Während der IODP Expedition 363 wurde erstmals eine mächtige und ungestörte Sedimentabfolge im Zentrum des Westpazifischen Warmwasserpools erbohrt (Site U1490, 05 Grad 48.95Ê1N, 142 Grad 39.27Ê1E in 2341 m Wassertiefe vor Papua New Guinea). Diese karbonat- und tonreiche Abfolge stellt ein ideales Sedimentarchiv dar, um an einer strategischen Position Änderungen in der Struktur der pazifischen Wassermassen und meridionalen Umwälzzirkulation während unterschiedlicher Phasen der Klimaentwicklung der Erde während des Überganges von einer nahezu eisfreien zu einer Erde mit einer stabilen polaren Eiskappe zu erfassen. Unser Projekt konzentriert sich dabei auf das Zeitintervall von ca. 18 bis 9 Millionen Jahren, das durch mehrere fundamentale Klimaänderungen charakterisiert war und es damit ermöglicht, die Zusammenhänge zwischen Änderungen in der Erdbestrahlung, Variabilität der Temperaturgradienten zwischen Äquator und polaren Breiten und Verschiebungen in der atmosphärischen und Ozean-Zirkulation auf einer wärmeren Erde zu untersuchen. Daneben ist Site U1490 von ca.18 bis 9 Millionen Jahren vor heute durch eine aussergewöhnlich gut belegte Magnetostratigraphie charakterisiert, die erstmals eine direkte Korrelation einer hochauflösenden Isotopen-Zyklostratigraphie mit der Geomagnetischen Polaritäts-Zeitskala (GPTS) ermöglicht. Durch diese verifizierte und verfeinerte Chronostratigraphie werden die benthischen stabilen Isotopen- und Karbonatakkumulationsdaten in Site U1490 wesentlich zum Verständnis des zeitlichen Ablaufs der Änderungen in der pazifischen Tiefenwasser-Zirkulation und deren Wechselwirkungen mit dem Klimawandel in niedrigen und hohen Breiten beitragen. Im Detail wollen wir mit diesen neuen Daten die folgenden Hypothesen überprüfen: (1) Änderungen des Äquator-Pol Temperaturgradienten wirken sich stark auf die Bildung von tiefen und intermediären Wassermassen und die Intensität der pazifischen meridionalen Umwälzzirkulation aus; (2) die Expansion korrosiver intermediärer und tiefer Wassermassen aus dem Südozean und die Abschwächung der Tiefenventilation infolge der Ausdehnung des antarktischen Eisschildes während des mittelmiozänen Klimaübergangs trug zu erhöhter CO2-Speicherung im Tiefenwasser und zur Karbonatarmut in den Tiefsee-Sedimenten des Pazifischen und Indischen Ozeans bei; (3) der Indonesische Durchstrom spielte im mittleren Miozän noch eine Schlüsselrolle für den Austausch intermediärer und tiefer Wassermassen zwischen Pazifik und Indischem Ozean mit entprechenden Auswirkungen auf das Wärmebudget und die Wechselwirkungen zwischen Ozean und Atmosphäre im Indischen Ozean.
Entwicklung und Etablierung einer Methodik zur exakten Beschreibung mehrphasiger bainitischer Gefüge, da die Lichtmikroskopie aufgrund zu hoher Komplexität und zu geringer möglicher Auflösung versagt - Entwicklung einer Bildanalyseroutine zur automatisierten Auswertung von REM-Aufnahmen bainitischer Mikrostrukturen - Anwendung der Routine auf die Stähle HDB, 38MnVS6, 18CrNiMo7-6 und exakte Beschreibung der entstehenden Mikrostrukturen - Identifikation relevanter Gefügeparameter und Verknüpfung mit mechanisch-technologischen Eigenschaften (TP 2, TP 3, TP 4, TP5). Lösungswege: Einstellung definierter Mikrostrukturen der Stähle 38MnVS6, HDB, 18CrNiMo7-6 mittels Dilatometrie - Charakterisierung der Proben mittels LOM, REM und EBSD, sowie Anwendung eines neuen Klassifizierungssystems - Entwicklung einer Bildanalyseroutine für bainitische Gefüge - Anwendung der Bildanalyseroutine auf gesteuert abgekühlte Proben (Kerbschlagbiege-, Zugproben) und Korrelation der mechanischen Eigenschaften mit der Mikrostruktur - Charakterisierung der Mikrostrukturen in Modellbauteilen (Rail-Bauteil und abgesetzte Welle) und Korrelation mit den mechanisch-technologischen Eigenschaften - Ableitung von eigenschafts- bzw. anwendungsbezogenen Richtlinien für kritische Mikrostrukturcharakteristika (Phasenanteile, -verteilungen, -morphologien etc.). Projektstruktur: Arbeitspaket 1: Werkstoffbereitstellung - Bereitstellung des HDB-Stahls für alle Projektpartner. Arbeitspaket 2: Basischarakterisierung : - Charakterisierung des Umwandlungsverhaltens anhand von ZTU- und UZTU-Diagrammen - Vorgaben für die Prozessführung in TP 2, TP 3, TP 4 - Erster Abgleich mit Ergebnissen aus TP 5. Arbeitspaket 3: Rasterelektronenmikroskopie : Ausführliche Charakterisierung kontrolliert abgekühlter Dilatomterproben mittel LOM, REM und EBSD - Entwicklung eines Klassifizierungssystems für bainitische Mikrostrukturen. Arbeitspaket 4: Entwicklung der Bildanalyseroutine : Entwicklung einer Strukturerkennungsroutine für REM-Aufnahmen - Entwicklung einer Klassifizierungsroutine auf Basis der Strukturerkennungsroutine. Arbeitspaket 5: Korrelation von Mikrostruktur und mechanischen Eigenschaften : Untersuchung der mechanischen Eigenschaften kontrolliert abgekühlter Proben mit bainitischen Mikrostrukturen - Identifikation maßgeblicher mikrostruktureller Einflussgrößen auf die mechanischen Eigenschaften und ggf. Quantifizierung des Einflusses. Arbeitspaket 6: Anwendung der Bildanalyseroutine auf die Modellbauteile : Anwendbarkeit der Analyseroutine auf die Mikrostrukturen der Modellbauteile (Rail-Bauteil und abgesetzte Welle) - Verknüpfung der mechanischen Eigenschaften mit Mikrostruktureigenschaften und Abgleich mit AP 5 - Verknüpfung der technologischen Eigenschaften mit Mikrostrukturparametern (aus TP 2 - 5). Arbeitspaket 7: Entwicklung einer Richtreihe für bainitische Mikrostrukturen. Arbeitspaket 8: Dokumentation.
