API src

Found 618 results.

Sonderforschungsbereich (SFB) 806: Unser Weg nach Europa: Kultur-Umwelt Interaktion und menschliche Mobilität im Späten Quartär, Teilprojekt C01 (C02/C03): Siedlungsmuster und Klimawandel im späten Pleistozän des westlichen Mittelmeerraums - Eine Synthese

Fokus des neuen geo-archäologisch geprägten Teilprojekts C1 sind Modellierungen von Paläoumwelten, menschlichen Verhaltensmustern (Landnutzung, Mobilität) und Bevölkerungs-dynamiken im westlichen Mittelmeerraum während der letzten 50 ka. C1 verfügt über eine umfangreiche Datenbank mit rund 550 archäologischen und geologischen Datensätzen. Drei Zeitscheiben (50-40 ka BP, LGM, Holozän) werden untersucht, welche jeweils durch bedeutende Bevölkerungsumbrüche gekennzeichnet sind. In Zusammenarbeit mit E6 werden GIS-Analysen und weitere Methoden der Modellierung genutzt, um Mensch-Umweltbeziehungen und Wechselwirkungen mit menschlichen Populationen zu untersuchen.

AHK-4D - High-resolution and high-frequency monitoring of the rock glacier Äußeres Hochebenkar (AHK) in Austria

The aim of this project is to develop a methodology to quantify the magnitudes and frequencies of individual surface change processes of a rock glacier over several years. We do this by analyzing three dimensional (3D) surface change based on high-resolution, high-frequency and multisource LiDAR data. The derived information will enable us to develop methods to automatically characterize and disaggregate multiple processes and mechanisms that contribute to surface change signals derived from less frequent monitoring (e.g. yearly). Such methods can enhance our general understanding of the spatial and temporal variability of rock glacier deformation and the interaction of rock glaciers with connected environmental systems.

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Sonderforschungsbereich (SFB) 806: Unser Weg nach Europa: Kultur-Umwelt Interaktion und menschliche Mobilität im Späten Quartär, Teilprojekt F02: Anwendung von Lumineszenzdatierungsteckniken in geoarchäologischen Studien

Teilprojekt F2 ist verantwortlich für die Datierung verschiedener geo-archäologischer Archive und für die Verbesserung von Lumineszenzdatierungsmethoden. In der dritten Phase des SFB wird sich F2 auf die Erweiterung und Verfeinerung von Sedimentchronologien und Paläoumweltarchiven in Höhlen und Felsdächern konzentrieren. Dies geschieht auch in Abstimmung mit mikromorphologischen Untersuchungen, die detaillierte Analysen zum Ablagerungskontext von Sedimenten ermöglichen. Von besonderem Interesse ist die Beantwortung der Fragen zu postsedimentären Umlagerungen von Sedimenten, zu multiple-grain versus single-grain Datierungen und zur Streuung in single-grain Datensätzen.

Root distribution and dynamics and their contribution to subsoil C-fluxes

It has been suggested that dying and decaying fine roots and root exudation represent important, if not the most important, sources of soil organic carbon (SOC) in forest soils. This may be especially true for deep-reaching roots in the subsoil, but precise data to prove this assumption are lacking. This subproject (1) examines the distribution and abundance of fine roots (greater than 2 mm diameter) and coarse roots (greater than 2 mm) in the subsoil to 240 cm depth of the three subsoil observatories in a mature European beech (Fagus sylvatica) stand, (2) quantifies the turnover of beech fine roots by direct observation (mini-rhizotron approach), (3) measures the decomposition of dead fine root mass in different soil depths, and (4) quantifies root exudation and the N-uptake potential with novel techniques under in situ conditions with the aim (i) to quantify the C flux to the SOC pool upon root death in the subsoil, (ii) to obtain a quantitative estimate of root exudation in the subsoil, and (iii) to assess the uptake activity of fine roots in the subsoil as compared to roots in the topsoil. Key methods applied are (a) the microscopic distinction between live and dead fine root mass, (b) the estimation of fine and coarse root age by the 14C bomb approach and annual ring counting in roots, (c) the direct observation of the formation and disappearance of fine roots in rhizotron tubes by sequential root imaging (CI-600 system, CID) and the calculation of root turnover, (d) the measurement of root litter decomposition using litter bags under field and controlled laboratory conditions, (e) the estimation of root N-uptake capacity by exposing intact fine roots to 15NH4+ and 15NO3- solutions, and (f) the measurement of root exudation by exposing intact fine root branches to trap solutions in cuvettes in the field and analysing for carbohydrates and amino acids by HPLC and Py-FIMS (cooperation with Prof. A. Fischer, University of Trier). The obtained data will be analysed for differences in root abundance and activity between subsoil (100-200 cm) and topsoil (0-20 cm) and will be related to soil chemical and soil biological data collected by the partner projects that may control root turnover and exudation in the subsoil. In a supplementary study, fine root biomass distribution and root turnover will also be studied at the four additional beech sites for examining root-borne C fluxes in the subsoil of beech forests under contrasting soil conditions of different geological substrates (Triassic limestone and sandstone, Quaternary sand and loess deposits).

