Bebauungspläne und Umringe der Gemeinde Heusweiler (Saarland), Ortsteil Obersalbach:Bebauungsplan "Metallbearbeitung Dahlem" der Gemeinde Heusweiler, Ortsteil Obersalbach
Der interoprable INSPIRE-Viewdienst (WMS) Production and Industrial Facilities gibt einen Überblick über die Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) in Brandenburg. Der Datenbestand beinhaltet die Punktdaten zu BImSchG-Betriebsstätten und BImSchG-Anlagen (ohne Anlagenteile). Datenquelle ist das Anlageninformationssystem "LIS-A". Gemäß der INSPIRE-Datenspezifikation "Production and Industrial Facilities" (D2.8.III.8_v3.0) liegen die Inhalte der BImSchG-Anlagen INSPIREkonform vor. Der WMS beinhaltet 2 Layer: "ProductionFacility" (Betriebsstätte) und "ProductionInstallation" (Anlage). Der ProductionFacility-Layer wird gem. INSPIRE-Vorgaben nach Wirstschaftszweigen (BImSchG-Kategorie 1. Ordnung) untergliedert in: - PF.PowerGeneration: Wärmeerzeugung, Bergbau und Energie (BImSchG-Kategorie: Nr. 1) - PF.ConstructionMaterialProduction: Steine und Erden, Glas, Keramik, Baustoffe (BImSchG-Kategorie: Nr. 2) - PF.MetalProcessingAndProduction: Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (BImSchG-Kategorie: Nr. 3) - PF.ChemicalProcessing: Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (BImSchG-Kategorie: Nr. 4) - PF.PlasticsManufacturing: Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (BImSchGKategorie: Nr. 5) - PF.WoodAndPaperProcessing: Holz, Zellstoff (BImSchG-Kategorie: Nr. 6) - PF.FoodAndAgriculturalProduction: Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (BImSchG-Kategorie: Nr. 7) - PF.WasteProcessing: Verwertung und Beseitigung von Abfällen und sonstigen Stoffen(BImSchGKategorie: Nr. 8) - PF.MaterialStorage: Lagerung, Be- und Entladen von Stoffen und Gemischen(BImSchG-Kategorie: Nr. 9) - PF.OtherProcessing: Sonstige Anlagen (BImSchG-Kategorie: Nr. 10) Maßstab: 1:500000; Bodenauflösung: nullm; Scanauflösung (DPI): null
Durch Einlippentiefbohren (ELB) koennen tiefe Bohrungen mit kleineren Durchmessern hergestellt werden. Der Durchmesserbereich betraegt zZt 0,9 bis 40 mm. Die Bohrtiefe kann ca das 50 bis 100-fache des Bohrungsdurchmessers erreichen. Zur Kuehlung und Schmierung der Schneiden und Stuetzleisten eines ELB-Werkzeuges wird durch den Werkzeugschaft ueblicherweise ein fluessiger Kuehlschmierstoff gefoerdert, der mit Spaenen vermischt aussen in einer Sicke des Schaftes abfliesst und so einen kontinuierlichen Bohrvorgang ermoeglicht. Aufgrund der hohen Kosten fuer die Kuehlschmierstoffanlage und fuer die Beschaffung, Pflege und Entsorgung von konventionellen Kuehlschmierstoffen sowie der Behandlung der Werkstuecke und Spaene besteht in der Industrie die Forderung, ohne Tiefbohroele oder -emulsionen tiefzubohren. Hinzu kommt neben der Forderung nach einer Erhoehung der Wirtschaftlichkeit auch der Wunsch nach gesteigerter Umweltvertraeglichkeit der Fertigung sowie die modifizierte Umweltschutzgesetzgebung. Aus diesen Gruenden wird am Institut fuer Spanende Fertigung versucht, die bisher verwendeten Mineraloele mit den teilweise toxischen Additiven - Chlor-, Phosphor- und Schwefelverbindungen - zu substituieren, um die weitere Verbreitung umweltfeindlicher Fertigungshilfstoffe zu verhindern. Dazu koennen entweder konsequentes Trockenbohren, ein Minimalmengenkonzept oder biologisch abbaubare Kuehlschmierstoffe eingesetzt werden. In den bisher durchgefuehrten Untersuchungen konnte nachgewiesen werden, dass Einlippentiefbohren von Grauguss mit Druckluft als Kuehlmittel moeglich ist. Eine Verbesserung der Verschleissbestaendigkeit wird jedoch durch eine zusaetzliche...
