An den Depositionsmessstationen werden ganzjährig im regelmäßigen Zyklus (28 Tage) mit verschiedenen Messeinrichtungen Parameter zum Monitoring von Schadstoffen aus der Luft erfasst. Zum Monitoring eutrophierender und versauernder Einträge sind elektrisch gekühlte Niederschlagssammler (Elektrisch gekühlter Bulk, Wet only) sowie Passivsammler für die Ermittlung gasförmiger Ammoniak- und NO2-Konzentrationen installiert. Der Eintrag von Metallen wird über die Sammlung des Staubniederschlags (Bergerhoff-Methode) ermittelt. Messdaten sind gegen Bereitstellungsgebühr bei der Datenstelle des LfU erhältlich.
Depotcontainerstandplätze Depotcontainerstandplätze sind Einrichtungen zur sortenreinen Erfassung von Altpapier, Altglas (braun, grün, weiß), Leichtverpackungen (z. B. Kunststoffe und Metalle) sowie Elektro- und Elektronikkleingeräten (ohne Batterien und Akkumulatoren). Die Depotcontainerstandplätze befinden sich im Straßenraum und stehen allen Bürger:innen kostenlos zur getrennten Entsorgung von Wertstoffen zur Verfügung. Die Nutzungszeiten der Depotcontainer sind werktags (Mo. – Sa.) von 07:00 bis 20:00 Uhr. Nur in diesen Zeiten dürfen insbesondere Altglascontainer genutzt werden. Recyclinghöfe Auf Recyclinghöfen der Stadtreinigung Hamburg können neben Sperrmüll, Metallen, Grünabfall und Alttextilien auch weitere Abfallfraktionen und Problemstoffe in haushaltsüblichen Mengen abgegeben werden. Die Recyclinghöfe stehen allen Hamburger Bürgerinnen und Bürgern zur Verfügung. Zur Legitimation bei der Anlieferung ist ein gültiges Ausweisdokument oder eine Meldebescheinigung erforderlich. Firmenkunden und Institutionen (z. B. Vereine) können die Recyclinghöfe nur kostenpflichtig nutzen. Hinweis zur Datenaktualität Die Geo-Daten werden regelmäßig aktualisiert. Die Aktualisierung erfolgt in der Regel monatlich. Kurzfristige baustellenbedingte Umstellungen von Depotcontainern sind daher teilweise nicht enthalten.
This dataset presents salinity-normalized dissolved major element (Ca, Mg, K, Sr, Li) concentrations in the western Atlantic Ocean and the Arctic Ocean. Atlantic samples were collected along the western meridional GEOTRACES section GA02 comprised of cruises JR057 (Punta Arenas (Chile) 02-03-2011 to Las Palmas (Spain) 06-04-2011 ), PE321 (Bermuda 11-06-2010 to Fortaleza (Brazil) 08-07-2010), PE319 (Scrabster 28-04-2010 to Bermuda 25-05-2010), and PE358 (Reykjavik (Iceland) 29-07-2012 to Texel (Netherlands) 19-08-2012). Samples for dissolved major ions were sub-sampled from trace metal sample collection stored at the Royal Netherlands Institute for Sea Research (NIOZ). Samples for the Arctic Ocean were collected on BODC cruise JR271 (Immingham 01-06-2012 to Reykjavik 02-07-2012). Samples were analysed for Na, Ca, Mg, K, Li and Sr using a Varian-720 ES ICP-OES. Samples were diluted by a factor of 78-82 in 0.12 M HCl to the same final salinity. Multiple spectral lines were selected for each element, and samples were corrected for instrumental drift by sample-standard bracketing with IAPSO P157 diluted to the same final salinity. Calibration was performed on 7 dilutions of IAPSO P157. Element-to-sodium ratios were calculated for all combinations of spectral lines. Assuming a constant Na-to-salinity (PSU)=35 ratio, the element/Na ratios were multiplied by 0.46847 µmol kg-1 to obtain the salinity (PSU)-normalized element concentration, and by the ratio of practical to absolute salinity (TEOS-10). The TEOS-10 absolute salinities were calculated from EOS-80 values using the Gibb's Oceanographic Toolbox using the R package 'gsw' (v 1.1-1).
