API src

Found 5405 results.

Similar terms

s/mestechnik/Messtechnik/gi

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

Hochpräzise Messtechnik für online Wetter-/Klimamessungen in der gesamten mittleren Atmosphäre, TP5: Softwareentwicklung

Optimierung des DIC-Messsystems zur Erfassung von Deformationen an Windenergieanlagen

Ziel des Vorhabens ist die Weiterentwicklung eines optischen Messsystems zur Erfassung komplexer, instationärer Rotorblattdeformationen an Windenergieanlagen (WEA) zwecks Verbesserung der aeroelastischen Robustheit künftiger WEA. Das Messsystem basiert auf dem Verfahren der digitalen Bildkorrelation (Digital Image Correlation, DIC) und ist in der Lage, die Verformungen berührungslos und ohne die Integration zusätzlicher Sensoren in das Rotorblatt zu messen. Die Messtechnik soll so verbessert werden, dass sie - im Vergleich zum aktuellen Stand des DIC-Messsystems - in der Lage ist, über einen erweiterten Gierwinkelbereich der WEA und eine längere Betriebsdauer präzise und effizient zu messen. Hierdurch sollen erstmals Langzeitmessungen mit der DIC-Messtechnik an WEA ermöglicht werden. Die Messdaten lassen sich dann zur Validierung der numerischen Auslegungswerkzeuge nutzen, mit denen schließlich die Rotorblätter möglichst präzise strukturdynamisch ausgelegt werden können. Dies ist notwendig, um die zukünftigen mechanischen Herausforderungen bei weiter wachsenden Rotordurchmessern zu bewältigen. Mittels neuartiger, auf Methoden der künstlichen Intelligenz basierenden Verarbeitungs- und Analyseverfahren, soll die Effizienz und damit einhergehend die Attraktivität der DIC-Messtechnik an WEA für Forschung und Industrie deutlich gesteigert werden. Ziel ist es, die maximale Messdauer von aktuell etwa 15 Minuten auf 8 Stunden zu erweitern, den Auswerteprozess für 15 Minuten Messdaten von 3 Werktagen inklusive Personaleinsatz auf wenige, automatisierte Stunden zu reduzieren und die Kompensation von Gierwinkeländerungen der WEA von bis zu ±15 Grad zu ermöglichen. Die DIC-Messtechnik wird damit langfristig zu einem etablierten Verfahren zur Bestimmung der Rotorblattverformungen an WEA und hilft, den Mangel an experimentellen Validierungsdaten für die strukturmechanische und aeroelastische Auslegung zu verringern.

Effiziente, stabile und anwendungsreife Reaktoren für die photoelektrochemische Wasserspaltung auf Basis von nanostrukturierten Absorbern, Teilvorhaben: Sonnensimulatoren für die photoelektrochemische Wasserspaltung

Im vorliegenden Projekt soll die Technologie von SunHydrogen zur photoelektrochemischen Wasserspaltung vom Laboraufbau zu einer Demonstrationsanlage weiter geführt werden, um damit die industrielle Fertigung im 1000 Stück-Maßstab vorzubereiten. Das Projekt zielt auf ein photoelektrochemisches Modul mit einer solar-to-hydrogen-Effizienz von mindestens 10 % und einer aktiven Fläche von etwa 100 cm2 pro Elektrode bei mindestens 12 Elektroden pro Modul. Von dem übergeordneten Ziel leiten sich u.a. Arbeitsinhalte in dem Bereich ‘Messtechnik’ ab, da der Mangel an geeigneter Messtechnik für photoelektrochemische Anwendungen ihre industrielle Umsetzung erschwert. Daher werden die Projektpartner im Bereich ‘Analytik’ Messgeräte und -verfahren entwickeln. Sie verfolgen das Ziel, eine effektive Produktionskontrolle sowie reproduzierbare Forschungs- und Entwicklungsarbeiten im Labor und unter Anwendungsbedingungen zu ermöglichen. Der Projektpartner Wavelabs wird Sonnensimulator-Messsysteme für die Untersuchung von photoelektrochemischen Systemen weiterentwickeln und dabei sowohl die Anwendung im Labor als auch im Rahmen der Produktionskontrolle adressieren. Die technologische Grundlage bilden LED-basierte Systeme für die Photovoltaik-Industrie. Diese können nur mit Einschränkungen für photoelektrochemische Messungen verwendet werden. Entwicklungsarbeiten sind beispielsweise erforderlich, um die zeitliche Stabilität des Spektrums und die spektrale Zusammensetzung des Spektrums an die veränderten Anforderungen anzupassen. Vergleichbare Systeme sind auf dem Markt bislang nicht verfügbar.

