API src

Found 4 results.

(Table 4) Manganese, strontium, and magnesium concentrations, along with proposed formational fluid Mg/Ca ratios, for hardground samples

(Table S3) Electron microprobe measurements analysis for hardgrounds

(Table 1) Age, location, and depositional environment information for hardgrounds

Chemical composition of carbonate hardground cements

Trace metal and isotopic ratios, including some rare earth elements, Mg/Ca, manganese and strontium concentrations, δ¹⁸O, δ¹³C, and ⁸⁷Sr/⁸⁶Sr, were analyzed in the carbonate cements from 17 Phanerozoic carbonate hardgrounds. The sensitivity of the geochemical signal to alteration depends on the geochemical analysis in question and the environmental water-rock ratio. Of these samples, only our modern sample has measurements consistent with primary precipitation from seawater; all other samples precipitated from chemically evolved seawater or were influenced by meteoric water, even if only minimally changed. The more recent samples from the Cenozoic had seawater ⁸⁷Sr/⁸⁶Sr. The Mesozoic samples, in contrast, did not preserve seawater ⁸⁷Sr/⁸⁶Sr, even though the Mg/Ca, δ¹⁸O, and δ¹³C values were consistent with precipitation from seawater. Finally, the Paleozoic samples preserved expected seawater ⁸⁷Sr/⁸⁶Sr, though REE and δ¹⁸O suggest primary precipitation was from evolved seawater. Additionally, we place our results in the context of open vs. closed system precipitation using transects of the Mg/Ca ratios across individual cements. Overall, we stress that one geochemical measurement provides only a partial record of fluid composition, but multiple measurements allow a potential understanding of the seawater geochemical signal.

1