Zielsetzung: Gegenstand des Projektes ist die Erarbeitung neuer Passivierungskomplexe, die über einen größeren pH-Bereich stabil sind. Damit wird zum einen Kobalt ersetzt, und zum anderen wird Spülwasser effizienter genutzt. Im Stand der Technik wird das Konfliktmetall Kobalt verwendet, und die Differenzen der pH-Bereiche in der Oberflächenpassivierung sind so groß, dass zwischen den einzelnen Prozessschritten umfangreiche Spülgänge nötig sind. Dabei kommt es zur Ausschleppung der funktionalen Spezies und wertvolle Metalle gehen verloren. Aufgrund des hohen Energie- und Wasserbedarfs sowie Ressourceneinsatzes im Abbau und der Verhüttung von Kobalt und den erforderlichen Spülwasservolumina im Stand der Technik weist dieses Verfahren eine verhältnismäßig negative Umweltbilanz auf. Um den Nachhaltigkeitsgedanken auch in diesem Marktsegment konsequent fortzuführen, sind neue Lösungen erforderlich. Der Ersatz von Kobaltkomplexen durch pH-stabilere Komplexe, die auf dem Spülwasser zurückgewonnen werden, weist eine deutlich bessere Umweltbilanz auf. Marktseitig werden für die Oberflächenpassivierung in Deutschland jährlich unter anderem 100 t Kobalt und 624 Millionen Liter Frischwasser benötigt.
Untersuchung spezieller Anwendungsfälle für Beschichtungen um Anwendungsempfehlungen zu formulieren, Merkblätter zu erstellen sowie neue Prüfungsrichtlinien zu erarbeiten. Reperaturbeschichtungen (Smart Repair), die Beschichtung nichtrostender Stähle und Oberflächennitrierung stehen im Fokus der Untersuchungen. Aufgabenstellung und Ziel Die wässrigen Umgebungen, welchen Wasserbauten ausgesetzt sind, stellen häufig besonders hohe Ansprüche an den Bauwerksschutz. Das gilt insbesondere für den Korrosionsschutz von Stahlkomponenten. Organische Beschichtungsstoffe wie Epoxide und Polyurethane aus Erdölerzeugnissen bieten für einen überwiegenden Teil an Anwendungsfällen eine effektive Methode zum flächigen Korrosionsschutz. Durch die Adaption technischer Neuerungen und Lösungen, die bisher im Stahlwasserbau keine Anwendung finden, ist es denkbar, die bisherigen Korrosionsschutzstrategien sinnvoll zu ergänzen. Bereiche mit Optimierungspotenzial sind die Kosten, die Ökobilanz und die Vermeidung häufig auftretender Probleme. Ziel ist es daher, alternative Oberflächenbehandlungen eingehend zu untersuchen, um den Korrosionsschutz zukünftig effizienter gestalten zu können. Die BAW reagiert damit auf den allgemeinen Bedarf seitens der WSV bzw. der Wasserstraßen- und Schifffahrtsämter. Der konkrete Fokus liegt auf den Themen: - Verbesserte Reparaturkonzepte (Smart Repair / Spot Repair) - Einsatz von (Plasma-)Nitrierungen als Korrosionsschutz - Adressierung von Haftungsproblemen auf nichtrostenden Stählen Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Kleinflächige Schadstellen am Korrosionsschutz und das daraus resultierende Auftreten von Korrosion sind ein häufiges Bild bei Inspektionen von Bestandsbauten. Sie wirken sich zwar negativ auf die Substanz aus, rechtfertigen aber oft nicht den Aufwand einer vollständigen Erneuerung der Beschichtung. In solchen Fällen stellt die lokale Instandsetzung geschädigter Stellen mit SpotRepair-Beschichtungen eine angemessene Gegenmaßnahme dar (BAW 2020). Diese stellen den Korrosionsschutz wieder her und unterbinden die weitere Korrosion, bis eine