Die US-Umweltorganisation Blacksmith Institute und die Umweltorganisation Green Cross Schweiz legen mit dem Umweltgiftbericht 2008 eine Liste der zehn weltweit gefährlichsten Umweltgifte vor. Mit ihrem Bericht wollen die Organisationen die Öffentlichkeit auf die schwerwiegenden Folgen durch Umweltgifte auf die menschliche Gesundheit aufmerksam machen. Laut Bericht sind die zehn gefährlichsten Umweltgiftquellen weltweit: Goldabbau; Kontaminierte Oberflächengewässer; Kontaminiertes Grundwasser; Luftschadstoffe in Innenräumen; Metallschmelzen und –verarbeitung; Industrieller Bergbau; Radioaktive Abfälle und Abfälle aus dem Uranbergbau; Ungeklärte Abwässer; Städtische Luftverschmutzung; Recycling von Bleibatterien
technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of primary lead production from concentrate (GLO): There are two basic pyrometallurgical processes available for the production of lead from lead or mixed lead-zinc-sulphide concentrates: sinter oxidation / blast furnace reduction route or Direct Smelting Reduction Processes. Both processes are followed by a refining step to produce the final product with the required purity, and may also be used for concentrates mixed with secondary raw materials. SINTER OXIDATION / BLAST FURNACE REDUCTION: The sinter oxidation / blast furnace reduction involves two steps: 1) A sintering oxidative roast to remove sulphur with production of PbO; and 2) Blast furnace reduction of the sinter product. The objective of sintering lead concentrates is to remove as much sulphur as possible from the galena and the accompanying iron, zinc, and copper sulphides, while producing lump agglomerate with appropriate properties for subsequent reduction in the blast furnace (a type of a shaft furnace). As raw material feed, lead concentrates are blended with recycled sinter fines, secondary material and other process materials and pelletised in rotating drums. Pellets are fed onto sinter machine and ignited. The burning pellets are conveyed over a series of wind-boxes through which air is blown. Sulphur is oxidised to sulphur dioxide and the reaction generates enough heat to fuse and agglomerate the pellets. Sinter is charged to the blast furnace with metallurgical coke. Air and/or oxygen enriched air is injected and reacts with the coke to produce carbon monoxide. This generates sufficient heat to melt the charge. The gangue content of the furnace charge combines with the added fluxes or reagents to form a slag. For smelting bulk lead-zinc-concentrates and secondary material, frequently the Imperial Smelting Furnace is used. Here, hot sinter and pre-heated coke as well as hot briquettes are charged. Hot air is injected. The reduction of the metal oxides not only produces lead and slag but also zinc, which is volatile at the furnace operating temperature and passes out of the ISF with the furnace off-gases. The gases also contain some cadmium and lead. The furnace gases pass through a splash condenser in which a shower of molten lead quenches them and the metals are absorbed into the liquid lead, the zinc is refined by distillation. DIRECT SMELTING REDUCTION: The Direct Smelting Reduction Process does not carry out the sintering stage separately. Lead sulphide concentrates and secondary materials are charged directly to a furnace and are then melted and oxidised. Sulphur dioxide is formed and is collected, cleaned and converted to sulphuric acid. Carbon (coke or gas) and fluxing agents are added to the molten charge and lead oxide is reduced to lead, a slag is formed. Some zinc and cadmium are “fumed” off in the furnace, their oxides are captured in the abatement plant and recovered. Several processes are used for direct smelting of lead concentrates and some secondary material to produce crude lead and slag. Bath smelting processes are used: the ISA Smelt/Ausmelt furnaces (sometimes in combination with blast furnaces), Kaldo (TBRC) and QSL integrated processes are used in EU and Worldwide. The Kivcet integrated process is also used and is a flash smelting process. The ISA Smelt/Ausmelt furnaces and the QSL take moist, pelletised feed and the Kaldo and Kivcet use dried feed. REFINING: Lead bullion may contain varying amounts of copper, silver, bismuth, antimony, arsenic and tin. Lead recovered from secondary sources may contain similar impurities, but generally antimony and calcium dominate. There are two methods of refining crude lead: electrolytic refining and pyrometallurgical refining. Electrolytic refining uses anodes