Die Rudolf Rieker GmbH aus Leingarten (Baden-Württemberg) ist ein mittelständischer Fachbetrieb für die Induktionshärtung von Stahlwerkstücken mit über 100 Beschäftigten. Das im Jahr 1978 von Rudolf Rieker gegründete Unternehmen deckt als eine der größten Induktionshärtereien Europas mit seinem Maschinenpark nahezu jegliche Art der induktiven Wärmebehandlung ab. Das Härten von Stahlerzeugnissen und -werkstücken ist ein wichtiger Arbeitsschritt in der Stahlproduktion. Beim Induktionshärten werden im Werkstück Wirbelströme zwecks Erhitzung induziert, mit der ein Übergang in der Gitterstruktur des Stahls zu einem austenitischen Gefüge verbunden ist. Im Anschluss muss das Werkstück sehr schnell heruntergekühlt werden. Dies wandelt das austenitische Gefüge in ein martensitisches Gefüge um, wodurch die gewünschten Härten erzielt werden. Eine Sonderanwendung ist das Tiefkühlen um den Restaustenit umzuwandeln. Üblicherweise nutzt man hierfür flüssigen Stickstoff, der in einer Kältekammer versprüht wird. Jedoch ist die Bereitstellung von flüssigem Stickstoff mit nicht unerheblichem Energieaufwand in Herstellung, Transport und Lagerung sowie mit Risiken im Betrieb verbunden. Die Rudolf Rieker GmbH investiert mit Hilfe des Umweltinnovationsprogramms daher in eine innovative Kältekammer, welche zusammen mit der Refolution Industriekälte GmbH entwickelt wurde. Durch dieses Verfahren können erstmals Temperaturen von – 85 Grad Celsius durch eine Luftkältemaschine im Bereich der Restaustenitumwandlung erzielt werden. Den deutlich höheren Investitionskosten verglichen mit konventionellen Verfahren stehen dabei deutliche Einsparpotenziale bei Energie und Treibhausgasemissionen (THG) gegenüber. Während im konventionellen Verfahren auch Energiemengen für Herstellung, Transport und Lagerung der Fernkälte anfallen, ist für das neu entwickelte Verfahren nur noch der Energiebedarf zum Betrieb der Luft-Kältemaschinen vor Ort zu betrachten, welcher durch Wärmerückgewinnung innerhalb der Wechselkühlkammern um ca. 30 Prozent gesenkt werden kann. Insgesamt wird eine Energieeinsparung von ca. 410 Megawattstunden angestrebt, was ungefähr einer Einsparung von 60 - 68 Prozent im Vergleich zum herkömmlichen Verfahren entspricht. Durch die höhere Energieeffizienz nehmen außerdem auch die mit der Energiebereitstellung verbundenen CO 2 -Emissionen ab. Ein Drittel der in Deutschland tätigen Lohnhärtereien bieten die Tieftemperaturbehandlung an. Da diese losgelöst von der Art des Erhitzens stattfinden kann, ist davon auszugehen, dass die innovative Kältetechnologie für die gesamte Bandbreite als Tiefkühlbehandlung geeignet ist. Branche: Metallverarbeitung Umweltbereich: Klimaschutz Fördernehmer: Rudolf Rieker GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2023 Status: Laufend
Die Wieland e Tractions Systems GmbH beabsichtigt, qualitativ hochwertige und leistungsfähige Rotoren für asynchrone Elektromotortypen im Automobilbereich herzustellen. Nahezu jeder Elektromotor, der in Fahrzeugen verbaut wird, ist ein Asynchronmotor oder ein permanent erregter Synchronmotor. Synchronmotoren sind jedoch auf Grund des Einsatzes von seltenen Erden (u.a. Neodym, Dysprosium) sehr umstritten. Wesentlicher Bestandteil des Asynchronmotors ist der aus Kupfer oder Aluminium gefertigte Rotor, der sich im Inneren des Stators bzw. des Käfigs dreht, wodurch der Antrieb erzeugt wird. Bisherige Fertigungsverfahren der Rotoren sind jedoch entweder sehr aufwändig sowie kostenintensiv und damit langfristig nicht wirtschaftlich oder auf Grund einer zu hohen Porosität nicht für den Einsatz in Hochdrehzahlanwendungen wie Automobilen geeignet. Ziel des Projekts ist der erstmalige Aufbau und Betrieb einer Anlage zur gleichzeitigen Herstellung gegossener Kupferrotoren für Automobile und für Großfahrzeuge (Bus, Bahn, LKW). Dazu hat das Unternehmen in den letzten zehn Jahren an einem wirtschaftlichen Druck-Gießprozess für Kupfer mit sehr hoher Leistungsfähigkeit gearbeitet und das „Laminar Squeeze Casting“ (kurz: LSC) entwickelt. Kerninnovation des LSC-Verfahrens ist die minimale Porosität und die hohe elektrische Leitfähigkeit der Kupfer-Rotoren. Die neue