Erneuerung des gesamten Korrosionsschutzes wirtschaftlich sinnvoll ist. Gleichzeitig haben Spot-Repair-Beschichtungen i. d. R. den Vorteil, dass sie schnell und einfach angewendet werden können und nicht von Fachfirmen ausgeführt werden müssen. Das Interesse der Wasserstraßen- und Schifffahrtsämter an dieser Technik zeigt sich deutlich an der Nachfrage nach Spot-Repair-Schulungen, welche die BAW bereits seit einigen Jahren anbietet. Eine große Hürde für die Adaption der Reparaturtechniken in der WSV ist die Auswahl geeigneter Systeme. Für den flächigen Korrosionsschutz kann ein geeigneter Beschichtungsstoff aus der „Liste der zugelassenen Systeme“ der BAW ausgewählt werden. Ein entsprechendes Verfahren für Reparatursysteme wird im Rahmen dieser Untersuchung erarbeitet. Das Nitrieren von Stählen für die Härtung von Werkstücken bewährt sich bereits seit über 100 Jahren. Es ist ebenfalls bekannt, dass bestimmte Verfahren auch für den Korrosionsschutz unter atmosphärischen Bedingungen geeignet sind. Welche Verfahren sich jedoch auch im Stahlwasserbau für die WSV bewähren und sich als wertvolle Ergänzung zu den bisherigen Korrosionsschutzstrategien erweisen könnten, ist bisher kaum untersucht worden (Baier et al. 2011). Nichtrostende Stähle (NiRoSta) sind selbst gegenüber typischen korrosiven Einflüssen im Stahlwasserbau weitgehend inert, können jedoch durch Bimetallkorrosion die Korrosion anderer in Kontakt befindlicher Metalle beschleunigen. Daher kann auch eine Beschichtung von NiRoSta sinnvoll sein. Allerdings treten insbesondere bei Beschichtungen auf NiRoSta in Gegenwart von Wasser oder bei dauerhaft hoher Luftfeuchtigkeit häufig Enthaftungsprobleme auf (Funke und Zatloukal 1978). Daher sollen verschiedene Vorbehandlungen von NiRoSta untersucht werden, um diesem Problem im Wasserbau zukünftig besser vorbeugen z
In einer Zinksekundaerhuette werden in einem neu entwickelten Schmelzreaktor zinkarme Reststoffe, vorwiegend aus der Zinkmetallurgie, mit Zinkgehalten kleiner 15 Prozent direkt aufgearbeitet. Fluechtige Metalle, hauptsaechlich Zink und Blei werden hierbei in einem oxidischen Filterstaub stark angereichert und die restlichen Bestandteile zu einer als Baustoff verwendbaren Schlacke verschmolzen. Damit wird erstmals ein grosstechnisches, wirtschaftlich arbeitendes Aufarbeitungsverfahren fuer metallarme Vorstoffe fuer die Verhuettung von Nichteisenmetallen geschaffen. Der Schmelzreaktor besteht aus einer wassergekuehlten, zylindrischen Brennkammer mit vertikaler Achse. Er ist durch ein Uebergangsstueck mit dem Schlackenabsetzherd verbunden. Hohe Temperaturen der Schmelze und das bei der unterstoechiometrischen Verbrennung des eingetragenen Kohlenstoffs gebildete CO bewirken, dass das in der Beschickung befindliche Zink als Zinkdampf in die Gasphase uebergeht. Der Zinkdampf wird mit dem Abgasstrom aus dem Reaktor ausgetragen und gelangt nach dem Absetzherd in die Nachverbrennungskammer. Durch Zugabe einer definierten Luftmenge verbrennen Zinkdampf und CO vollstaendig zu Zinkoxid und Kohlendioxid. Die staubhaltigen Abgase (Oxidanfall ca. 6.000 t/a) des Schmelzreaktors werden mittels Gewebefilter entstaubt. Das abgeschiedene Oxid wird fuer den weiteren Transport abgefuellt. Rd. 3.000 t/a Mischoxid werden direkt in die Muffeloefen der Zinksekundaerhuette eingetragen.