of de-copperised lead bullion and starter cathodes of pure lead. This is a high-cost process and is used infrequently. A pyrometallurgical refinery consists of a series of kettles, which are indirectly heated by oil or gas. Over a series of separation processes impurities and metal values are separated from the lead bouillon. Overall waste: The production of metals is related to the generation of several by-products, residues and wastes, which are also listed in the European Waste Catalogue (Council Decision 94/3/EEC). The ISF or direct smelting furnaces also are significant sources of solid slag. This slag has been subjected to high temperatures and generally contains low levels of leachable metals, consequently it may be used in construction. Solid residues also arise as the result of the treatment of liquid effluents. The main waste stream is gypsum waste (CaSO4) and metal hydroxides that are produced at the wastewater neutralisation plant. These wastes are considered to be a cross-media effect of these treatment techniques but many are recycled to pyrometallurgical process to recover the metals. Dust or sludge from the treatment of gases are used as raw materials for the production of other metals such as Ge, Ga, In and As, etc or can be returned to the smelter or into the leach circuit for the recovery of lead and zinc. Hg/Se residues arise at the pre-treatment of mercury or selenium streams from the gas cleaning stage. This solid waste stream amounts to approximately 40 - 120 t/y in a typical plant. Hg and Se can be recovered from these residues depending on the market for these metals. Overall emissions: The main emissions to air from zinc and lead production are sulphur dioxide, other sulphur compounds and acid mists; nitrogen oxides and other nitrogen compounds, metals and their compounds; dust; VOC and dioxins. Other pollutants are considered to be of negligible importance for the industry, partly because they are not present in the production process and partly because they are immediately neutralised (e.g. chlorine) or occur in very low concentrations. Emissions are to a large extent bound to dust (except cadmium, arsenic and mercury that can be present in the vapour phase). Metals and their compounds and materials in suspension are the main pollutants emitted to water. The metals concerned are Zn, Cd, Pb, Hg, Se, Cu, Ni, As, Co and Cr. Other significant substances are fluorides, chlorides and sulphates. Wastewater from the gas cleaning of the smelter and fluid-bed roasting stages are the most important sources. References: Sutherland C. A., Milner E. F., Kerby R. C., Teindl H. and Melin A. (1997) Lead. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of treatment of electronics scrap, metals recovery in copper smelter (SE, RoW): Conversion of Copper in a Kaldo Converter and treatment in converter aisle. technologyComment of treatment of scrap lead acid battery, remelting (RoW): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. technologyComment of treatment of scrap lead acid battery, remelting (RER): The referred operation uses a shaft furnace with post combustion, which is the usual technology for secondary smelters. Typically this technology produces 5000 t / a sulphuric acid (15% concentration), 25’000 t lead bullion (98% Pb), 1200 t / a slags (1% Pb) and 3000 t / a raw lead matte (10% Pb) to be shipped to primary smelters. Overall Pb yield is typically 98.8% at the plant level and 99.8% after reworking the matte. The operation treats junk batteries and plates but also lead cable sheathing, drosses and sludges, leaded glass and balancing weights. From this feed it manufactures mainly antimonial lead up to 10% Sb, calcium-aluminium lead alloys with or without tin and soft lead with low and high copper content. All these products are the result of a refining and alloying step to meet the compliance with the designations desired. The following by products are reused in the process: fine dust, slag, and sulfuric acid. References: Quirijnen L. (1999) How to implement efficient local lead-acid battery recycling. In: Journal of Power Sources, 78(1-2), pp. 267-269.
technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of platinum group metal mine operation, ore with high palladium content (RU): imageUrlTagReplace6250302f-4c86-4605-a56f-03197a7811f2 technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of processing of nickel-rich materials (GLO): Based on typical current technology. technologyComment of smelting and refining of nickel concentrate, 16% Ni (GLO): Extrapolated from a typical technology for smelting and refining of nickel ore. MINING: 95% of sulphidic nickel ores are mined underground in depths between 200m and 1800m, the ore is transferred to the beneficiation. Widening of the tunnels is mainly done by blasting. The overburden – material, which does not contain PGM-bearing ore – is deposed off-site and is partially refilled into the tunnels. Emissions: The major emissions are due to mineral born pollutants in the effluents. The underground mining operations generate roughly 80 % of the dust emissions from open pit operations, since the major dust sources do not take place underground. Rain percolate through overburden and accounts to metal emissions to groundwater. Waste: Overburden is deposed close to the mine. Acid rock drainage occurs over a long period of time. BENEFICIATION: After mining, the ore is first ground. In a next step it is subjected to gravity concentration to separate the metallic particles from the PGM-bearing minerals. After this first concentration step, flotation is carried out to remove the gangue from the sulphidic minerals. For neutralisation lime is added. In the flotation several organic chemicals are used as collector, frother, activator, depressor and flocculant. Sometimes cyanide is used as depressant for pyrite. Tailings usually are led to tailing heaps or ponds. As a result, nickel concentrates containing 7 - 25% Ni are produced. Emissions: Ore handling and processing produce large amounts of dust, containing PM10 and several metals from the ore itself. Flotation produce effluents containing several organic agents used. Some of these chemicals evaporate and account for VOC emissions to air. Namely xanthates decompose hydrolytically to release carbon disulphide. Tailings effluent contains additional sulphuric acid from acid rock drainage. Waste: Tailings are deposed as piles and in ponds. Acid rock drainage occurs over a long period of time. METALLURGY AND REFINING: There are many different process possibilities to win the metal. The chosen process depends on the composition of the ore, the local costs of energy carrier and the local legislation. Basically two different types can be distinguished: the hydrometallurgical and the pyrometallurgical process, which paired up with the refining processes, make up five major production routes (See Tab.1). All this routes are covered, aggregated according to their market share in 1994. imageUrlTagReplace00ebef53-ae97-400f-a602-7405e896cb76 Pyrometallurgy. The pyrometallurgical treatment of nickel concentrates includes three types of unit operation: roasting, smelting, and converting. In the roasting step sulphur is driven off as sulphur dioxide and part of the iron is oxidised. In smelting, the roaster product is melted with a siliceous flux which combines with the oxidised iron to produce two immiscible phases, a liquid silicate slag which can be discarded, and a solution of molten sulphides which contains the metal values. In the converting operation on the sulphide melt, more sulphur is driven off as sulphur dioxide, and the remaining iron is oxidised and fluxed for removal as silicate slag, leaving a high-grade nickel – copper sulphide matte. In several modern operations the roasting step has been eliminated, and the nickel sulphide concentrate is treated directly in the smelter. Hydrometallurgy: Several hydrometallurgical processes are in commercial operation for the treatment of nickel – copper mattes to produce separate nickel and copper products. In addition, the hydrometal-lurgical process developed by Sherritt Gordon in the early 1950s for the direct treatment of nickel sulphide concentrates, as an alternative to smelting, is still commercially viable and competitive, despite very significant improvements in the economics and energy efficiency of nickel smelting technology. In a typical hydrometallurgical process, the concentrate or matte is first leached in a sulphate or chloride solution to dissolve nickel, cobalt, and some of the copper, while the sulphide is oxidised to insoluble elemental sulphur or soluble sulphate. Frequently, leaching is carried out in a two-stage countercurrent system so that the matte can be used to partially purify the solution, for example, by precipitating copper by cementation. In this way a nickel – copper matte can be treated in a two-stage leach process to produce a copper-free nickel sulphate or nickel chloride solution, and a leach residue enriched