Das Grossprojekt Region 'Industriegebiet Spree' liegt im Suedosten Berlins und stellte ein geschlossenes Industriegebiet dar, in dem sich unterschiedliche Betriebe des produzierenden und verarbeitenden Gewerbes ansiedelten (ua chemische Industrie, Energieerzeugung, Metallverarbeitung, Elektronik, Fahrzeug- und Motorenbau). Die zahlreichen Industrie- und Gewerbebetriebe haben durch Schadstofffreisetzungen infolge Handhabungsverlusten, Leckagen, unsachgemaessen Ablagerungen etc zu einer grossraeumigen Belastung des Bodens und zu Kontaminationen des Grundwassers vor allem mit unterschiedlichen Schwermetallen, Cyaniden und organischen Verbindungen gefuehrt. Aufgrund der Kontaminationen im Grundwasser mussten einzelne Foerdergalerien der Wasserwerke in der Vergangenheit vor allem wegen Belastungen durch LCKW und gaswerktypische Schadstoffe geschlossen werden. Die Sanierung des Industriegebietes Spree hat vordringlich die Sicherung der Wasserversorgung zum Ziel, da das gesamte Projektgebiet im gemeinsamen Wasserschutzgebiet (Zone III) der drei Wasserwerke Johannisthal, Wuhlheide und Alt-Glienicke liegt. Die Foerderung der Wasserwerke erfolgt aus Brunnengalerien, die relativ nah zur Spree und zum Teltowkanal gelegen sind. Aufgrund der hydrogeologischen Bedingungen wird die Grundwasserneubildung bei den Wasserwerken Wuhlheide und Johannisthal etwa zu 2/3 aus Uferfiltrat gebildet. 1993 wurde die Region 'Industriegebiet Spree' als Grossprojekt im Sinne der Finanzierungsregelung der oekologischen Altlasten bestaetigt. Als Massnahmen im Rahmen des Finanzierungsabkommens werden solche angesehen, die der Gefahrenabwehr im Sinne der im Bund und in den jeweiligen Laendern geltenden gesetzlichen Regelungen dienen. Der Umfang dieser Massnahmen wird einvernehmlich zwischen Bund, BVS und Land in einer gemeinsamen Arbeitsgruppe festgelegt. Im Verwaltungsabkommen vom Dezember 1992 ist geregelt, dass die aus der Freistellung entstehenden Folgekosten zwischen dem Bund und dem freistellenden Land aufgeteilt werden. Grundlage fuer die Sanierung ist ein Sanierungsrahmenkonzept. Ende Januar 1996 wurde durch Bund, BVS und Land ein Sanierungsrahmenkonzept fuer das Grossprojekt Berlin verabschiedet, das vom IWS erstellt wurde.
Das Projekt wird an zwei Unternehmensstandorten durchgeführt: Eine neuartige Bandgießanlage zur Herstellung von Vorbändern wird in Peine errichtet. Dort sollen neue, hochfeste Stahlwerkstoffe mit hohem Mangan-, Silizium- und Aluminium-Gehalten hergestellt werden. In Salzgitter wird eine vorhandene Walzanlage zur Weiterverarbeitung der Vorbänder umgebaut. Bei der Herstellung von Leichtbaustählen sollen etwa 170 kg CO2 pro Tonne Warmband eingespart werden. Bezogen auf das Produktionsvolumen der geplanten Anlage (25.000 Tonnen) ergibt das eine CO2-Einsparung von 4.250 Tonnen pro Jahr. Darüber hinaus werden erhebliche Energieeinsparungspotenziale in der Stahl verarbeitenden Industrie erwartet. Beim Einsatz beispielsweise in Kraftfahrzeugen rechnen Experten mit einer Kraftstoffreduzierung von ca. 0,2 Liter / 100 km bzw. ca. 8 g CO2 / km. Das entspricht umgerechnet auf die produzierte Jahresmenge an Stahl etwa 8 Millionen Kraftstoff jährlich.
Forschungsziele: Das Vorhaben ist ein Teilprojekt (TP4) der Leittechnologie-Initiative 'EcoForge - Ressourcen-effiziente Prozessketten für Hochleistungsbauteile' der AiF und hat im Bereich Zerspanung zwei übergeordnete Ziele: - Analyse der in den Teilprojekten TP1-6 betrachteten Werkstoffe auf ihre Eigenschaften bezüglich Zerspanbarkeit durch die Prozesse Tiefbohren und Drehen - Überprüfung der Machbarkeit einer Nutzung der Schmiedehitze zur Heißzerpanung. Gegenstand der Forschung im laufenden Vorhaben ist die Realisierung der Nutzung der Schmiedehitze zur Heißzerspanung (Bild 1). Durch die Verknüpfung von Schmiedeprozess und Zerspanung kann von der besseren Zerspanbarkeit bei hohen Temperaturen profitiert werden und in Zukunft die Verwendung von bainitischen Schmiedestählen mit reduziertem Schwefelgehalt zur Herstellung von Hochleistungsbauteilen ermöglichen. Angestrebte Forschungsergebnisse: Die Vorteile der Nutzung der Schmiedehitze zur Heißzerspanung für die Prozesskette können wie folgt zusammengefasst werden: - Wegfall einer zusätzlichen Randschichthärtung bzw. -verfestigung - Bainit besitzt ausreichende mechanische Eigenschaften - Bauteile weisen homogene Härte auf - Nutzung der Schmiedehitze zur Heißzerspanung - Abschrecken wird bei ca. 500 C unterbrochen - Verbesserte Zerspanbarkeit bei hohen Temperaturen (Bild 2) - Längere Werkzeugstandzeiten. Zerspankräfte beim Drehen der Proben mit unterschiedlichen Temperaturen. - Reduzierung des Schwefelgehalts in AFP-Stählen - Zerspanbarkeit wird durch hohe Temperaturen gewährleistet - Bessere Funktionseigenschaften der Bauteile.