Der Klimawandel während der mittelalterlichen Klimaanomalie (MCA) und der kleinen Eiszeit (LIA) führte zur Ausdehnung bzw. Verringerung der hypoxischen Bodenbedeckung in der Ostsee. Hier schlagen wir eine Modellierungsstudie vor, um Mechanismen, durch die der Klimawandel zu den beobachteten Trends geführt hat, systematisch zu analysieren und Modellergebnisse anhand von geochemischen Sedimentkerndaten zu validieren. Das Zusammenspiel zwischen physikalischen und biogeochemischen Prozessen führt zu einer komplexen Dynamik, die den Sauerstoffgehalt in der Ostsee steuert. Die Sedimente spielen eine wichtige Rolle, indem sie sowohl als Quelle als auch als Senke für Phosphat fungieren, das den wichtigsten biolimitierenden Nährstoff bildet. Es ist jedoch kaum bekannt, wie der Klimawandel während der MCA zur Ausbreitung von Hypoxie führte. Es wurden bereits verschiedene Auslöser vorgeschlagen, um die Ausbreitung der Hypoxie während der MCA zu erklären, wie z.B. eine erhöhte Produktion von Cyanobakterien unter wärmeren Bedingungen, eine erhöhte / verringerte Stratifikation aufgrund sich ändernder Niederschlagsmuster und eine sedimentäre Freisetzung von Phosphaten. Im ersten Teil des Projekts (Arbeitspaket AP1) werden wir ein modernes Ökosystemmodell verwenden, um Szenarien zu identifizieren, die den Zusammenhang zwischen Klimawandel und Hypoxie im Mittelalter erklären können. Das Modell wird durch die Implementierung eines frühen diagenetischen Moduls verbessert, das chemische Profile im Sediment vertikal auflösen kann (AP2). Für biogeochemische Reaktionen werden temperaturabhängige Ratenausdrücke implementiert. Das Sedimentmodul wird zunächst auf den aktuellen Zustand der Sedimente kalibriert (AP3). Szenarien aus AP1, die die Sauerstofftrends erfolgreich erklären können, werden anschließend in Modellläufen vom Mittelalter bis zur Gegenwart getestet (AP4). Die Simulation des Mittelalters kann durch verschiedene Sedimentproxies validiert werden, die Trends in den Redoxbedingungen des Tiefenwassers, in der Zufuhr von Metallen aus Schelfe in tiefere Becken, welche die Sequestrierung von Phosphat beeinflusst, und in der Menge an in Sedimenten erhaltenem Phosphor und organischer Substanz rekonstruieren können. Die erwarteten Ergebnisse des Projekts sind die Zuordnung der Ausbreitung von Hypoxie während der MCA zu einem Mechanismus und ein verbessertes Verständnis der Rolle der benthischen Dynamik, die die Eutrophierung als Reaktion auf den Klimawandel beeinflusst.