Produktionsanlage besteht aus der vertikalen Druckgussmaschine und dem vollintegrierten CT-Scanner. Der CT-Scanner dient zur Qualitätssicherung und automatischen Prozesssteuerung der Druckgussmaschine und wird über eine Industrie 4.0-Technologie mit der Druckgussmaschine verbunden. Ein neu entwickeltes Werkzeug- und Anschnittkonzept ermöglicht zudem eine gleichmäßige Füllung des Rotors, wodurch die sehr guten Qualitätseigenschaften entstehen. Im Vergleich zu horizontalen Gießmaschinen ergeben sich bei einer Maschinenlaufzeit von mindestens 4.400 Stunden jährliche Energieeinsparungen von 88.000 Kilowattstunden. Darüber hinaus verringert sich der Anteil des Kreislaufmaterials um ca. 75 Prozent, was zu weiteren Energieeinsparungen beim Wiedereinschmelzen und Warmhalten führt. Insgesamt können mit dem Vorhaben 85 Tonnen CO 2 -Emissionen pro Jahr vermieden werden. Mit Hilfe der neuen Technologie können zukünftig preiswerte und leistungsstarke Elektromotoren ohne seltene Erden im Automobil- und im Großmotorbereich verfügbar sein. Bei erfolgreicher Umsetzung trägt das Vorhaben dazu bei, Verbrennungsmotoren durch Elektromotoren mit Asynchronmotor zu ersetzen und die E-Mobility bzw. die Energiewende im Verkehrsbereich insgesamt auszubauen. Das Vorhaben leistet einen wichtigen Beitrag zur Ressourceneffizienz, Materialeinsparung sowie zur Energieeinsparung und -effizienz. Die hergestellten Rotoren werden als Zero Porosity Rotor – ZPR ® vertrieben und schaffen einen neuen Industriestandard für Elektroautos der Zukunft. Branche: Metallverarbeitung Umweltbereich: Ressourcen Fördernehmer: Wieland e Tractions Systems GmbH Bundesland: Nordrhein-Westfalen Laufzeit: seit 2020 Status: Laufend
Der View Service stellt Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) im Land Brandenburg dar. Datenquelle ist das Anlageninformationssystem LIS-A. Die Anlagen werden zum einen gruppiert nach Anlagenarten 1. Ordnung (ohne Anlagenteile), zum anderen nach Tierhaltungs- und Aufzuchtanlagen, nach Blockheizkraftwerken und nach großen Feuerungsanlagen. Die BImSchG-Anlagen 1. Ordnung werden unterschieden nach: - Wärmeerzeugung, Bergbau und Energie (Nr. 1) - Steine und Erden, Glas, Keramik, Baustoffe (Nr. 2) - Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (Nr. 3) - Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (Nr. 4) - Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus - Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (Nr. 5) - Holz, Zellstoff (Nr. 6) - Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (Nr. 7) - Verwertung und Beseitigung von Abfällen und sonstigen Stoffen (Nr. 8) - Lagerung, Be- und Entladen von Stoffen und Gemischen (Nr. 9) - Sonstige Anlagen (Nr. 10) Die Tierhaltungs- und Aufzuchtanlagen werden gemäß 4. BImSchV unterteilt in: - Geflügel (Nr. 7.1.1 bis 7.1.4) - Rinder und Kälber (Nr. 7.1.5 und 7.1.6) - Schweine (Nr. 7.1.7 bis 7.1.9) - gemischte Bestände (Nr. 7.1.11) Die großen Feuerungsanlagen werden gemäß 4. BImSchV unterteilt in: - Wärmeerzeugung, Energie (Nr. 1.1, 1.4.1.1, 1.4.2.1) - Zementherstellung (Nr. 2.3.1) - Raffinerien (Nr. 4.1.12, 4.4.1) - Abfallverbrennung (Nr. 8.1.1.1, 8.1.1.3). Es werden nur Anlagen gemäß 13. und 17. BImSchV berücksichtigt. Die Blockheizkraftwerke werden hinsichtlich ihrer elektrischen Leistung unterschieden. Windkraftanlagen werden nicht dargestellt! Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
<p>Der Europäische Emissionshandel ist seit 2005 das zentrale Klimaschutzinstrument der EU. Ziel ist die Reduktion der Treibhausgas-Emissionen der teilnehmenden Energiewirtschaft und der energieintensiven Industrie. Seit 2012 nimmt der innereuropäische Luftverkehr teil und seit 2024 auch der Seeverkehr.</p><p>Teilnehmer, Prinzip und Umsetzung des Europäischen Emissionshandels</p><p>Der Europäische Emissionshandel (EU-ETS 1) wurde 2005 zur Umsetzung des internationalen Klimaschutzabkommens von Kyoto eingeführt und ist das zentrale europäische Klimaschutzinstrument. Neben den 27 EU-Mitgliedstaaten haben sich auch Norwegen, Island und Liechtenstein dem EU-Emissionshandel angeschlossen (EU 30). Das Vereinigte Königreich Großbritannien und Nordirland (kurz: Großbritannien/GB) nahm bis zum 31.12.2020 am EU-ETS 1 teil. Seit dem 01.01.2021 ist dort ein nationales Emissionshandelssystem in Kraft. Im EU-ETS 1 werden die Emissionen von europaweit rund 9.000 Anlagen der Energiewirtschaft und der energieintensiven Industrie erfasst. Zusammen verursachen diese Anlagen rund 40 % der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen in Europa.