in copper. Refining: In many applications, high-purity nickel is essential and Class I nickel products, which include electrolytic cathode, carbonyl powder, and hydrogen-reduced powder, are made by a variety of refining processes. The carbonyl refining process uses the property of nickel to form volatile nickel-carbonyl compounds from which elemental nickel subsides to form granules. Electrolytic nickel refineries treat cast raw nickel anodes in a electrolyte. Under current the anode dissolves and pure nickel deposits on the cathode. This electrorefining process is obsolete because of high energy demand and the necessity of building the crude nickel anode by reduction with coke. It is still practised in Russia. Most refineries recover electrolytic nickel by direct electrowinning from purified solutions produced by the leaching of nickel or nickel – copper mattes. Some companies recover refined nickel powder from purified ammoniacal solution by reduction with hydrogen. Emissions: In all of the metallurgical steps, sulphur dioxide is emitted to air. Recovery of sulphur dioxide is only economic for high concentrated off-gas. Given that In the beneficiation step, considerable amounts of lime are added to the ore for pH-stabilisation, lime forms later flux in the metallurgical step, and decomposes into CO2 to form calcite. Dust carry over from the roasting, smelting and converting processes. Particulate emissions to the air consist of metals and thus are often returned to the leaching process after treatment. Chlorine is used in some leaching stages and is produced during the subsequent electrolysis of chloride solution. The chlorine evolved is collected and re-used in the leach stage. The presence of chlorine in wastewater can lead to the formation of organic chlorine compounds (AOX) if solvents etc. are also present in a mixed wastewater. VOCs can be emitted from the solvent extraction stages. A variety of solvents are used an they contain various complexing agents to form complexes with the desired metal that are soluble in the organic layer. Metals and their compounds and substances in suspension are the main pollutants emitted to water. The metals concerned are Cu, Ni, Co, As and Cr. Other significant substances are chlorides and sulphates. Wastewater from wet gas cleaning (if used) of the different metallurgical stages are the most important sources. The leaching stages are usually operated on a closed circuit and drainage systems, and are therefore regarded as minor sources. In the refining step, the combustion of sulphur leads to emissions of SO2. Nitrogen oxides are produced in significant amounts during acid digestion using nitric acid. Chlorine and HCl can be formed during a number of digestion, electrolytic and purification processes. Chlorine is used extensively in the Miller process and in the dissolution stages using hydrochloric acid and chlorine mixtrues respectively. Dust and metals are generally emitted from incinerators and furnaces. VOC can be emitted from solvent extraction processes, while organic compounds, namely dioxins, can be emitted from smelting stages resulting from the poor combustion of oil and plastic in the feed material. All these emissions are subject to abatement technologies and controlling. Large quantities of effluents contain amounts of metals and organic substances. Waste: Regarding the metallurgical step, several co-products, residues and wastes, which are listed in the European Waste Catalogue, are generated. Some of the process specific residues can be reused or recovered in preliminary process steps (e. g. dross, filter dust) or construction (e. g. cleaned slag). Residues also arise from the treatment of liquid effluents, the main residue being gypsum waste and metal hydroxides from the wastewater neutralisation plant. These residuals have to be disposed, usually in lined ponds. In the refining step, quantities of solid residuals are also generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (ironhydroxide, 60% water, cat I industrial waste). References: Kerfoot D. G. E. (1997) Nickel. In: Ullmann's encyclopedia of industrial chemis-try (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. technologyComment of smelting and refining of nickel concentrate, 7% Ni (CN): The nickel concentrate (6.78% beneficiated - product of the mining and beneficiation processes) undergoes drying, melting in flash furnace and converting to produce high nickel matte. The nickel matte undergoes grinding-floating separation and is refined through anode plate casting and electrolysis in order to produce electrolytic nickel 99.98% pure. Deng, S. Y., & Gong, X. Z. (2018). Life Cycle Assessment of Nickel Production in China. Materials Science Forum, 913, 1004-1010. doi:10.4028/www.scientific.net/MSF.913.1004 technologyComment of treatment of metal part of electronics scrap, in copper, anode, by electrolytic refining (SE, RoW): Production of cathode copper by electrolytic refining.
