Die tiefe Biosphäre umfasst eine diverse aber nur wenig untersuchte Gemeinschaft aus Mikroorganismen in Sedimenten und Gesteinen. Mikrobiologische und geochemische Untersuchungen der letzten Jahrzehnte haben gezeigt, dass bakterielles und archeales Leben weit verbreitet ist in marinen Sedimenten und sich dort bis in Tiefen von mehreren Kilometern unter dem Ozeanboden erstreckt und noch in über hundert Millionen Jahre alten Ablagerungen überdauert. Bestimmungen von Zellzahlen und deren Extrapolation auf einen globalen Maßstab legen den Schluss nahe, dass die marine tiefe Biosphäre ein bedeutendes Reservoir an Kohlenstoff darstellt und durch ihren Stoffwechselreaktionen direkten Einfluss auf das Leben an der Erdoberfläche nimmt. Obwohl Mikroorganismen der tiefen Biosphäre somit vermutlich einen enormen Einfluss auf globale Stoffkreisläufe ausüben, ist vergleichsweise wenig über ihre Zusammensetzung und Aktivität mit zunehmender Sedimenttiefe und zwischen den unterschiedlichen Regionen der Weltmeere bekannt. Ein Bereich der Ozeane, für den zurzeit so gut wie keine Informationen hinsichtlich der Verbreitung und Zusammensetzung der tiefen Biosphäre vorliegt, ist der Kontinentalrand der Westantarktis. IODP Expedition 379 hat in dieser Region zwei kontinuierliche und überwiegend ungestörte Sedimentabfolgen von exzellenter Qualität erbohrt. Diese erlauben es erstmalig die tiefe Biosphäre in marinen Sedimenten der West Antarktis bis in eine Tiefe von ca. 800 m unter dem Meeresboden zu untersuchen. Änderungen im Porenwasserchemismus, wie das Aufzehren von Sulfat und das plötzliche Auftreten von Methan in einer Tiefe von ca. 670 Metern unter dem Meeresboden, liefen erste Hinweise auf die Existenz einer tiefen Biosphäre in dieser bis jetzt wenig untersuchten Region. Um die Gesellschaft an Mikroorganismen und die durch sie durchgeführten Prozesse qualitative und quantitative zu erfassen, wird in diesem Projekt ein Multiproxyansatz gewählt, der aus der Mengenbestimmung und Identifizierung von Verteilungsmustern von intakten polaren Lipiden, der Kohlenstoffisotopie leichter Kohelnwasserstoffe und direkten Zellzählungen besteht. Diese Untersuchungen werden durch komplementäre phylogenetischen Analysen und Kultivierungsexperimenten ergänzt. Ergebnisse der hier geplanten Untersuchungen werden damit neue Erkenntnisse hinsichtlich der Zusammensetzung und Verteilung der mikrobiellen Vergesellschaftung in einer Region unseres Planeten führen, welche mit Blick auf die tiefe Biosphäre komplettes Neuland darstellt.
Holz, das hauptsaechlich aus Cellulose, Hemicellulose und Lignin besteht, ist eine Hauptquelle fuer erneuerbare Rohstoffe. Neben der industriellen Nutzung der Cellulose nimmt auch das Interesse an mikrobiellen hemicellulolytischen Enzymen zu, um oligomere Produkte aus komplexen Polysacchariden zu gewinnen. Im Hinterdarm von Termiten hat sich seit Jahrmillionen eine spezifische mikrobielle Flora etabliert, die am Lignocelluloseabbau beteiligt ist. Diese Flora besteht aus Bakterien, Archaebakterien, Hefen und Flagellaten. Wegen der symbiontischen Wechselwirkungen zwischen Insekten und Mikroorganismen wird Holz wesentlich effektiver abgebaut als durch Mikroorganismen allein. Ziel dieser Untersuchungen ist es, die mikrobielle Darmflora systematisch einzuordnen, biochemisch zu charakterisieren und ihre Rolle beim Lignocelluloseabbau aufzuklaeren. Die gewonnenen Erkenntnisse ueber den mikrobiellen Holzabbau lassen sich dann moeglicherweise bei der technischen Nutzung von Rohstoffen aus Holz einsetzen.
Böden beherbergen die komplexesten Lebensgemeinschaften der Erde und sind lebenswichtige Ressourcen, die der Menschheit wichtige Ökosystemleistungen und Ernährungssicherheit bieten. Aufgrund der Komplexität der Böden und der immensen organismischen Vielfalt wurden bisher für keinen Boden eindeutige Zusammenhänge zwischen der Zusammensetzung des Mikrobioms (sowohl taxonomisch als auch funktionell), der mikrobiellen Physiologie und den Energieflüssen hergestellt. Tatsächlich gab es keine einzige Methode, um die Diversität, Abundanz und Gemeinschaftszusammensetzung der Bodenmikrobiota und der Bodenfauna mit hoher taxonomischer Auflösung zu bewerten. Die Doppel-RNA-Metatranskriptomik ermöglicht nun solche ganzheitlichen Zählungen über phylogenetische Domänen und trophische Ebenen hinweg auf der Grundlage von rRNA und mRNA. Dies hat das Potenzial, mechanistische Verbindungen zwischen trophischen Interaktionen im Mikrobiom und Energie- und Kohlenstoffflüssen entlang der bakteriellen und pilzlichen Energiekanäle herzustellen. MYXED-UP 2 sieht die Untersuchung einer vernachlässigten Gruppe von Mikroorganismen im Nahrungsnetz des Bodens vor: die räuberischen Bakterien. Wir wollen die Rolle der räuberischen Myxobakterien im Nahrungsnetz des Bodens und ihre Fähigkeit, das Mikrobiom sowie die Energie- und Stoffflüsse zu modulieren, explizit identifizieren. Zu diesem Zweck haben wir uns zu einem interdisziplinären Konsortium aus insgesamt fünf Arbeitsgruppen aus den Bereichen Bodenbiologie, Biogeochemie, Mikrobiologie und Modellierung zusammengetan, das sich dieser Herausforderung durch eine einzigartige Kombination von Fachwissen und zentralen Laborexperimenten stellen wird. In Experimenten mit natürlichen mikrobiellen Konsortien werden wir die Auswirkungen von Nematoden und Myxobakterien auf die Struktur des Mikrobioms und die Energie- und Stoffflüsse untersuchen. Die hochintegrierten Experimente werden reichhaltige und heterogene Datensätze liefern, die letztlich in die Modellierung des mikrobiellen Wachstums und des Umsatzes spezifischer funktioneller Gilden in den Mikrokosmen einfließen werden. Im Rahmen der gemeinsamen Forschung wird MYXED-UP2 mit Hilfe der quantitativen Metatranskriptomik einen umfassenden Einblick in Mikrobiome geben, der Verbindungen zwischen Mikrobiom-Mitgliedern und Thermodynamik herstellen wird. In Arbeitspaket 2 wollen wir die Auswirkungen der “Death pathways” (räuberische Myxobakterien vs. Bakteriophagen) auf die Zusammensetzung der bakteriellen und pilzlichen Nekromasse verstehen.
1
2
3
4
5
…
217
218
219