</p><p>Seit 2012 ist der innereuropäische Luftverkehr in den EU-ETS 1 einbezogen und seit 2024 der Seeverkehr. Seit 2020 ist das System außerdem mit dem Schweizer Emissionshandelssystem<a href="https://www.dehst.de/SharedDocs/downloads/DE/luftverkehr/schweiz.pdf">verlinkt</a>. Ab 2027 soll ergänzend zum EU-ETS 1 ein europäischer Emissionshandel für Brennstoffe eingeführt werden (EU-ETS 2), der insbesondere im Verkehrs- und Gebäudebereich zur Anwendung kommt.</p><p>Der EU-ETS 1 funktioniert nach dem Prinzip des sogenannten „Cap & Trade“. Eine Obergrenze (Cap) legt fest, wie viele Treibhausgas-Emissionen von den emissionshandelspflichtigen Anlagen insgesamt ausgestoßen werden dürfen. Die Mitgliedstaaten geben eine entsprechende Menge an Emissionsberechtigungen an die Anlagen aus – teilweise kostenlos, teilweise über Versteigerungen. Eine Berechtigung erlaubt den Ausstoß einer Tonne Kohlendioxid-Äquivalent (CO2-Äq). Die Emissionsberechtigungen können auf dem Markt frei gehandelt werden (Trade). Hierdurch bildet sich ein Preis für den Ausstoß von Treibhausgasen. Dieser Preis setzt Anreize bei den beteiligten Unternehmen ihre Treibhausgas-Emissionen zu reduzieren.</p><p>Infolge wenig ambitionierter Caps, krisenbedingter Produktions- und Emissionsrückgänge und der umfangreichen Nutzung von internationalen Projektgutschriften hatte sich seit 2008 eine große Menge überschüssiger Emissionsberechtigungen im EU-ETS 1 angesammelt. Diese rechnerischen Überschüsse haben wesentlich zu dem bis 2017 anhaltenden Preisrückgang für europäische Emissionsberechtigungen (EUA) beigetragen, sodass der Emissionshandel in diesem Zeitraum nur eine eingeschränkte Lenkungswirkung entfaltet konnte. Zwischenzeitlich wurde mit unter 3 Euro das niedrigste Niveau seit dem Beginn der zweiten Handelsperiode (2008-2012) erreicht. Seit Mitte 2017 sind die EUA-Preise in Folge der letzten beiden Reformpakete zum EU-ETS 1 deutlich gestiegen. Der bemerkenswerte Preisanstieg zeigt, dass die Reform des EU-ETS 1 Vertrauen in den Markt zurückgebracht hat. Zwischen Mitte 2017 und Februar 2023 hatte sich der EUA-Preis von rund 5 Euro auf zwischenzeitlich knapp über 100 Euro verzwanzigfacht, den höchsten Stand seit Beginn des EU-ETS 1 im Jahr 2005. Seit dem Rekordhoch im Februar 2023 befindet sich der EUA-Preis jedoch in einer Konsolidierungsphase. Aktuell notiert der EUA-Preis bei rund 80 Euro (Stand 24.01.2025) (siehe Abb. „Preisentwicklung für Emissionsberechtigungen (EUA) seit 2008).</p><p>Vergleich von Emissionen und Emissionsobergrenzen (Cap) im stationären EU-ETS 1</p><p>In den ersten beiden Handelsperioden (2005-2007 und 2008-2012) hatte jeder Mitgliedstaat der EU sein Cap in Abstimmung mit der Europäischen Kommission selbst festgelegt. Das gesamteuropäische Cap ergab sich dann aus der Summe der nationalstaatlichen Emissionsobergrenzen. Innerhalb dieser Zeiträume standen in jedem Jahr jeweils die gleichen Mengen an Emissionsberechtigungen für den Emissionshandel zur Verfügung. Ab der dritten Handelsperiode (2013-2020) wurde erstmals eine europaweite Emissionsobergrenze (Cap) von insgesamt 15,6 Milliarden Emissionsberechtigungen festgelegt, wobei Berechtigungen auf die acht Jahre der Handelsperiode derart verteilt wurden dass sich ein sinkender Verlauf des Caps ergab (siehe blaue durchgezogene Linie in Abb. „Gesamt-Cap und Emissionen im Europäischen Emissionshandel“). Dies dient der graduellen Verknappung des Angebots und wurde in der aktuell laufenden, 4. Handelsperiode (2021 – 2030) fortgesetzt, ab 2024 mit stärkeren jährlichen Absenkungen (siehe unten zum „Fit for55“-Paket).