In Deutschland wird in vielen Städten und Gemeinden das Regenwasser über eine Mischwasserkanalisation zusammen mit dem Abwasser der Haushalte/Kleinindustrien dem Klärwerk zugeführt. Bei Regenereignissen fallen so enorme zusätzliche Wasservolumina im Klärwerk an und müssen - um einen optimalen Betriebszustand beibehalten zu können - im Kanalnetz oder eigens dafür gebauten Rückhaltebecken zwischengespeichert werden. Ökonomischer und - unter dem Aspekt der Grundwasserneubildung - auch ökologischer wäre daher eine direkte Regenwasserversickerung in den Boden vor Ort. Infolge des zunehmenden Straßenverkehrs und anderer Immissionsquellen ist unser Regenwasser heutzutage jedoch nicht frei von Schadstoffen. Dies kann zu einer Belastung des Bodens und des Grundwassers bei der Regenwasserversickerung führen. Deshalb untersucht werden, inwieweit Dachmaterialien als Senke bzw. Quelle für Schadstoffe fungieren können. Bei der unvollständigen Verbrennung von fossilen Brennstoffen entstehen z.B. Verbindungen aus der Klasse der Polyzyklischen Aromatischen Kohlenwasserstoffe (PAK). Einige dieser Verbindungen sind krebserregend und werden frei oder an (Staub-)Partikel adsorbiert mit dem Niederschlag aus der Atmosphäre ausgewaschen. Deshalb wird innerhalb des Projektes die Konzentration der PAK im Regenwasser und den Dachabläufen unterschiedlicher Dachmaterialien (Tonziegel, Betondachsteine, Dachpappe, Titanzink, Kupfer, usw.) als Funktion der Jahreszeit und Regenintensität bestimmt. Gleichzeitig wird auch der Eintrag von Metallen in den Regenwasserabfluss der ausgewählten Dachmaterialen als eine mögliche Schadstoffquelle untersucht. Die Ergebnisse aus den Modelldachexperimenten werden mit Befunden realer Dachflächen verglichen. Eine Hochrechnung des Eintrages größerer Einzugsgebiete erfolgt durch die Ermittlung der Dachflächen und Materialien z.B. mittels Laserscanning und Hyperspektralaufnahmen.
Ziel des Vorhabens ist es unter Berücksichtigung vorhandener Informationen und ggf. zusätzlich zu untersuchender Proben Oberflächenwasserkörper mit natürlicherweise erhöhten Gehalten an Blei (Pb), Cadmium (Cd), Kupfer (Cu), Nickel (Ni) und/oder Zink (Zn) in der Wasserphase oder im Sediment/Schwebstoff zu identifizieren und für diese Wasserkörper die natürlichen Hintergrundkonzentrationen für diese Schwermetalle in der Wasserphase sowie im Sediment/Schwebstoff abzuleiten. Auf Basis der Ergebnisse können einerseits für diejenigen Wasserkörper, in denen die Umweltqualitätsnormen (UQN)für die prioritären Metalle Pb, Cd und Ni auf Grund von natürlichen Gegebenheiten überschritten werden, Ausnahmen nach Artikel 4(5) WRRL geltend gemacht werden. Andererseits wird die Ursachenforschung für die fünf betrachteten Metalle deutlich unterstützt. Dadurch können Minderungsmaßnahmen zielgerichteter und kosteneffizienter gestaltet werden.
Origin | Count |
---|---|
Bund | 4130 |
Europa | 2 |
Kommune | 3 |
Land | 1447 |
Schutzgebiete | 1 |
Wissenschaft | 79 |
Zivilgesellschaft | 4 |
Type | Count |
---|---|
Chemische Verbindung | 96 |
Daten und Messstellen | 1636 |
Ereignis | 12 |
Förderprogramm | 2690 |
Gesetzestext | 12 |
Lehrmaterial | 1 |
Text | 942 |
Umweltprüfung | 30 |
unbekannt | 210 |
License | Count |
---|---|
geschlossen | 861 |
offen | 4414 |
unbekannt | 317 |
Language | Count |
---|---|
Deutsch | 5136 |
Englisch | 1323 |
Resource type | Count |
---|---|
Archiv | 310 |
Bild | 14 |
Datei | 692 |
Dokument | 1700 |
Keine | 1942 |
Multimedia | 1 |
Unbekannt | 6 |
Webdienst | 38 |
Webseite | 3125 |
Topic | Count |
---|---|
Boden | 3610 |
Lebewesen und Lebensräume | 3862 |
Luft | 3505 |
Mensch und Umwelt | 5592 |
Wasser | 3387 |
Weitere | 5083 |