Windschutzstreifen zur Leistungssteigerung von Windenergieanlagen im komplexen Terrain, Teilvorhaben: Entwicklung und Einsatz drohnengestützter Messtechnik für die Vermessung der Windcharakteristiken von Windenergieanlagen und Windschutzstreifen

Der Ausbau der Windenergie im Binnenland ist entscheidend, um die Herausforderungen der Energiewende zu bewältigen. Die Windgeschwindigkeiten sind im Vergleich zu Standorten auf See geringer und die Anströmung komplexer. Das Forschungsvorhaben WINDbreaks soll dabei helfen die Volllaststunden der Windenergieanlagen im komplexen Terrain zu erhöhen. Hierfür sind messtechnische und numerische Untersuchungen an Windenergieanlagen (WEA) und an Baumreihen, die als Windschutzstreifen (WSS) dienen, geplant. Die Überströmung der WSS führt zu einer Beschleunigung der Windgeschwindigkeit und diese geht pro-portional zur dritten Potenz in den Leistungsertrag von WEA ein. Ein zusätzlich positiver Nebeneffekt ist das flachere Geschwindigkeitsprofil in Höhe der Rotorblätter, welches eine gleichmäßigere Verteilung der angreifenden Kräfte zur Folge hat. Im Teilprojekt erfolgen die Entwicklung der Drohnen-Windmesstechnik und deren umfangreicher Einsatz zur Generierung von Messdaten für die CFD-Analysen des Projektpartners Hochschule Ansbach (HSA). Der assoziierte Projektpartner N-ERGIE stellt die Messorte zur Verfügung. Es wird eine synchrone Steuerung von einer optimierten Windmess-Drohne und einer neu aufgebauten Windmess-Drohne entwickelt und für Messflüge eingesetzt. Zur markanten Verlängerung der Flugzeiten der Drohnen erfolgt die Entwicklung einer drahtgestützten Energieversorgung der Drohnen. Das mit zwei Referenz-Bodenstationen ergänzte Messsystem wird an WEA und WSS bei verschiedensten lokalen und meteorologischen Randbedingungen eingesetzt.

Wirksamkeit von Lärmschirmen an 2- und 6-streifigen Straßenquerschnitten

Die Schallpegelmessungen werden gemäß Forschungsprogramm Straßenwesen FA 2.206 nacheinander abgewickelt (Autobahnen in 2001, Straßen in 2002). Es wird jeweils nur an einem Messort und dort an jeweils 7 Messpunkten gleichzeitig gemessen. Das Verkehrsaufkommen wird ebenfalls messtechnisch erfasst. Alle Messwerte werden für die Auswertung elektronisch gespeichert. Die Auswertungen werden nach jeder Messkampagne durchgeführt. Das Ziel der gesamten Messreihen ist es, nachzuweisen, inwieweit die Vernachlässigung der Boden- und Meteorologiedämpfungen bei der Schallausbreitungsberechnung über Schallschirme gerechtfertigt ist.

Betrieb, Technische Verfügbarkeit und Administration des Forschungsparks Windenergie Krummendeich WiValdi

Das DLR errichtet derzeit gemeinsam mit Partnern aus dem Forschungsverbund Windenergie (FVWE) den Forschungspark Windenergie Krummendeich (WiValdi) mit zwei hochinstrumentierten Windenergieanlagen (WEA) neuster Bauart (je. 4,26 MW, 115 m Rotordurchmesser, 92 m Nabenhöhe), die durch vier meteorologische Messmasten (2x 100 m, 2x 150 m) flankiert werden. In einer bereits begonnen zweiten Ausbaustufe wird eine kleinere modulare WEA (ca. 500 kW, 40 m Rotordurchmesser, 50 m Nabenhöhe) sowie ein weiterer 70 m hoher meteorologischer Messmast errichtet. Das hier dargestellte Projekt BETA-Wind soll den sicheren Betrieb und die zuverlässige Verfügbarkeit des Forschungsparks für wissenschaftliche Zwecke unterstützen. Dies beinhaltet regelmäßige und unregelmäßige Wartungsarbeiten der Messtechnik am Standort und Teile des administrativen Betriebs mit der Bereitstellung von Messdaten und der technischen Dokumentation, der administrativen Verwaltung sowie die Begleitung von ersten Kampagnen nach Inbetriebnahme. Weiterhin sollen in BETA-Wind die Betriebsprozesse des Forschungsparks analysiert und an sich ändernde Randbedingungen aus Wissenschaft und Wirtschaft angepasst werden, um die Verfügbarkeit und Qualität der Großforschungsinfrastruktur sicherzustellen und eine breite Nutzbarkeit der generierten Messdaten zu gewährleisten. Zur Sicherstellung der industriellen Relevanz und damit dem Technologietransfer in die Wirtschaft, sollen regelmäßige Workshops mit und für die Industrie stattfinden.