</p><p>Zusätzlich zu den Emissionsberechtigungen konnten die Betreiber im EU-ETS 1 bis zum Ende der dritten Handelsperiode in einem festgelegten Umfang auch internationale Gutschriften aus CDM- und JI-Projekten (CER/ERU) nutzen. Durch diese internationalen Mechanismen wurde das Cap erhöht (siehe blaue gestrichelte Linie in Abb. „Gesamt-Cap und Emissionen im Europäischen Emissionshandel“). Die Abbildung zeigt deutlich, dass mit Ausnahme des Jahres 2008 die Emissionen im EU-ETS 1 (siehe blaue Säulen in Abb. „Gesamt-Cap und Emissionen im Europäischen Emissionshandel“) bislang immer unterhalb des Caps lagen: So unterschritten die Emissionen im EU-ETS 1 bereits im Jahr 2014 den Zielwert für das Jahr 2020. Damit haben sich das Cap und die Emissionen im EU-ETS 1 strukturell auseinanderentwickelt. Durch das sog. Backloading (Zurückhalten von für die Versteigerung vorgesehenen Emissionsberechtigungen) in den Jahren 2014 bis 2016 und ab 2019 durch die sogenannte Marktstabilitätsreserve (MSR) wurde dieser Überschuss an Emissionsberechtigungen schrittweise abgebaut.</p><p>Das „Fit for 55“ Paket ist maßgeblich durch eine Stärkung des Europäischen Emissionshandels (EU-ETS 1) geprägt. Nach einer politischen Einigung im Dezember 2022 zwischen Mitgliedsstaaten, Kommission und dem EU-Parlament sind die Änderungen an der Emissionshandelsrichtlinie am 16. Mai 2023 im Amtsblatt der Europäischen Union veröffentlicht worden. In erster Linie wird die Klimaschutzambition für die laufende vierte Handelsperiode (2021-2030) deutlich erhöht. Das Minderungsziel für 2030 wurde von aktuell 43 auf 62 % gegenüber 2005 verschärft (inkl. Luft- und Seeverkehr). Dieses Ziel soll durch eine Erhöhung des linearen Reduktionsfaktors (LRF) von 2,2 auf 4,3 % ab 2024 und auf 4,4 % ab 2028 erreicht werden. Außerdem wird zu zwei Zeitpunkten (2024 und 2026) eine zusätzliche Reduktion des Caps durchgeführt. Für das Jahr 2024 wurde das Cap zusätzlich um 90 Mio. Emissionsberechtigungen abgesenkt und im Jahr 2026 um weitere 27 Mio. Berechtigungen (siehe schwarze Linie in Abb. „Gesamt-Cap und Emissionen im Europäischen Emissionshandel“).</p><p>Außerdem wird der Seeverkehr mit eingebunden, weshalb das Cap im Jahr 2024 um 78,4 Mio. Emissionsberechtigungen erhöht wird. Dies ist aufgrund der verschiedenen Kürzungen in Abb. „Gesamt-Cap und Emissionen im Europäischen Emissionshandel“ nicht zu erkennen.</p><p>Die Abbildung „Gesamt-Cap und Emissionen im Europäischen Emissionshandel“ weist die Emissionen und das Cap auf Basis der tatsächlichen Anwendungsbereiche in den jeweiligen Handelsperioden aus. Dies ist bei der Interpretation der Daten zu berücksichtigen. So wurde der Anwendungsbereich des EU-ETS 1 im Jahr 2013 ausgeweitet, seitdem müssen auch Anlagen zur Metallverarbeitung, Herstellung von Aluminium, Adipin- und Salpetersäure, Ammoniak und andere Anlagen der chemischen Industrie ihre Emissionen berichten und eine entsprechende Menge an Emissionsberechtigungen abgeben. Weiterhin gilt seit der dritten Handelsperiode die Berichts- und Abgabepflicht nicht mehr nur für Kohlendioxid, sondern zusätzlich sowohl für die perfluorierten Kohlenwasserstoff-Emissionen der Primäraluminiumherstellung als auch für die Distickstoffmonoxid-Emissionen der Adipin- und Salpetersäureherstellung. Bei Berücksichtigung der (geschätzten) Emissionen dieser Anlagen (sogenannte „scope-Korrektur“) würden die Emissionen zwischen 2012 und 2013 nicht steigen, sondern sinken. Die scope-Korrektur ist ein Schätzverfahren der Europäischen Umweltagentur. Außerdem ist Großbritannien ab der vierten Handelsperiode nicht mehr in den angegebenen Werten für das Cap und die Emissionen enthalten.</p><p>Entwicklung der Treibhausgas-Emissionen im stationären EU-ETS 1 EU-weit</p><p>Nach Angaben der Europäischen Kommission sanken die Emissionen aller am EU-ETS 1 teilnehmenden Anlagen (in den 27 EU-Mitgliedstaaten und Island, Liechtenstein, Norwegen) 2023 erheblich gegenüber dem Vorjahr: von etwa 1,31 auf 1,09 Milliarden Tonnen <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Äq, also um etwa 17 %.</p><p>Gegenüber dem Beginn des europäischen Emissionshandels im Jahr 2005 liegt der Emissionsrückgang deutscher Anlagen im EU-ETS 1 bei etwa 44 %. Europaweit gingen die Emissionen im EU-ETS 1 sogar etwas stärker um 48 % zurück. Sie haben sich damit seit dem Beginn des EU-ETS 1 etwa halbiert (siehe Abb. „Minderungen im EU-ETS seit 2005“).