technologyComment of electrolysis of lithium chloride (GLO): Lithium chloride electrolysis is the only process to produce lithium metal. Lithium metal is produced by the electrolysis of molten lithium chloride, whose melting point of 614 °C is lowered by addition of potassium chloride. The lithium chloride – potassium chloride eutectic, with 44.3 % lithium chloride, melts at 352 °C. The salt mixtures used in industry contain 45 – 55 % lithium chloride, which allows electrolysis to be carried out at 400 – 460 °C. 2 LiCL → 2 Li + Cl2 The electrolytic cells most commonly employed resemble the Downs cell used for the produc-tion of sodium, although the American lithium electrolytic cell and other special cells may be used. Wietelmann, U., Bauer, R.: Lithium and Lithium Compounds. Published online: 2000. In: Ullmann's Encyclopedia of Industrial Chemistry, Seventh Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. Wiley InterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/emrw/9783527306732/home
Berichtsjahr: 2022 Adresse: Noltinastr. 29 37297 Berkatal Bundesland: Hessen Flusseinzugsgebiet: Weser Betreiber: Morgan Molten Metal Systems GmbH (ehem. Nolte) MorganMMS Haupttätigkeit: Herstellung keramischer Erzeugnisse >75 t/d oder Ofenkapazität >4 m³ und Besatzdichte >300 kg/m³
Inform.d.Naturschutz Niedersachs. 41. Jg. Nr. 1-B 82-107 Hannover 2022 Die Kleine Hufeisennase Rhinolophus hipposideros (Borkhausen 1797) – Eine Chronologie zum Aussterben der Art in Niedersachsen von Wolfgang Rackow & Hildegard Rupp Inhalt 1 2 2.1 2.2 3 4 4.1 4.2 4.3 Einleitung Fossilfundstellen Einhornhöhle Lichtensteinhöhle Verbreitung in Deutschland Verbreitung in Niedersachsen Historische Daten bis 1900 Daten von 1900 bis 1945 Daten nach 1945 82 83 83 84 85 85 85 91 93 5 6 7 8 9 10 11 12 Quartiere Beringungen und Wanderungen Ursachen für überregionale Bestandseinbrüche Kommt sie wieder? Zusammenfassung Summary Dank Literatur 96 97 97 100 101 102 103 103 1 Einleitung Die Kleine Hufeisennase „[...] gehört zu den muntersten, niedlichsten und interessantesten unserer einheimischen Fledermäuse.“ Diese sehr treffende Feststellung stammt von dem Geologen und Zoologen Carl Koch (1827-1882) (KOCH 1863). Im 19. Jahrhundert zählte die Kleine Hufei- sennase noch zu den häufigsten Fledermausarten Deutsch- lands, wohingegen sie heute vielerorts ausgestorben ist. Ziel dieser Arbeit ist die Nachverfolgung ihrer ehemaligen Verbreitung und ihres Aussterbens in Niedersachsen nach historischen Quellen. Dafür wurden alle zur Verfügung stehenden Daten aus der Literatur zusammengestellt sowie Recherchen an verschiedenen Museen durchgeführt. Die Auswertung aller Fundorte früherer Sommer- und Winterquartiere sowie von historischen Einzelnachweisen ermöglicht es annäherungsweise, ihre ursprüngliche regio- nale Verbreitung nachzuvollziehen. Nachweise aus Grenz- regionen anderer Bundesländer außerhalb Niedersachsens, wie z. B. des nordrhein-westfälischen Quartiers im Böger- hof südlich von Rinteln (HECKENROTH et al. 1988), bleiben unberücksichtigt. Vor allem die ältere Literatur liefert aller- dings häufig nur allgemeine Hinweise, die sich auf Regio- nen, Landkreise oder Städte beziehen, ohne die Quartiere selbst zu beschreiben. Insbesondere für ihr Auftreten im Harz gibt es häufig keine genauen Ortsangaben, die sich folglich nicht ausschließlich auf den heutigen niedersächsi- schen Teil des Harzes beziehen. Die Kleine Hufeisennase wird als Art der Anhänge II und IV der Fauna-Flora-Habitat-(FFH)-Richtlinie gelistet. Arten des Anhangs II sind Tier- und Pflanzenarten von gemein- schaftlichem Interesse. Für den Erhalt dieser Arten müssen sogenannte Natura 2000-Gebiete ausgewiesen werden. Arten des Anhangs IV sind darüber hinaus überall streng geschützt – auch außerhalb der Natura 2000-Gebiete. Die Vernetzung der Habitate innerhalb der Natura 2000-Kulisse 82 Abb. 1: Kleine Hufeisennase (Rhinolophus hipposideros) (Foto: Klaus Bogon) dient der Wiederherstellung und Entwicklung ökologischer Wechselbeziehungen sowie der Förderung natürlicher Aus- breitungs- und Wiederbesiedlungsprozesse (http://www. fauna-flora-habitatrichtlinie.de/). Die FFH-Richtlinie ist für die EU-Mitgliedsstaaten rechtlich bindend. Aufgrund des Aussterbens der Kleinen Hufeisennase in Niedersachsen gibt es trotz der Tatsache, dass die Gebirgsregionen Süd- niedersachsens zu ihrem ursprünglichen Verbreitungsgebiet gehören, derzeit keine speziell für die Art ausgewiesenen Schutzgebiete innerhalb der Natura 2000-Kulisse oder Maßnahmen zur Förderung ihrer Wiederansiedlung. Inform.d. Naturschutz Niedersachs. 