API src

Found 2082 results.

Related terms

Erneuerbare Kraftstoffe aus Grünen Raffinerien der Zukunft, Teilvorhaben 2

CO2-basierte Bioproduktionsplattform für Cystein, Aspartat und Glycolat via (elektro-)enzymatischem Methanol, Teilprojekt F

Sustainable Mobility Enabler - Dimethylcarbonat (DMC) und Methylformiat (MeFo) aus regenerativen Quellen

Untersuchung der katalytischen Prozesse in Elektrolyse- und Synthesereaktionen (im Verbundprojekt: Entwicklung eines tubularen Dampf-Elektrolyseurs mit integrierter Kohlenwasserstoffsynthese)

Im Rahmen der in Deutschland stattfindenden Energiewende werden zur Substituierung fossiler Energieträger zunehmend erneuerbare Energien eingesetzt. Die regelmäßige Verfügbarkeit dieser Energiequellen ist nur bei einem kleinen und kaum erweiterbaren Teil, hauptsächlich der Wasserkraft und der Biomasseverwertung, gegeben. Die Nutzung von Wasserstoff als Energieträger der erneuerbaren Energien (Wasserstoffwirtschaft) erscheint aufgrund hoher Anfangsinvestitionen zur Umrüstung der auf Kohlenwasserstoffen basierenden Energieinfrastruktur sowie der geringen volumetrischen Energiespeicherdichte des Wasserstoffs problematisch. Eine interessante Möglichkeit zur Lösung der Speicherproblematik bei gleichzeitiger Beibehaltung der vorhandenen Infrastruktur besteht in der Herstellung von Methanol aus Kohlendioxid und Elektrolyse-Wasserstoff, der mittels erneuerbarer Energien erzeugt wird. Durch eine stoffliche Nutzung von Kohlendioxid lassen sich in Folge CO2 ?Emissionen mindern, und CO2 wird dadurch in einem Kreislauf genutzt, ohne dass die Atmosphäre durch zusätzliche Emissionen belastet wird. Für die Umsetzung dieses Konzepts müssen geringe Systemkosten bei hohen Wirkungsgraden erreicht werden. Beide Kriterien sprechen für die Nutzung der Hochtemperaturelektrolyse zur Herstellung von Wasserstoff für eine anschließende Kohlenwasserstoffsynthese. Bisher wurden in Hochtemperatur?Elektrolyseuren sauerstoffleitende Elektrolyte verwendet. Das Teilvorhaben der Professur für Technische Thermodynamik innerhalb des Verbundprojektes umfasst die Charakterisierung der eingesetzten Katalysatoren sowie deren Wirkungsweise und die Untersuchung der katalytischen Prozesse mit experimentellen Methoden. Damit soll der Gesamtprozess hinsichtlich der Katalysatoren optimiert werden.

Herstellung holzbasierter Schäume zur Substitution petrochemischer Rohstoffe + Messprogramm