</p><p>Um die Emissionen der ersten (2005-2007), zweiten (2008-2012), dritten (2013-2020) und vierten Handelsperiode (2021-2030) vergleichbar zu machen, wurden die Ergebnisse eines Schätzverfahrens der Europäischen Umweltagentur zur Bereinigung der verschiedenen Anwendungsbereiche im EU-ETS 1 genutzt (sogenannte „scope-Korrektur“). Außerdem wurden die Emissionen Großbritanniens von den Werten aller Jahre seit 2005 abgezogen. Die Abbildung „Minderungen im EU-ETS seit 2005“ zeigt so die relative Emissionsentwicklung auf Basis des Anwendungsbereichs der laufenden vierten Handelsperiode.</p><p>Treibhausgas-Emissionen deutscher Energie- und Industrieanlagen im Jahr 2023</p><p>Die Emissionen der 1.725 in Deutschland vom EU-ETS 1 erfassten Anlagen sanken gegenüber 2022 um 18 % auf 289 Mio. t. CO2-Äq und damit auf das niedrigste Niveau seit Beginn des EU-ETS 1. Das lag vor allem an der stark gesunkenen Energienachfrage von Wirtschaft und privaten Haushalten sowie der gestiegenen Stromerzeugung aus erneuerbaren Energien.</p><p>Die Emissionen der Energieanlagen sanken im Vergleich zum Vorjahr von 242 um mehr als 53 Mio. t. CO2-Äq (22 %) auf 188 Mio. t. CO2-Äq. Damit wurde der stärkste Emissionsrückgang seit Beginn des Europäischen Emissionshandels im Jahr 2005 erreicht. Von 2022 auf 2023 sank die <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttostromerzeugung#alphabar">Bruttostromerzeugung</a> der Braunkohlekraftwerke um rund 25 %, der Steinkohlekraftwerke um rund 36 % und der Erdgaskraftwerke um rund 2 % (AGEB 2024).</p><p>Im Vorjahr war gegenüber 2021 noch ein leichter Emissionsanstieg von rund 7 Mio. t. zu verzeichnen (3 %). Dabei wird die im Emissionshandel geltende Abgrenzung zwischen Industrie und Energie zugrunde gelegt (siehe Abb. „Verhältnis zwischen den Emissionshandels-Sektoren Energie und Industrie“).</p><p>Die Emissionen der 848 deutschen Anlagen der energieintensiven Industrie (siehe Tab. „Emissionen der Anlagen in Deutschland nach Branchen“) betrugen im Jahresdurchschnitt der dritten Handelsperiode 2013 bis 2020 knapp 124 Mio. t. CO2-Äq. 2019 sanken sie erstmals unter dieses Niveau auf 120 Mio. t. CO2-Äq und lagen seitdem darunter. Im Jahr 2023 sanken die Emissionen erneut deutlich um 10 % auf 101 Mio. t. CO2-Äq, auf den niedrigsten Stand seit 2013, als mit Beginn der dritten Handelsperiode der derzeitige Anwendungsbereich eingeführt wurde.</p><p>Dabei haben fast alle Branchen relativ deutliche Emissionsrückgänge zu verzeichnen. Der größte Emissionsrückgang lag bei den Nichteisenmetallen mit 19 %, gefolgt von der Papier- und Zellstoffindustrie mit 17 %. Auch die Tätigkeiten Zementherstellung, Erzeugung von Industrie- und Baukalk und die chemische Industrie verzeichneten einen Rückgang im zweistelligen Bereich. Bei den Raffinerien belief sich der Emissionsrückgang auf etwa 9 %. Die Rückgänge in diesen Branchen fielen überwiegend noch etwas stärker aus als im Vorjahr. Lediglich die Emissionen der Eisen- und Stahlindustrie blieben mit minus 2 % auf einem relativ stabilen Niveau. In allen genannten Branchen spielen Rückgänge der Produktion eine zentrale Rolle für die Emissionsentwicklung. Gegenüber 2005 liegt der Emissionsrückgang deutscher Industrieanlagen im EU-ETS 1 bei etwa 29 %.</p><p>In der Tabelle „Emissionen der Anlagen in Deutschland nach Branchen“ sind die Kohlendioxid-Emissionen der emissionshandelspflichtigen Anlagen der Jahre 2019 bis 2023, sowie der Jahresdurchschnitt der zweiten Handelsperiode (2008 bis 2012) und dritten Handelsperiode (2013 bis 2020) für die Sektoren Energie und Industrie sowie für die einzelnen Industriebranchen angegeben. Für die ausgewiesenen Emissionen im Gesamtzeitraum 2008 bis 2022 wird der tatsächliche Anlagenbestand des jeweiligen Jahres zugrunde gelegt. Das heißt die Emissionen stillgelegter Anlagen werden berücksichtigt. Von der Erweiterung des Anwendungsbereichs des Emissionshandels sind bis auf die Papier- und Zellstoffindustrie sowie die Raffinerien sämtliche Industriebranchen voll oder teilweise betroffen. Dies ist beim Vergleich der Emissionen aus der zweiten und dritten Handelsperiode zu beachten (zum Beispiel nehmen seit 2013 Anlagen zur Nichteisenmetallverarbeitung und zur Herstellung von Aluminium am EU-ETS 1 teil).