Sonderforschungsbereich (SFB) 806: Unser Weg nach Europa: Kultur-Umwelt Interaktion und menschliche Mobilität im Späten Quartär, Teilprojekt B01: Der 'östliche Verbreitungsweg' - Letztglaziale Paläogeographie und Archäologie des östlichen Mittelmeerraums und der Balkanhalbinsel

Das Teilprojekt B1 verfolgt den 'östlichen Verbreitungsweg' der Out-of-Africa 2 Migration von Afrika nach Westeurasien. Geoarchäologische Forschung wurden in Schlüsselgebieten der gesamten Region durchgeführt, um die archäologische und paläoklimatische Entwicklung der letzten ca.50 ka besser zu verstehen. Neben der Fertigstellung laufender Feldforschungen in der nächsten SFB Phase wird der Fokus auf Korrelationen menschlicher Präsenz mit paläogeographischen Determinanten (Niederschlag, Höhe ü NN, etc.) und deren räumlicher Verbreitung liegen. Dies geschieht in Zusammenarbeit mit Teilprojekt D1 durch eine Rekonstruktion der Bedingungen, welche es Homo sapiens ermöglichten, sich in Europa auszubreiten.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Structure and electronic transport properties of metallic liquids at conditions of planetary cores

Electrical conductivity is a key parameter in models of magnetic field generation in planetary interiors through magneto-hydrodynamic convection. Measurements of this key material parameter of liquid metals is not possible to date by experiments at relevant conditions, and dynamo models rely on extrapolations from low pressure/temperature experiments, or more recently on ab-initio calculations combining molecular dynamics and linear response calculations, using the Kubo-Greenwood formulation of transport coefficients. Such calculations have been performed for Fe, Fe-alloys, H, He and H-He mixtures to cover the interior of terrestrial and giant gas planets. These simulations are computationally expensive, and an efficient accurate scheme to determine electrical conductivities is desirable. Here we propose a model that can, at much lower computational costs, provide this information. It is based on Ziman theory of electrical conductivity that uses information on the liquid structure, combined with an internally consistent model of potentials for the electron-electron, electron-atom, and atom-atom interactions. In the proposal we formulate the theory and expand it to multi-component systems. We point out that fitting the liquid structure factor is the critical component in the process, and devise strategies on how this can be done efficiently. Fitting the structure factor in a thermodynamically consistent way and having a transferable electron-atom potential we can then relatively cheaply predict the electrical conductivity for a wide range of conditions. Only limited molecular dynamics simulations to obtain the structure factors are required.In the proposed project we will test and advance this model for liquid aluminum, a free-electron like metal, that we have studied with the Kubo-Greenwood method previously. We will then be able to predict the conductivities of Fe, Fe-light elements and H, He, as well as the H-He system that are relevant to the planetary interiors of terrestrial and giant gas planets, respectively.

Aus der Atmosphäre in den Boden - wie Druckfluktuationen den Gastransport im Boden beeinflussen

