API src

Found 105 results.

Related terms

From architecture to function: Elucidating the formation and structure of soil microaggregates - a key to understand organic carbon turnover in soils? - Archfunk; Elucidating the role of surface topography and properties for the formation and stability of soil nano- and micro-aggregates by atomic force microscopy

Formation and stability of soil micro-aggregates depend on the forces which are acting between the individual building blocks and in consequence on type, size and properties of the respective adjacent surfaces. While the interaction forces are the result of the superposition of short-range chemical forces and long-range van-der-Waals, electrostatic, magnetic dipole and capillary forces, the total contact surface is a function of the size, primary shape, roughness and larger-scale irregularities. By employ-ing atomic force microscopy (AFM), we will explore the role of topography, adhesion, elasticity and hardness for the formation of soil micro-aggregates and their stability against external stress. Special consideration will be put on the role of extracellular polymeric substances as glue between mineral particles and as a substance causing significant surface alteration. The objectives are to (i) identify and quantify the surface properties which control the stability of aggregates, (ii) to explain their for-mation and stability by the analysis of the interaction forces and contacting surface topography, and (iii) to link these results to the chemical information obtained by the bundle partners. Due to the spatial resolution available by AFM, we will provide information on the nano- to the (sub-)micron scale on tip-surface interactions as well as 'chemical' forces employing functionalized tips. Our mapping strategy is based on a hierarchic image acquisition approach which comprises the analysis of regions-of-interest of progressively smaller scales. Using classical and spatial statistics, the surface properties will be evaluated and the spatial patterns will be achieved. Spatial correlation will be used to match the AFM data with the chemical data obtained by the consortium. Upscaling is intended based on mathe-matical coarse graining approaches.

PRIMA - Kooperationsprojekt FEED: Von der essbaren Sprosse zum gesunden Lebensmittel

Sonderforschungsbereich (SFB) 1253: Catchments as Reactors: Schadstoffumsatz auf der Landschaftsskala (CAMPOS); Catchments as Reactors: Metabolism of Pollutants on the Landscape Scale (CAMPOS), Teilprojekt P01: Erfassung des Schadstoffumsatzes in Fließgewässern unter Einsatz von Target und Non-Target Analytik sowie Biotestverfahren

Oberflächengewässer sammeln die Wasser- und Stoffflüsse eines Einzugsgebiets. Flüsse liefern daher ein räumlich und zeitlich integriertes chemisches Signal einer Landschaft. Ziel des Projekts ist es, den Einfluss physikalisch-chemischer und biologischer Prozesse auf Transport und Umsetzungsprozesse von Schadstoffen im Gewässer besser zu verstehen. Mittels Lagrange'scher Beprobung in Kombination mit neuen analytischen und bioanalytischen Methoden werden Frachten und Abbaupotentiale bekannter und bisher nicht detektierter Mikroschadstoffe und deren Transformationsprodukte quantifiziert. Mit Hilfe eines neuen Masse/Effekt-Bilanzierungsmodell lassen sich wesentliche Faktoren bezüglich biologischer Wirkung und Umsetzungsprozesse identifizieren und beschreiben.

Entwicklung von biobasierten Leichtbauteilen mit Funktionsintegration, Teilvorhaben: Entwicklung digitaler individueller Fertigungstechnologien für neuartige Funktionsmodule zur Integration in biobasierte Leichtbauteile

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt A 01: Effekte von Mikropartikeln auf aquatische Modellmakrofauna in Abhängigkeit von Partikeleigenschaften: Vergleich von Mikroplastik zu natürlichen Partikeln