</p><p>Luftverkehr im Emissionshandel</p><p>Seit Anfang 2012 ist auch der Luftverkehr in den Europäischen Emissionshandel (EU-ETS 1) einbezogen. 2021 ist die Einführung des Systems zur Kompensation und Minderung von Kohlenstoffemissionen der Internationalen Luftfahrt (Carbon Offsetting and Reduction Scheme for International Aviation, kurz <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CORSIA#alphabar">CORSIA</a>) erfolgt. CORSIA ist eine von der Internationalen Zivilluftfahrtorganisation (ICAO) erarbeitete globale marktbasierte Maßnahme.</p><p>Durch die Reform der Emissionshandelsrichtlinie (EHRL) im Rahmen von „Fit for 55“ werden auch für den Sektor Luftverkehr die Regeln deutlich ambitionierter. Dies geschieht zum einen dadurch, dass das Cap durch den angehobenen linearen Reduktionsfaktor deutlich reduziert wird, sowie durch das schnelle Auslaufen der kostenlosen Zuteilung bis Ende 2025. Ab 2026 werden alle Emissionsberechtigungen, mit Ausnahme der antragsbasierten, kostenlosen Zuteilung von bis zu 20 Mio. Berechtigungen für die Nutzung von nachhaltigen Flugkraftstoffen (Sustainable Aviation Fuels, SAF), versteigert. Diese Zertifikate dienen Luftfahrzeugbetreibern zur Kompensation ihrer Mehrkosten durch die verpflichtende Beimischquote nachhaltiger Kraftstoffe ab 2024 (ReFuelEU Aviation). Darüber hinaus werden ab 2025 die sogenannten Nicht-CO2-Effekte des Luftverkehrs, zunächst über ein Monitoring, später voraussichtlich auch mit einer Abgabepflicht von Emissionsberechtigungen in den EU-ETS 1 einbezogen. Zudem wird CORSIA für die Flüge von und zu sowie zwischen Drittstaaten im Rahmen der EHRL im europäischen Wirtschaftsraum (EWR) implementiert.</p><p>Die Abbildung „Luftverkehr (von Deutschland verwaltete Luftfahrzeugbetreiber), Entwicklung der emissionshandelspflichtigen Emissionen 2013 bis 2023“ zeigt die Emissionen der von Deutschland verwalteten Luftfahrzeugbetreiber zwischen 2013 und 2023. Die Emissionen der von Deutschland verwalteten Luftfahrzeugbetreiber summierten sich 2023 auf rund 7,6 Mio. t. CO2-Äq. Sie sind damit im Vergleich zum Vorjahr um etwa 0,3 Mio. t. CO2-Äq oder rund 4,5 % gestiegen. Dieser Anstieg der Emissionen gegenüber dem Vorjahr ist auf die anhaltende Erholung der Luftfahrt von den Folgen der COVID-19-Pandemie zurückzuführen. Das Emissionsniveau vor der Pandemie (im Zeitraum 2013 bis 2019) lag bei rund 9 Mio. t. CO2-Äq pro Jahr und war infolge der Pandemie deutlich zurückgegangen.</p>
Der INSPIRE View Service stellt Anlagen nach Industrieemissions-Richtlinie (IED) im Land Brandenburg dar. Datenquelle ist das Anlageninformationssystem LIS-A. Die Anlagen werden in der Darstellung nach Kategorien von Tätigkeiten gemäß Artikel 10 der Richtlinie 2010/75/EU unterschieden: Energiewirtschaft (Nr. 1), Herstellung und Verarbeitung von Metallen (Nr. 2), Mineralverarbeitende Industrie (Nr. 3), Chemische Industrie (Nr. 4), Abfallbehandlung (Nr. 5), Intensivtierhaltung und -aufzucht (Nr. 6.6), Holz- und Papierherstellung (Nr. 6.1.a, 6.1.b), Sonstige Tätigkeiten (Nr. 6 außer 6.1.a, 6.1.b, 6.6). Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
Der interoprable INSPIRE-Viewdienst (WMS) Production and Industrial Facilities gibt einen Überblick über die Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) in Brandenburg. Der Datenbestand beinhaltet die Punktdaten zu BImSchG-Betriebsstätten und BImSchG-Anlagen (ohne Anlagenteile). Datenquelle ist das Anlageninformationssystem "LIS-A". Gemäß der INSPIRE-Datenspezifikation "Production and Industrial Facilities" (D2.8.III.8_v3.0) liegen die Inhalte der BImSchG-Anlagen INSPIREkonform vor. Der WMS beinhaltet 2 Layer: "ProductionFacility" (Betriebsstätte) und "ProductionInstallation" (Anlage). Der ProductionFacility-Layer wird gem. INSPIRE-Vorgaben nach Wirstschaftszweigen (BImSchG-Kategorie 1. Ordnung) untergliedert in: - PF.PowerGeneration: Wärmeerzeugung, Bergbau und Energie (BImSchG-Kategorie: Nr. 1) - PF.ConstructionMaterialProduction: Steine und