockner, der nasse Textilien im Anschluss an die Vorbehandlung, Farbgebung, Ausrüstung oder Beschichtung durch Anströmen mit heißer Luft aus einem in der Regel erdgasbetriebenem Brenner trocknet (etwa 150 Grad C Betriebstemperatur) oder aber auch trockene Ware und Spezialausrüstungen (bei Temperaturen größer als 170 Grad C) fixiert oder kondensiert. Die installierte Heizleistung eines durchschnittlichen Spannrahmens von 2 bis 3 MW und die mittlere benötigte Wärmemenge von 3.600 kJ pro kg Ware verdeutlichen den hohen Energiebedarf einer solchen Thermomaschine. Während des Betriebes steht die textile Ware in unmittelbarem Kontakt mit dem Abgas des Brenners.
Verlegungen von Klimastationen und Änderungen in der Beobachtungstechnik rufen Inhomogenitäten in den Temperaturzeitreihen hervor. Es gibt Hinweise darauf, dass solche Sprünge im Mittel negativ sind und somit einen negativen künstlichen Trend in die Daten einfügen. Darum werden standardmäßig Homogenisierungsverfahren angewendet, die diese künstlichen Anteile des Trends beseitigen sollen. Eine vollständige Korrektur ist allerdings aus prinzipiellen Gründen unmöglich, genau wie bei Regressionsverfahren, durch die auch nur ein bestimmter Anteil der Varianz erklärt werden kann. Vor allem bei niedrigen Signal-Rausch-Verhältnissen (SRV), wenn das Rauschen groß gegenüber der durch die Inhomogenitäten erzeugten Varianz ist, wird die tatsächlich notwendige Trendkorrektur bei weitem nicht erreicht. Niedrige SRV herrschen insbesondere in stationsarmen Gebieten der Welt, wo Vergleichsstationen weit entfernt sind. Bei der Berechnung globaler Mittelwerte erhalten aber gerade solche Stationen ein großes Gewicht, da sie weite Gebiete repräsentieren müssen. Wir nehmen daher an, dass der globale Temperaturtrend, auch wenn er aus homogenisierten Daten berechnet wird, deutlich unterkorrigiert ist. Mithilfe künstlicher Daten werden wir zunächst die beiden hauptsächlich verwendeten Korrekturmethoden untersuchen. Der Zusammenhang zwischen der erreichten und der eigentlich notwendigen Trendkorrektur wird für verschiedene realistische SRV bestimmt. Da auch die vorangegangene Identifizierung der Bruchpositionen eine indirekte Rolle spielen kann, werden insgesamt acht Prototypen gängiger Homogenisierungsverfahren getestet. Diese Information wird schließlich verwendet, um die Temperaturtrends eines realen, weitverbreiteten und bereits homogenisierten Datensatzes zu korrigieren und ihre Genauigkeit abzuschätzen.
Auf der Grundlage der Sedementation in Fluessigkeiten und der Bestimmung des Konzentrationsverlaufs durch Druckmessung wird ein automatisches, kompaktes Korngroessenmessgeraet fuer den Durchmesserbereich von 1 bis 100 um entwickelt, das zum Anschluss an Prozessrechner geeignet ist.
Die Extraktion ist als produktschonendes, niedrig-energetisches Trennverfahren prädestiniert für biotechnologische Prozesse. Die Anwendung der Extraktion im biotechnologischen Downstream kann eine Schlüsselrolle einnehmen, um den Weg zu Produkten und Produktionsprozessen der nächsten Generation zu ebnen. Im industriellen Maßstab wird die Extraktion vor allem in Gegenstromkolonnen realisiert, die häufig nur mit minimaler Instrumentierung ausgestattet sind. Daher fehlen Informationen über den inneren Zustand der Kolonne. Zusätzlich kann die obere Betriebsgrenze modellbasiert nur mit großen Unsicherheiten vorhergesagt werden. Dem entsprechend erfordern mögliche Unsicherheiten in der bisherigen Auslegung für einen stationären Betrieb signifikante Sicherheitsaufschläge und führen damit zu Effizienzverlusten, vor allem bei der nachgeschalteten, energetisch aufwendigen Regeneration des Lösungsmittels mittels Rektifikation. Im Hinblick auf biotechnologische Prozesse werden Schwankungen im Produktstrom die notwendigen Sicherheitsaufschläge und damit die Effizienzverluste deutlich erhöhen. Um die Anwendung der Extraktion im biotechnologischen Downstream zu realisieren und Effizienzverluste zu vermeiden, bedarf es einer Flexibilisierung des Betriebs und einer zuverlässigen Zustandsdiagnostik für Extraktionskolonnen. Ziel ist die Einhaltung der Produkt- bzw. Prozessspezifikationen bei optimalem Betrieb. Innerhalb des Projekts soll daher anhand einer Extraktionskolonne im technischen Maßstab ein optimaler und flexibler Betrieb realisiert werden. Dazu wird eine Kombination aus Messtechnik und schnellem, prädiktivem Modell die Kolonne zu einem smarten, gläsernen Apparat machen, der einen effizienten und autonomen Betrieb am energetischen Optimum (min. Lösemittelstrom) ermöglicht. Die enge Zusammenarbeit von Apparate- und Messtechnikherstellern, sowie Partnern aus der Prozessindustrie sichert außerdem die Übertragbarkeit der entwickelten Systematik in den industriellen Maßstab.