Optimierung des DIC-Messsystems zur Erfassung von Deformationen an Windenergieanlagen, Teilvorhaben: Optimierung der Datenauswertung und Messtechnik

Ziel des Vorhabens ist die Weiterentwicklung eines optischen Messsystems zur Erfassung komplexer, instationärer Rotorblattdeformationen an Windenergieanlagen (WEA) zwecks Verbesserung der aeroelastischen Robustheit künftiger WEA. Das Messsystem basiert auf dem Verfahren der digitalen Bildkorrelation (Digital Image Correlation, DIC) und ist in der Lage, die Verformungen berührungslos und ohne die Integration zusätzlicher Sensoren in das Rotorblatt zu messen. Die Messtechnik soll so verbessert werden, dass sie - im Vergleich zum aktuellen Stand des DIC-Messsystems - in der Lage ist, über einen erweiterten Gierwinkelbereich der WEA und eine längere Betriebsdauer präzise und effizient zu messen. Hierdurch sollen erstmals Langzeitmessungen mit der DIC-Messtechnik an WEA ermöglicht werden. Die Messdaten lassen sich dann zur Validierung der numerischen Auslegungswerkzeuge nutzen, mit denen schließlich die Rotorblätter möglichst präzise strukturdynamisch ausgelegt werden können. Dies ist notwendig, um die zukünftigen mechanischen Herausforderungen bei weiter wachsenden Rotordurchmessern zu bewältigen. Mittels neuartiger, auf Methoden der künstlichen Intelligenz basierenden Verarbeitungs- und Analyseverfahren, soll die Effizienz und damit einhergehend die Attraktivität der DIC-Messtechnik an WEA für Forschung und Industrie deutlich gesteigert werden. Ziel ist es, die maximale Messdauer von aktuell etwa 15 Minuten auf 8 Stunden zu erweitern, den Auswerteprozess für 15 Minuten Messdaten von 3 Werktagen inklusive Personaleinsatz auf wenige, automatisierte Stunden zu reduzieren und die Kompensation von Gierwinkeländerungen der WEA von bis zu ±15 Grad zu ermöglichen. Die DIC-Messtechnik wird damit langfristig zu einem etablierten Verfahren zur Bestimmung der Rotorblattverformungen an WEA und hilft, den Mangel an experimentellen Validierungsdaten für die strukturmechanische und aeroelastische Auslegung zu verringern.

Messnetz Oberflächenwasser

Das Oberflächenwassermessnetz besteht aus Pegeln an denen die Wasserstände und Durchflussmengen der Flüsse ermittelt werden. Beobachtungsschwerpunkt sind die Hochwasserpegel. Die Leistungen umfassen: - Wasserstandsmessungen sowie Durchflussmessungen zur Kontrolle und Korrektur der Wasserstands-/Durchflussbeziehungen, - Erfassung, Prüfung und statistische Aufbereitung der hydrologischen Daten, - Bau und Instandhaltung von Pegelanlagen inkl. Ausrüstung mit neuer Messtechnik wie Datenfernübertragung (DFÜ), ggf. Rückbau nicht mehr benötigter Pegel, - Erfassung und Pflege der Pegelstammdaten, - Schulung und Betreuung der ehrenamtlichen Beobachter.

Energieeffizienzbasierte Regelung von dezentral gespeisten Wärme- und Kältenetzen unter Berücksichtigung von Lebensdauereffekten, Teilvorhaben Begleitung des Vorhabens, Praxisumsetzung und Wissenstransfer

Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zur Erreichung dieser Ziele sollen Modelle zur Ermittlung von Energieverlusten sowie Stressfaktoren entwickelt und durch Messungen von z.B. Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW-lnstandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, Kl-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen sollen sowohl ein modellprädiktiver als auch ein Kl-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Begleitung des Vorhabens, Praxisumsetzung und Wissenstransfer Im Rahmen dieses Teilvorhabens begleitet der AGFW die forschenden Verbundpartner und unterstützt die Umsetzungen der entwickelten Ansätze und Verfahren in der Praxis. Der Beitrag des Branchenverbands umfasst die Einbringung von zusätzlicher Messtechnik, die Durchführung von Messungen, die Begleitung bei der Dokumentation und die Veröffentlichung der Ergebnisse sowie die Verbreitung der Forschungsergebnisse in der Fernwärmebranche. Weiterhin prüft der AGFW eine Einbindung in eine bestehende Umgebung zur Verfügung und führt Veranstaltungen für die Zielgruppe durch.

1 2 3 4 5539 540 541