Erden, Glas, Keramik, Baustoffe (BImSchG-Kategorie: Nr. 2) - PF.MetalProcessingAndProduction: Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (BImSchG-Kategorie: Nr. 3) - PF.ChemicalProcessing: Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (BImSchG-Kategorie: Nr. 4) - PF.PlasticsManufacturing: Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (BImSchGKategorie: Nr. 5) - PF.WoodAndPaperProcessing: Holz, Zellstoff (BImSchG-Kategorie: Nr. 6) - PF.FoodAndAgriculturalProduction: Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (BImSchG-Kategorie: Nr. 7) - PF.WasteProcessing: Verwertung und Beseitigung von Abfällen und sonstigen Stoffen(BImSchGKategorie: Nr. 8) - PF.MaterialStorage: Lagerung, Be- und Entladen von Stoffen und Gemischen(BImSchG-Kategorie: Nr. 9) - PF.OtherProcessing: Sonstige Anlagen (BImSchG-Kategorie: Nr. 10) Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
Durch Einlippentiefbohren (ELB) koennen tiefe Bohrungen mit kleineren Durchmessern hergestellt werden. Der Durchmesserbereich betraegt zZt 0,9 bis 40 mm. Die Bohrtiefe kann ca das 50 bis 100-fache des Bohrungsdurchmessers erreichen. Zur Kuehlung und Schmierung der Schneiden und Stuetzleisten eines ELB-Werkzeuges wird durch den Werkzeugschaft ueblicherweise ein fluessiger Kuehlschmierstoff gefoerdert, der mit Spaenen vermischt aussen in einer Sicke des Schaftes abfliesst und so einen kontinuierlichen Bohrvorgang ermoeglicht. Aufgrund der hohen Kosten fuer die Kuehlschmierstoffanlage und fuer die Beschaffung, Pflege und Entsorgung von konventionellen Kuehlschmierstoffen sowie der Behandlung der Werkstuecke und Spaene besteht in der Industrie die Forderung, ohne Tiefbohroele oder -emulsionen tiefzubohren. Hinzu kommt neben der Forderung nach einer Erhoehung der Wirtschaftlichkeit auch der Wunsch nach gesteigerter Umweltvertraeglichkeit der Fertigung sowie die modifizierte Umweltschutzgesetzgebung. Aus diesen Gruenden wird am Institut fuer Spanende Fertigung versucht, die bisher verwendeten Mineraloele mit den teilweise toxischen Additiven - Chlor-, Phosphor- und Schwefelverbindungen - zu substituieren, um die weitere Verbreitung umweltfeindlicher Fertigungshilfstoffe zu verhindern. Dazu koennen entweder konsequentes Trockenbohren, ein Minimalmengenkonzept oder biologisch abbaubare Kuehlschmierstoffe eingesetzt werden. In den bisher durchgefuehrten Untersuchungen konnte nachgewiesen werden, dass Einlippentiefbohren von Grauguss mit Druckluft als Kuehlmittel moeglich ist. Eine Verbesserung der Verschleissbestaendigkeit wird jedoch durch eine zusaetzliche...
Das Projekt wird an zwei Unternehmensstandorten durchgeführt: Eine neuartige Bandgießanlage zur Herstellung von Vorbändern wird in Peine errichtet. Dort sollen neue, hochfeste Stahlwerkstoffe mit hohem Mangan-, Silizium- und Aluminium-Gehalten hergestellt werden. In Salzgitter wird eine vorhandene Walzanlage zur Weiterverarbeitung der Vorbänder umgebaut. Bei der Herstellung von Leichtbaustählen sollen etwa 170 kg CO2 pro Tonne Warmband eingespart werden. Bezogen auf das Produktionsvolumen der geplanten Anlage (25.000 Tonnen) ergibt das eine CO2-Einsparung von 4.250 Tonnen pro Jahr. Darüber hinaus werden erhebliche Energieeinsparungspotenziale in der Stahl verarbeitenden Industrie erwartet. Beim Einsatz beispielsweise in Kraftfahrzeugen rechnen Experten mit einer Kraftstoffreduzierung von ca. 0,2 Liter / 100 km bzw. ca. 8 g CO2 / km. Das entspricht umgerechnet auf die produzierte Jahresmenge an Stahl etwa 8 Millionen Kraftstoff jährlich.
Origin | Count |
---|---|
Bund | 497 |
Kommune | 1 |
Land | 26 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Daten und Messstellen | 1 |
Förderprogramm | 457 |
Text | 43 |
Umweltprüfung | 2 |
unbekannt | 21 |
License | Count |
---|---|
geschlossen | 122 |
offen | 399 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 484 |
Englisch | 52 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 3 |
Datei | 2 |
Dokument | 89 |
Keine | 275 |
Unbekannt | 1 |
Webdienst | 5 |
Webseite | 166 |
Topic | Count |
---|---|
Boden | 366 |
Lebewesen und Lebensräume | 284 |
Luft | 297 |
Mensch und Umwelt | 523 |
Wasser | 238 |
Weitere | 510 |