Problemstellung: Bei der Herstellung von typischen Serienteilen von Kraftfahrzeugen wie z.B. Achsschenkeln oder Getriebewellen durch Verfahren der Massivumformung und anschließendem Zerspanen entfallen ca. 40-70 Prozent der gesamten Stückkosten auf die mechanische Nachbearbeitung. Oben angedeutetes Potential liegt gerade bei heutzutage immer stärker nachgefragten Hochleistungsbauteilen zum einen in der technologischen Verbesserung spanabhebender Fertigungsverfahren selbst und zum anderen in der Minimierung der kostenintensiven Zerspanung. Die Kombination aus Warm- und Kaltformgebung ist in modernen Schmiedebetrieben bereits Stand der Technik und ermöglicht die Herstellung technisch anspruchsvoller Bauteile mit geringer spanender Nacharbeit. Es sind Bauteile mit verbesserten Maß- und Formgenauigkeiten als durch alleinige Warmumformung herstellbar. Durch die Kaltumformung lassen sich darüber hinaus weitere funktionelle Bauteileigenschaften verbessern, die gerade heutzutage Gegenstand zahlreicher Forschungsarbeiten sind. Die Verfahrensgrenze einer dem Schmiedeprozess nachgeschalteten Kaltumformung wird häufig durch die mechanischen Werkzeugbelastungen aufgrund der hohen und durch Entwicklung neuartiger Stahlgüten immer höher werdenden Werkstofffestigkeiten festgelegt. In modernen Schmiedeprozessketten findet aus energetischen und damit wirtschaftlichen und ökologischen Gesichtspunkten eine Wärmebehandlung zur Einstellung bestimmter Werkstoffeigenschaften direkt aus der Schmiedehitze statt. Die letzte Wärmebehandlungsstufe entspricht bei modernen Legierungskonzepten einer isothermen Haltestufe zur ferritisch-perlitischen oder auch bainitischen Gefügeumwandlung. Neueste Entwicklungen auf dem Gebiet der Sensorik ermöglichen eine intelligente thermomechanische Prozessführung aus Schmieden und definierter Wärmebehandlung direkt aus der Schmiedehitze, wie sie im Rahmen der AiF-Leittechnologie 'Schmieden 2020 - Ressourceneffiziente Prozessketten für Hochleistungsbauteile' entwickelt werden soll. Die ganzheitliche Prozessbetrachtung zeigt, dass in thermomechanisch behandelten Werkstücken nicht nur gezielt funktionelles Gebrauchsgefüge, sondern auch auf eine weitere Verarbeitung (z.B. durch Umformung) technologisch optimierte Verarbeitungsgefüge eingestellt werden könnten. Es fehlt jedoch an wissenschaftlichen Erkenntnissen über günstige Gefügezustände für eine anschließende Kaltumformung oder eine Lauwarmumformung aus der Schmiedehitze im technologischen und funktionellen Sinn. Dies gilt erst recht für mikrolegierte ausscheidungshärtende ferritisch-perlitische und hochfeste duktile bainitische Hochleistungsstähle. Das Potential der Lauwarmumformung im Temperaturbereich zwischen Kaltumformung und industrieller Halbwarmumformung typischer Fließpressstähle an sich, konnte durch neuere Forschungsarbeiten am Institut für Umformtechnik (IFU) der Universität Stuttgart bereits aufgezeigt werden. usw.