Gasaustausch findet in der Atmosphäre primär durch turbulenten und laminaren Fluss statt. Im Boden dagegen spielt advektiver Gastransport eine untergeordnete Rolle, stattdessen dominiert Diffusion die Transportprozesse. Trotz der Unterschiedlichkeit und scheinbaren Unabhängigkeit dieser Prozesse wurde während Freilanduntersuchungen ein Anstieg von Gastransportraten im Boden um mehrere 10 % während Phasen starken Windes beobachtet. Dieser Anstieg ist auf wind-induzierte Druckfluktuationen zurückzuführen, die sich in das luftgefüllte Porensystem des Bodens fortpflanzen und zu einem minimal oszillierenden Luftmassenfluss führen (Pressure-pumping Effekt). Durch den oszillierenden Charakter des Luftmassenflusses ist der direkte Beitrag zum Gastransport sehr gering. Die damit einhergehende Dispersion führt jedoch zu einem Anstieg der effektiven Gastransportrate entgegen des Konzentrationsgradienten. Wird der Pressure-pumping (PP) Effekt bei der Bestimmung von Gasflüssen mit der Gradienten- und Kammermethode nicht berücksichtigt, kann dies zu großen Unsicherheiten in der Bestimmung von Bodengasflüssen führen. Insbesondere für das langfristige Monitoring von treibhausrelevanten Gasflüssen stellen diese Unsicherheiten ein zentrales Problem dar. Wir stellen vier Hypothesen auf:(H1) Der PP-Effekt ist abhängig von Bodeneigenschaften.(H2) Die Ausprägung von Luftdruckfluktuationen ist abhängig von der Rauigkeit verschiedener Landnutzungen (Wald, Grasland, landwirtschaftliche Kulturen, Stadt)(H3) Kammermessungen werden durch Luftdruckfluktuationen beeinflusst.(H4) Der Austausch und Umsatz von Methan in Böden von Mittelgebirgswäldern wird durch den PP-Effekt verstärkt. Die Hypothesen 1, 3 und 4 werden mittels Laboruntersuchungen von Proben verschiedener Böden und Bodenfeuchtebedingungen überprüft. Die Hypothese 2 wird durch Freilandmessungen an verschiedenen Standorten überprüft. Ziele des Vorhabens sind: (Z1) Modelle zu entwickeln, die die Quantifizierung des Einflusses der Bodenstruktur auf den PP-Effekt ermöglichen, (Z2) den Effekt der Oberflächenrauigkeit auf Luftdruckschwankungen zu quantifizieren, (Z3) Schwellenwerte zu definieren, die die Bestimmung von Standorten mit ausgeprägtem PP-Effekt ermöglichen, (Z4) Faktoren für die Berücksichtigung des PP-Effekts für Kammermessungen zu entwickeln, (Z5) Faktoren für die Berücksichtigung des PP-Effekts für die Gradienten Methode zu entwickeln, (Z6) den Einfluss des PP-Effekts auf die Methanaufnahme von Böden in Mittelgebirgswäldern zu bestimmen. Ein besseres Verständnis des bisher nur unzureichend untersuchten PP-Effekts wird wesentlich dazu beitragen, die Verlässlichkeit und Präzision von Messungen von Bodengasflüssen zu steigern, die die Grundlage für weitergehende Forschung darstellen.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Chemische und mineralogische Charakterisierung von Eisnuklei und Eisresiduen

Vorkommen, Häufigkeit, chemische Zusammensetzung und Mischungszustand jener Aerosolpartikel in der Erdatmosphäre, an denen sich durch heterogene Nukleation in unterkühlten Wolken Eis bilden kann (Ice Nucleating Particles = INP), werden experimentell untersucht. Diese Informationen sind wichtig für das Verständnis der Niederschlagsbildung, und finden in parametrisierter Form Eingang in meteorologische Modelle zur Vorhersage des Niederschlages. Das Projekt verwendet hierbei im Wesentlichen physikalische Methoden zur Identifikation und Isolation der Partikel aus der Atmosphäre, und nachfolgend elektronenmikroskopische Methoden zur mineralogischen Analyse einzelner Partikel. Die Identifikation jener wenigen Aerosolpartikel (ca. 1 von 10.000 bis 1 von 100.000), die Eisbildungsfähigkeit besitzen, erfolgt, indem eine Aerosolprobe einer Unterkühlung unter 0°C und Wasserdampfübersättigung ausgesetzt wird, und die an INP entstehenden Eiskristalle fotografiert und gezählt werden. Es werden sowohl Aerosolpartikel aus luftgetragenem Aerosol untersucht (aus dem Eiskeimzähler FINCH) wie auch Partikel, die aus einer Luftprobe auf einem Silizium-Probenträger niedergeschlagen und danach als INP identifiziert wurden (Eiskeimzähler FRIDGE). Eine dritte und vierte Methode (Ice-CVI und ISI) isolieren eisbildungsfähige Partikel, indem aus einer angesaugten Probe von Wolkenluft die Eiskristalle strömungstechnisch von den übrigen Luftbestandteilen getrennt werden. Alle Eiskeimproben werden im Rasterelektronenmikroskop auf Größe, Morphologie, Mischungszustand und chemische Zusammensetzung untersucht und die Ergebnisse der verschiedenen Ansätze verglichen. In Feldexperimenten werden Atmosphärenproben verschiedener geographischer Provenienz (Mitteleuropa, Forschungsstation Jungfraujoch, Wüstenstaub, Vulkanstaub) erhalten. In Laborexperimenten wird mit vorher gesammelt und charakterisierten Modellsubstanzen gearbeitet. Weiterhin wird durch tägliche Messungen der Anzahl-Konzentration und Zusammensetzung von Eiskeimen am Taunus Observatorium nahe Frankfurt über einen längeren Zeitraum untersucht, ob es Saisonalitäten, bevorzugte Quellgebiete (z.B. Wüsten, Industrie, etc.) und biologische Einflussfaktoren (z.B. Pollen, Pflanzenabrieb, Bakterien) für das Vorkommen von Eisnuklei gibt.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Die Bedeutung von Eisnukleationspartikeln und -moden für die Entstehung der Eisphase und Niederschlag: Modellsimulationen basierend auf Labormesssungen