Die neu gegründete Butterweck Holzstoffe GmbH & Co. KG ist über die Gesellschafterstruktur mit der Butterweck Rundholzlogistik GmbH & Co. KG verbunden. Das mittlerweile in zweiter Generation geführte Familienunternehmen in Lehe/Ems ist als Dienstleister in der Forstwirtschaft tätig und bietet Beratung bei der Waldbepflanzung sowie der Waldbetreuung, -pflege und -vermessung an, unterstützt bei der bestandschonenden Holzernte und der Transportlogistik und vertreibt darüber hinaus Brenn- und Rundholz sowie Hackschnitzel und Rindenmulch. Die Butterweck Holzstoffe GmbH & Co. KG plant die erstmalige großtechnische Realisierung einer Anlage zur Herstellung von Holzschaumplatten ohne Verwendung von synthetischen Bindemitteln. Die vom Wilhelm-Klauditz-Institut in Braunschweig entwickelten holzbasierten Schäume sind ein neuer Werkstoff und werden in Deutschland noch nicht großtechnisch hergestellt. Sie sollen Verwendung als Dämmplatten, Möbel- und Sandwichelemente oder als Torfsodenersatz finden. Die Holzschaumplatten sollen konventionelle Holzfaserplatten, erdölbasierte Schäume sowie Verbunddämmmaterialien ersetzen, deren Herstellung mit schädlichen Umweltauswirkungen verbunden sind. So werden Holzfaserplatten in Deutschland üblicherweise mit synthetischen Bindemitteln, wie pMDI oder Harnstoff-Formaldehyd-Harzen, hergestellt. Die Bindemittel führen während und vor allem nach der Herstellung z.B. zu Formaldehydemissionen. Die Herstellung der Holzschaumplatten kommt hingegen ohne die Verwendung synthetischer Bindemittel aus. Insbesondere soll bei der Herstellung dieses neuartigen Werkstoffes die Ressourceneffizienz gegenüber der Herstellung konventioneller Produkte gesteigert und der Chemikalieneinsatz reduziert werden. Zur Herstellung des Holzschaums werden Holzhackschnitzel in verschiedenen Verfahrensschritten zellular aufgeschlossen. Die dadurch entstandene wässrige Suspension wird unter Zugabe eines Treibmittels im Intensivmischer aufgeschäumt. Ferner werden Proteine eingesetzt, die den Schäumungsprozess unterstützen und dabei denaturieren. Abhängig vom geplanten Anwendungsbereich der Platten werden ggf. auch Graphite als Flammschutzmittel und/oder Wachse als Hydrophobierungsmittel zugegeben. Auf synthetische Bindemittel kann vollständig verzichtet werden. Der Holzschaum wird anschließend auf ein spezielles Förderband in Plattenform aufgebracht und mittels einer innovativen elektromagnetischen Trocknungsanlage auf die erforderliche Endfeuchte getrocknet. Diese Trocknung zeichnet sich durch einen sehr schnellen Wärmeeintrag und einen hohen Wirkungsgrad aus. Je nach Mahlgrad, eingesetzter Faser- und Additivmenge können unterschiedliche Plattenrohdichten für unterschiedlichste Anwendungen erzeugt werden. Die so hergestellten Holzschaumplatten können wie konventionelle Holzwerkstoffplatten nachbearbeitet werden, z.B. durch Sägen, Schleifen und Beschichten. Fehlerhafte Platten können in den Produktionsprozess zurückgeführt oder zu Torfsodenersatz weiterverarbeitet werden. Die Umweltentlastungen des Vorhabens beruhen auf der umweltschonenderen Herstellung der Holzschaumplatten im Vergleich zur Herstellung von konventionellen Werkstoffen. Die Herstellung der Holzschaumplatten besitzt eine höhere Materialeffizienz als die Herstellung vergleichbarer Holzfaserplatten. Die konkrete Holzeinsparung ist abhängig vom Referenzprodukt. Ausgehend vom geplanten Produktportfolio nach Inbetriebnahme werden Holzeinsparungen in Höhe von 14.813 Tonnen pro Jahr erwartet, was rund 68 Prozent pro Jahr entspricht. Als Rohstoff für die Holzschaumplatten kommt sämtliche hölzerne Biomasse in Betracht (z.B. Nadel- & Laubholz, Altholz, Sägerestholz, Flachs oder Maisspindeln), wodurch die Kaskadennutzung unterstützt wird. Auch die Laubholznutzung wird dadurch gefördert. Für Holzfaserdämmplatten wird zurzeit ausschließlich Nadelrundholz eingesetzt. (Text gekürzt)

Oxyfuelverbrennung von Klärschlamm mit Elektrolyse-O2 zur Nutzung des CO2 in Power-to-X-Prozessen

In dem Vorhaben OxyCO2 wird die Kopplung einer Elektrolyse und einer Wirbelschichtfeuerung untersucht. Dabei soll der Elektrolyse-O2 genutzt werden, um eine Klärschlamm-Monoverbrennung im Oxyfuel-Betrieb zu ermöglichen. Aus der Verbrennung entstehendes CO2 kann zusammen mit Elektrolyse-H2 genutzt werden, um Methanol herzustellen. Durch die experimentelle Klärschlammverbrennung in einer Wirbelschichtfeuerung sollen unter Variation einiger Parameter (z.B. Rauchgaszirkulation, Lambda, Feedgas-Vorwärmung) optimale Betriebsbedingungen ermittelt werden. Es wird eine modulare Rauchgasreinigungsanlage im Technikumsmaßstab errichtet, um den Einfluss einer partiellen und vollständigen Oxyfuel-Verbrennung auf die Rauchgasreinigung untersuchen zu können. Zusätzlich wird das Verfahren mithilfe der experimentellen Daten simulativ untersucht. Darunter werden unterschiedliche Modi für die Oxyfuelverbrennung sowie die Optimierung der Wärmeintegration betrachtet. Aufbauend auf den experimentellen und simulativen Ergebnissen, wird ein gekoppelter Betrieb von Wirbelschicht-Technikumsanlage und Rauchgasreinigungsanlage für die partielle und vollständige Oxyfuel-Monoverbrennung von Klärschlamm demonstriert.

Sentinel-5P TROPOMI Surface Nitrogendioxide (NO2), Level 4 – Regional (Germany and neighboring countries)

The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI - Aerosol Optical Depth (AOD), Level 3 - Global

Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Cloud Optical Thickness (COT), Level 3 – Global

This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Cloud Fraction (CF), Level 3 – Global

Global Cloud Fraction (CF). Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The radiometric cloud fraction is retrieved from the UV using the OCRA algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

1 2 3 4 5207 208 209