Motivation: Durch die Einstellung des Werkstoffgefüges direkt aus der Schmiedehitze sind ressourcen- und energieeffiziente Prozessketten in der Umformindustrie realisierbar. Eine gezielte Temperatur-Zeit-Führung der Bauteile in der Wärmebehandlung ermöglicht es, die Werkstoffgefüge zu optimieren und die Prozesskette in der Produktion hochbeanspruchter Schmiedebauteile zu verkürzen und somit einen Vorsprung in der Entwicklung zu erlangen. Zielsetzung: - Verkürzung der Prozesskette - Einstellen des Werkstoffgefüges durch kontrollierte Zeit-Temperatur-Umwandlungsverläufe - Abkühlen aus der Schmiedewärme - Integration einer sicheren und energieeffizienten Prozessführung. Lösungsweg: Der Lösungsweg baut auf experimentellen und simulativen Untersuchungen adaptierter Abkühlprozesse auf. Der Temperatur-Zeit-Verlauf im Wärmebehandlungsprozess kann in drei Hauptbereiche unterteilt werden: - zügiges Abkühlen auf Bainitisierungstemperatur TB1 - isothermes Halten während der Bainitisierung TB2 - geregeltes Abkühlen aus der Bainitisierung TB3. Kontinuierliches ZTU-Diagramm eines HDB-Stahls mit möglicher Abkühlkurve. TB 1: zügiges Abkühlen auf Bainit - TBS. Die Wärmebehandlung der Schmiedebauteile erfolgt über eine kontrollierte Düsenfeldabschreckung. Düsenfeldabschreckung: Jets und Sprays. TB 2: isothermes Halten auf Bainitisierungstemperatur. Über einen Heißgasprozess ist ein isothermes Halten der Bauteile auf Bainittemperatur möglich. TB3: geregelte Abkühlung auf RT. Die Abkühlung auf RT erfolgt wiederum mittels Düsenfeldabschreckung.
Motivation: Die konventionelle Herstellung hochbelasteter Bauteile ist durch eine relativ lange Prozesskette gekennzeichnet. Mittels einer prozessintegrierten Wärmebehandlung aus der Schmiedewärme können sowohl die Wirtschaftlichkeit produzierender Unternehmen als auch die Energieeffizienz erhöht werden. Das Zwischenstufengefüge Bainit kombiniert hohe Festigkeit mit verbesserter Zähigkeit. - Verbesserung der mechanischen Bauteileigenschaften - Verkürzung der Prozesskette - Berücksichtigung der umformbedingten Korngrößenänderung und abkühlungsbedingten Gefügeentwicklung im Schmiedebauteil bereits während der Prozessauslegung - FE-basierte Vorhersage des durch die Wärmebehandlung hervorgerufenen Verzugs im Bauteil. Zielsetzung und Vorgehensweise: - Programmtechnische Erweiterung kommerzieller FE-Systeme durch Einbindung von Unterroutinen - Die Unterprogramme basieren auf physikalischen empirischen Modellen zur Berechnung des Umformverhaltens, der zeitlich und lokal ausbildenden Gefüge- und Kornstruktur sowie des Aufkohlungsverhaltens - Numerische und experimentelle Untersuchungen an den zwei Modellgeometrien 'Abgesetzte Welle' und 'Railbauteil' - Untersuchung von Stählen mit unterschiedlichem Ausgangs- und Zielgefüge - Einsatzstahl - AFP-Stahl - HDB-Stahl. Experimentelle Untersuchungen: FE-gestützte Prozessentwicklung und Werkzeugauslegung - Reproduzierbare Versuchsergebnisse durch automatisierten Schmiedeprozess - Gezielte Prozessführung mit thermischer Überwachung zur Einstellung der Zielgefüge - Beurteilung der Bauteilqualität hinsichtlich Maßhaltigkeit mittels einer 3D-Koordinatenmessmaschine - Metallographische Untersuchungen der Fertigteile zur Beurteilung der umformtechnisch eingebrachten Kornfeinung - Untersuchung des Verzugverhaltens. Numerische Untersuchungen. Berechnung der diffusionsgesteuerten und diffusionslosen Gefügeumwandlung während des Abkühlvorgangs - Berechnung des abkühlvorgangsbedingten Bauteilverzugs durch Berücksichtigung umwandlungsplastischer und umwandlungsbedingter Dehnungsanteile - Bestimmung der Korngrößenverteilung infolge statischer und dynamischer Rekristallisation - Lückenlose numerische Abbildung von Schmiedeprozessketten (Erwärmen, Schmieden, Abkühlen) unter Berücksichtigung gefügeevolutionsbedingter Veränderungen der Bauteileigenschaften.
| Origin | Count |
|---|---|
| Bund | 501 |
| Kommune | 1 |
| Land | 23 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 1 |
| Förderprogramm | 455 |
| Text | 48 |
| Umweltprüfung | 2 |
| unbekannt | 19 |
| License | Count |
|---|---|
| geschlossen | 118 |
| offen | 404 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 484 |
| Englisch | 53 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 3 |
| Datei | 2 |
| Dokument | 87 |
| Keine | 278 |
| Unbekannt | 1 |
| Webdienst | 5 |
| Webseite | 166 |
| Topic | Count |
|---|---|
| Boden | 364 |
| Lebewesen und Lebensräume | 276 |
| Luft | 297 |
| Mensch und Umwelt | 524 |
| Wasser | 235 |
| Weitere | 514 |