1/2022-B 2 Fossilfundstellen Die Höhenzüge Niedersachsens – Deister, Süntel, Weser- bergland und der niedersächsische Teil des Harzes mit seinen Vorländern – weisen in Höhlen und Felsspalten zahlreiche natürliche Fledermaus-Winterquartiere auf. Tra- ditionelle Quartiere können von Fledermäusen über Jahr- tausende hinweg genutzt werden. Aufgrund der konstant niedrigen Temperaturen und leicht basischen pH-Werte der Sedimente herrschen in Karsthöhlen allgemein gute Erhal- tungsbedingungen, unter denen selbst die Knochen sehr kleiner Tiere wie der Fledermäuse überlieferungsfähig sind. In den Sedimenten vieler Höhlen- und Spaltenquartiere ist deshalb mit subfossilen oder fossilen Fledermausknochen zu rechnen. Jedoch blieb bei früheren Grabungsarbeiten in Höhlen oftmals die in die Sedimente eingebettete Klein- fauna unbeachtet, weshalb über Auftreten und Verbreitung einzelner Fledermausarten seit dem Ende der letzten Kalt- zeit (Weichsel-Glazial) sowie auch in früheren Warmzeiten des Eiszeitalters (Pleistozän) im Vergleich zu Großsäugern nur sehr wenig bekannt ist. Bisher liegen nur von drei Fundstellen Niedersachsens eingehende Untersuchungen von Fledermausresten vor. Die mit einem Alter von rund 500.000 Jahren älteste Fleder- mausfauna stammt vom Sudmerberg in Goslar. Sie umfasst jedoch keine Reste der Kleinen Hufeisennase (RABEDER 1972, RUPP 2020). Funde dieser Art liegen aber aus der Einhornhöhle bei Scharzfeld im Südharz (NIELBOCK 1987, 1989, NEBIG 2020, RUPP 2021) und aus der Lichtenstein- höhle bei Osterode am Harz vor (RUPP 2016, 2017a, b, 2020). 2.1 Einhornhöhle NIELBOCK (1987, 1989) führte in den 1980er Jahren Gra- bungen in der Einhornhöhle durch und berücksichtigte als erster bei der Auswertung der Fauna auch Reste von Klein- säugern und Fledermäusen. Knochenfragmente der Kleinen Hufeisennase fand er in den Räumen Weißer Saal, Virchow- Gang, Jacob-Friesen-Gang und Kellergang. Bis auf wenige Oberflächenfunde stammen die Knochen aus ungestörten Sedimenten, die er chronologisch in die gegenwärtige Warmzeit, das Holozän, stellt. Der Jacob-Friesen-Gang stellt einen verschütteten Höh- lenzugang dar, dessen Portal sich in vergangenen Zeiten nach Osten öffnete. Seit 2014 finden hier neue archäologi- sche Ausgrabungen statt, die insbesondere darauf abzielen, eine paläolithische Besiedlung durch eiszeitliche Menschen im Verlauf des Weichsel-Glazials zu untersuchen (KOTULA et al. 2019, LEDER et al. 2021). Durch mächtige Sediment- ablagerungen wurde der Jacob-Friesen-Gang vollständig verfüllt, wobei die Sedimentation der abschließenden Schicht nach neuen Datierungen im Zeitraum von rund 10.000 bis 6.000 Jahren vor heute und damit im frühen Holozän erfolgte (LEDER mündl.). Aus dieser mit „Schicht A“ bezeichneten obersten Sedimentlage liegen sowohl aus den Grabungskampagnen der 1980er Jahre unter der Leitung von Ralf Nielbock als auch aus den Grabungen von 2019 unter der Leitung von Dirk Leder (Niedersächsisches Landesamt für Denkmalpflege) Reste der Kleinen Hufeisen- nase vor. Inform.d. Naturschutz Niedersachs. 1/2022-B Im Ablagerungszeitraum herrschte ein warmes Klima vor. Lichte Eichenmischwälder prägten das ursprüngliche Wald- bild des Südharzes (VOIGT et al. 2008). Die mit Abstand häufigste Fledermausart dieser Höhlenassoziation ist die Bechsteinfledermaus (Myotis bechsteinii), die einen relati- ven Anteil von über 60 % besitzt. Die Kleine Hufeisennase war im Vergleich dazu ein seltenes Faunenelement und repräsentiert nur etwa 3 % der in Schicht A gefundenen Fledermausreste (NEBIG 2020, RUPP 2021). Abb. 2: Schädelfragment einer Kleinen Hufeisennase (Rhinolophus hippo- sideros, EHH2019-1786-4.402) aus dem Jacob-Friesen-Gang der Einhorn- höhle; das Alter des Fundes beträgt bis zu 10.000 Jahre vor heute. Maß- stab = 3 mm. (Zeichnung: Hildegard Rupp) Auch im Weißen Saal wurde die Kleine Hufeisennase bis- her nur in der jüngsten Schicht („Dolomitasche-Schicht“) nachgewiesen. Nach NIELBOCK (1987) stellt sie hier mit einem relativen Anteil von 62 % die häufigste Fledermaus- art dar, gegenüber der Bechsteinfledermaus, die lediglich 10 % erreicht. Die Gesamtfauna auch dieser Schicht re- präsentiert eine Waldfauna gemäßigt-warmer Klimate. Da kaltzeitliche Faunenelemente gänzlich fehlen, ist von einem holozänen Alter auszugehen (NIELBOCK 1987). Aufgrund des Vorkommensmusters von Kleiner Hufeisennase und Bechsteinfledermaus ist es aber wahrscheinlich, dass die Ablagerungsperiode wesentlich später einzuordnen ist als die der Schicht A des Jacob-Friesen-Ganges. In Mitteleuro- pa schloss sich die Kleine Hufeisennase in ihrer Lebensweise eng dem Menschen an (Synanthropie). Wahrscheinlich nahm sie in ihrer Frequenz erst zu, seit sie geeignete Quar- tiere in menschlichen Bauwerken vorfand (RUPP 2020). Möglicherweise bildete sich die Dolomitasche-Schicht des Weißen Saales also erst in historischer Zeit, lange nachdem das Mundloch des Jacob-Friesen-Ganges bereits verschüttet war. Aussagefähige Datierungen fehlen aber bisher. 83 Abb. 3: Lichtenstein bei Osterode am Harz: In der Fauna der Lichtensteinhöhle aus der späten Bronzezeit gehört die Kleine Hufeisennase zu den häufigsten Fledermausarten. (Foto: Wolfgang Rackow) 2.2 Lichtensteinhöhle Die Fledermausfunde aus der Lichtensteinhöhle stammen aus archäologischen Fundschichten der späten Bronzezeit und besitzen ein Alter von knapp 3.000 Jahren. Während dieser Zeit wurde die Landschaft in den Harzvorländern bereits stark anthropogen überprägt. Bäuerliche Ansiedlun- gen mit den dazu gehörigen Anbauflächen waren durch ein überregionales Wegenetz miteinander verbunden. Die Wälder wurden zur Waldweide für das Vieh sowie zur Laubheugewinnung, zur Jagd und für die Sammelwirt- schaft genutzt und waren außerdem Ressource für Bau- und Brennholz (KÜSTER 2010, FLINDT et al. 2013, FLINDT & HUMMEL 2015). Seit Beginn des Erzbergbaus vor über 3.500 Jahren (MONNA et al. 2000) wurde an den Plätzen der Metallverhüttung begonnen, auch die noch unbesiedel- ten Gebirgswälder des Harzes lokal zu roden, um Holzkohle für die Metallschmelze zu gewinnen. Die Wildtierfauna der Lichtensteinhöhle wurde in den anthropogenen Schichtenkomplex eingebettet, der ent- stand, während die bronzezeitlichen Menschen vor knapp 3.000 Jahren die Höhle als Begräbnisstätte nutzten. Das Alter der überlieferten Tierknochen kann deshalb anhand 84 der archäologischen Befunde chronologisch sehr genau eingeordnet werden (FLINDT et al. 2013, FLINDT & HUM- MEL 2015). Auch diese Fauna repräsentiert eine typische Laubwaldfauna. Im Unterschied zu den früh-holozänen Ur- wäldern wurden diese aber von der Buche (Fagus sylvatica) geprägt. Die Buche wanderte als Kulturfolger nach Mittel- europa ein und breitete sich erst in der Bronzezeit massen- haft aus. Die Ablagerungsperiode der Lichtensteinhöhle fällt also in die Zeit der ersten mitteleuropäischen Buchenwälder (BEUG et al. 1999, VOIGT et al. 2008, BEGEMANN 2003). Im Vergleich zum Eichenmischwald weisen Buchenwälder eine geringere Biomasse und Biodiversität auf (WALEN- TOWSKI et al. 2010), sodass die Massenausbreitung der Buche tiefgreifende ökologische Auswirkungen nach sich zog. Die Kleine Hufeisennase gehört in der Fauna der Lich- tensteinhöhle zu den häufigsten Fledermausarten. Vermut- lich waren in der späten Bronzezeit die Voraussetzungen für eine synanthrope Lebensweise bereits gegeben und sie fand innerhalb der menschlichen Siedlungen ein geeigne- tes Wochenstubenquartierangebot (RUPP 2016, 2017a, b, 2020). Inform.d. Naturschutz Niedersachs. 1/2022-B
Das Projekt "Entwicklung eines Generators zur Herstellung von Metallaerosolen unterschiedlicher Partikelgroesse und experimentelle Untersuchungen zur toxischen Bewertung" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Toxikologie und Aerosolforschung, Institutsteil Grafschaft durchgeführt. Es werden zwei Aerosolgeneratoren fuer CdO und PbO beschrieben. Einer arbeitet mit Verdampfung von fluessigem Metall und anschliessender Oxidation und Bildung von Partikeln, der andere versprueht eine waessrige Loesung eines organischen Salzes, hier Cd- und Pb-Acetat, und oxidiert das Aerosol im Rohrofen. Fuer den Dauerversuch hat sich das zweite Verfahren wesentlich besser bewaehrt. Partikelgroessenverteilungen und Partikeldichten als Funktion des Partikeldurchmessers werden angegeben. Erste Inhalationsversuche mit Ratten ergaben, dass die Cd-Blut- und Lebergehalte geringer sind als bei gleichen Tieren, die CdCl2-Partikel inhalieren mussten. Die Blut und Organanalysen wurden mit dem Atomabsorbtionsphotometer durchgefuehrt.