Die bisherigen Kenntnisse physikalischer, chemischer, klimatologischer und topogra-phischer Parameter bei der Staubdeposition an Stadtbäumen sollen vertieft werden. Dazu werden Meßverfahren getestet und weiterentwickelt, um die Staubauflage auf Blattoberflächen qualitativ und quantitativ erfassen zu können. Anschließend soll systematisch die räumliche Verteilung des Staubs in der Krone eines Straßenbaums an einem stark verkehrsbelasteten Standort in Karlsruhe, abhängig von jahreszeitli-chen, klimatologischen und verkehrstechnischen Einflüssen, bestimmt werden. Steu-ernde klimatische Parameter, wie Strahlungsbilanz, Luft- und Oberflächentemperatu-ren, Luft- und Oberflächenfeuchte, sowie die Bewegungsvektoren der Luft sind kontinuierlich sowie diskontinuierlich in Transekten mit hoher räumlicher Auflösung durch die Krone zu untersuchen. Die Gradienten sollen bis zu den Blattoberflächen in Zentimeterschritten unter kombiniertem Einsatz von Ultraschall und Thermoane-mometrie bestimmt werden. Parallel dazu ist der Staubgehalt der Luft und der auf den Blattoberflächen zu ermitteln, um die raum-zeitliche Struktur der Staubauflage sowie möglicherweise eine qualitative Differenzierung in der Krone erfassen zu können. Ein- und Austräge des Staubes sollen wahrend der Vegetationsperiode für einzelne Segmente des beprobten Baumes bilanziert werden. Dies ist die Vor-aussetzung, um stichprobenhaft Abschätzungen der gesamten Partikeln- und -austräge zuverlässig vornehmen zu können. Erst so läßt sich eine Stoffflussanalyse von der Atmosphäre bis an die Pflanzenoberfläche durchfuhren. Auf dieser Grundlage können mit Hilfe weiterführender Analysen unterschiedliche Baumarten, Vegetations- und Stadtstrukturen in die Stauberfassung einbezogen werden.
Im Teilvorhaben 'Aufbau eines Demonstrators zur Co-Verdampfung von Perowskit-Absorbern' des öffentlich geförderten Forschungsvorhabens 'TANTRUM' liegt der Fokus auf der Industrialisierung der Perowskit-Silizium-Tandem-Technologie. Das vorliegende Projekt hat den Ausbau der Heterojunction-Forschungslinie von Meyer Burger zu einer Perowskit-Silizium-Tandem-Linie mit einem vakuumbruchfreien Verdampfer Prozess zum Ziel. Aufbauend auf der im Projekt erarbeitet Aufstellung der bisher bekannten Schichtsysteme, der verwendeten Materialien und der Verfahren zur Herstellung wird anhand eines Bewertungsschemas eine bevorzugte Prozessroute ermittelt. Neben den Funktionalitäten der Materialien und Verfahrenstechniken, der IP/Rechtslage, wird hierbei auch das ökologische Gefährdungspotenzial mit betrachtet. Entsprechend der erarbeiteten Entscheidungsmatrix wird ein industrialisierbarer Prozessfluss definiert und ein entsprechendes Verdampfer-Equipment inkl. Facility-Anpassungen, sowie Messtechnik und Handhabungstechnik für den Transport aufgebaut, welches auch dem besonderen Recovery-Verhalten von Perowskiten gerecht wird. Während des Ramp-up des Basis-Tandem-Prozesses bei Meyer Burger (Germany) GmbH werden die Einzelprozesse der Top-Zelle entwickelt und anschließend im Gesamt-Tandem-Prozess integriert. Als Maßstab dient hier der Referenzprozess des HZB als Benchmark.
| Origin | Count |
|---|---|
| Bund | 4784 |
| Land | 99 |
| Wissenschaft | 48 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 23 |
| Ereignis | 1 |
| Förderprogramm | 4680 |
| Text | 114 |
| unbekannt | 94 |
| License | Count |
|---|---|
| geschlossen | 174 |
| offen | 4731 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 4569 |
| Englisch | 664 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 11 |
| Datei | 22 |
| Dokument | 66 |
| Keine | 2830 |
| Unbekannt | 6 |
| Webdienst | 8 |
| Webseite | 1997 |
| Topic | Count |
|---|---|
| Boden | 2975 |
| Lebewesen und Lebensräume | 2875 |
| Luft | 2775 |
| Mensch und Umwelt | 4900 |
| Wasser | 2507 |
| Weitere | 4912 |