In diesem Projekt sollen mit COSMO-SPECS, einem 3D-Wolkenmodell mit einer spektralen Beschreibung der wolken-mikrophysikalischen Prozesse von Hydrometeoren und Aerosolpartikeln, Modellsimulationen durchgeführt werden. Da dasselbe mikrophysikalische Schema in dem Luftpaketmodell enthalten ist, mit dem in INUIT-1 gearbeitet wurde, werden alle neuen Entwicklungen und Verbesserungen der Mikrophysik aus INUIT-1 direkt in COSMO-SPECS übertragen. Zunächst soll ein künstlicher Testfall simuliert werden, eine Wärmeblase über einem flachen Gelände. Sensitivitätsstudien sollen die Entwicklung der Eisphase und die Bildung von Niederschlag aufzeigen, wobei die Verteilung und die Typen der Eisnukleations-Partikel auf realistische Weise variiert werden. Ein anderer Schwerpunkt der Sensitivitätsstudien soll auf der Wirkung von sog. kleinen Triggern liegen, wie etwa Eisnukleations-Partikel oder Gefriermoden (z.B. biologische Partikel oder Kontaktgefrieren), die keine signifikanten Effekte hinsichtlich der Anzahl der entstehenden Eispartikel zeigen, aber doch die Dynamik der Wolke in einer Weise beeinflussen können, dass sich im Endeffekt die Eisbildung erhöht. Weiterhin ist in Zusammenarbeit mit INUIT RP5 eine Fallstudie geplant, die auf INUIT Feldexperimenten basiert. Hier sollen die Beiträge der verschiedenen eisbildenden Prozesse quantifiziert werden und dadurch die atmosphärische Relevanz der Eisbildungs-Regimes, wie sie in INUIT Labor- und Feldexperimenten untersucht werden, abgeschätzt werden. Gleichzeitig werden neue Parametrisierungen für Partikel, die während INUIT-2 untersucht werden, entwickelt und in das mikrophysikalische Schema eingebunden; vorhandene Parametrisierungen sollen weiter modifiziert und verbessert werden. Dieses Projekt schließt selbst auch Laborexperimente zum Kontakt- und Immersionsgefrieren ein, die am Mainzer vertikalen Windkanal und mit einer akustischen Tropfenfalle durchgeführt werden. Hier liegt der Schwerpunkt auf einer Verbesserung des Kontaktgefrierens. Die Experimente sollen am Mainzer vertikalen Windkanal durchgeführt werden, wobei unterkühlte Tropfen in einem Luftstrom, der die potentiellen Kontakteiskeime mit sich führt, frei ausgeschwebt werden. Auf diese Weise kann die Anzahl der Kollisionen zwischen Tropfen und Partikeln berechnet und die Gefriereffizienz, d.h. die Gefrierwahrscheinlichkeit für eine Tropfen-Partikel Kollision bestimmt werden.

1 2 3 4 560 61 62