Das Projekt "Substitution und Materialeffizienz - Entwicklung von neuen Materialien durch Substitution sowie Korrosionsschutz" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Metallformung durchgeführt. 1. Vorhabenziel: Innerhalb des Verbundvorhabens SubSEEMag wird das Ziel verfolgt, den Einsatz von Selten-Erden-Elementen als Legierungsbestandteil von Magnesiumwerkstoffen zu substituieren. Spezifische Ziele des von der TU Bergakademie Freiberg bearbeiteten Teilvorhabens sind: (1) Die Entwicklung und Erprobung von speziell an den technologischen Anforderungen des Gießwalzens und der Blecherzeugung angepassten Legierungen; (2) Eine gezielte Technologie- und Prozessentwicklung des Gießwalzens, Bandwalzens und der Wärmebehandlung zur bestmöglichen Ausschöpfung der werkstoffseitigen Eigenschaftspotenziale; Sowie (3) Die Gewährleistung eines homogenen hochwertigen Eigenschaftsprofils durch Maßnahmen zur Verbesserung der Prozessstabilität und Erweiterung der nutzbaren Prozessfenster (z.B. Unterdrückung von Störungen und Verunreinigungen im Werkstoff, Entwicklung geeigneter Schmier- und Trennmittel, etc.). 2. Arbeitsplanung: Das Teilvorhaben umfasst die folgenden Teilaufgaben: (1) Entwicklung angepasster Magnesiumlegierungen mit spezieller Eignung für den Gießwalzprozess, Durchführung von Versuchen zum Gießwalzen und Walzen sowie zur Wärmebehandlung, Ableitung geeigneter Prozessparameter; (2) Entwicklung technologischer Konzepte zur Aufbereitung der Magnesiumschmelze im Gießwalzprozess und deren partielle Erprobung; (3) Prozessentwicklung für das eigenschaftsoptimierende Gießwalzen und Bandwalzen der neu entwickelten Magnesiumlegierung; (4) Entwicklung geeigneter Schmiermittel; (5) Prozess- und Werkstoffbewertung.
Das Projekt "Sanduntersuchung BW/w" wird vom Umweltbundesamt gefördert und von IfG - Institut für Gießereitechnik gGmbH durchgeführt. Vermeidung und Verwertung von Giessereireststoffen
Das Projekt "Behaviour of actinides and other radionuclides that are difficult to measure, in melting of steel" wird vom Umweltbundesamt gefördert und von Kraftwerk Union AG durchgeführt. Objective: various types of contaminated piping, valves, heat exchangers and vessels are removed from nuclear facilities in the course of decommissioning. Depending on their origin, these components are contaminated with various radio nuclides, e.g. alpha-emitters, pure beta-emitters, and gamma-emitters. Unrestricted or otherwise non-hazardous reuse of these components is possible if the residual activity concentrations are below the limits authorised. To achieve this goal, decontamination processes have to be used in general. In many cases, chemical decontamination of large components with complex surface geometry cannot be performed economically. Recycling can be achieved in many cases using melting processes. Thus the non-hazardous reuse of beta-, gamma-contaminated material which accumulated in the course of repairs and refittings of nuclear power plants has been demonstrated by the contractor in co-operation with Siempelkamp Giesserei GmbH und Co, Krefeld. The aim of this research programme is to extend the melt decontamination process to materials which are contaminated with actinides and radio nuclides that are difficult to measure. The distribution of these radio nuclides in the metal and the slag will be determined and direct measuring techniques or representative sampling techniques will be developed. General information: b.1. Literature review related to radio nuclide deposition on components, chemical separation procedures for iron and nickel, basic radio nuclide data and evaluation of authorised activity limits. B.2. Sampling of material and test melts at laboratory scale using well known activity quantities and accompanied by an appropriate measurement programme for original material, metal, slag and off-gas. B.3. Development of direct measuring techniques for alpha emitters in melt and slag, taking into account the alpha-energy of the emitting nuclides and the sample geometry. B.4. Development of measuring techniques for pure beta-emitters, such as c-14 and sr-90, expected to be found in metal and off-gas, and in slag, respectively. B.5. Development of a sampling technique and simple chemical separation procedures for nuclides decaying by electron capture, such as fe-55 and ni-59, emitting weak x-rays which cannot be measured directly. B.6. Large-scale melt in a commercial foundry of alpha-contaminated material to demonstrate the transferability of the laboratory results to industrial scale. B.7. Evaluation of results from both laboratory tests and large-scale tests with respect to alpha-activity distribution in metal, slag and off-gas, the most suitable measuring technique and costs. Achievements: the research work carried out confirmed the expected homogeneous distribution of the radio nuclides selected for the experiments (iron-55 and nickel-63) in the metal ingot, as was already known from the behaviour of cobalt-60. Cobalt-60 radio nuclide may be used as an indicator nuclide for iron-55 and nickel-63 which are both ...