In Teilprojekt A01 werden an den limnischen Organismen Wasserfloh (Daphnia) und der Zebramuschel (Dreissena polymorpha) Effekte von Mikroplastik (MP) mit unterschiedlichen physikalischen und chemischen Materialeigenschaften im Vergleich zu natürlich vorkommendem partikulärem Material untersucht. Die Organismen wurden gewählt, da Wasserflöhe und Muscheln eine wichtige Rolle im aquatischen Nahrungsnetz spielen und beide als Filtrierer einer steten partikulären Fracht ausgesetzt sind, und somit ein erhöhtes Risiko haben im Wasser befindliches MP unselektiv zu ingestieren. Bei Daphnia werden klassische Lebenszyklusmerkmale, wie Mortalitätsrate, Wachstum und Anzahl der Nachkommen, sowie bei D. polymorpha das Verhalten und Stressmarker gemessen. Um die biologischen und biochemischen Mechanismen der MP-Effekte auf diese Organismen zu verstehen, werden die Transkriptome und Darmmikrobiome MP-exponierter Tiere analysiert und mit entsprechenden Kontrollen verglichen. Da Proteine eine zentrale Rolle in essentiellen Stoffwechselwegen und Signalkaskaden spielen, werden im Modellorganismus Daphnia zusätzlich MP-Effekte in einem holistischen und einem gewebespezifischen Ansatz auf der Ebene des Proteoms detailliert untersucht. Die erhaltenen Daten werden erheblich zur Aufklärung der Mechanismen negativer MP-Effekte auf diese Organismen beitragen.

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt A 04: Zelluläre Aufnahme von Mikropartikeln in Abhängigkeit von elementaren Partikeleigenschaften

Verschiedene Modell-MP-Partikel sowie Modellpartikel für natürlich vorkommendes partikulares Material werden in Süßwasser und Boden inkubiert und daraus resultierende Oberflächenveränderungen werden biomolekular und physikalisch-chemisch charakterisiert. Daraufhin werden unterschiedliche Polyelektrolyt-Multilagen-beschichtete Modellpartikel hergestellt, welche in jeweils einer Eigenschaft (z.B. identische Mechanik oder Ladungsdichte) den inkubierten Partikeln gleichen. Durch einen Vergleich der verschiedenen Partikel wird daraufhin die Relevanz dieser Eigenschaft für die Adhäsion der Partikel an Zellen und die Internalisierung in Zellen quantitativ untersucht.

Der erste mobile Biosensor für die quantitative vor Ort Überwachung von anthropogenen Schadstoffen in der Umwelt, Teilprojekt: Biochip Funktionalisierung und Hydrogel Mikropartikel Funktionalisierung für Biosensor-Testkit für Glyphosat und dessen Abbauprodukt Aminomethyl-Phosphonsäure

Entwicklung hochfunktioneller Aquatextilien zur Eliminierung von Nano- und Mikroplastik aus Oberflächengewässern und der Grundwasserförderung; Entwicklung neuartiger Verfahren zur Herstellung von Baumwollgeweben mit speziellem Grenzschichtdesign deren Fun

Die FuE-Arbeiten haben die Entwicklung textiler Strukturen zur vollständigen Entfernung von nano- und mikroskaliger Plastikpartikel aus Gewässern bei gleichzeitiger hoher Robustheit der Filtersysteme zum Ziel. Dabei sind Nano- und Mikroplastik als unlösliche, makromolekulare Kunststoffpartikel mit einem Durchmesser kleiner 5 mm bis hin zu 0,02 Mikro m und unterschiedlichsten Geometrien definiert. Emissionsquellen sind bspw. Abrasionsmittel, von Reifen, Sohlen und Abfall sowie Zusatzstoffe in Lacken, Kosmetika und Reinigungsmitteln. Nach derzeitigem Stand der Technik existieren keine effizienten Systeme, um nano- und mikroskalige Kunststoffpartikel aus wasserführenden Systemen zu entfernen. Für die Realisierung von effizienten Filtern bieten textile Strukturen aufgrund der hohen Strukturvariabilität und der zusätzlichen Möglichkeiten der Funktionalisierung ein hohes Anwendungspotential. Diese sollen durch eine Funktionalisierung mittels Cyclodextrin dauerhaft aktiviert werden, um somit Nano- und Mikropartikel durch Adsorption zu entfernen. Die entwickelten, hochfunktionellen Aquatextilien werden im Anschluss für die jeweiligen Einsatzgebiete, wie bspw. Trinkwassergewinnung, Abwasseraufbereitung oder maritime Reinigung, konfektioniert. Die tiefgreifenden Herausforderungen der Entwicklung dieser Filtermaterialklasse werden gemeinsam von der Firma ETV Eing TEXTIL - VEREDLUNG GmbH & Co. KG und dem Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden bearbeitet und überwunden.

Kontinuierliche Dünnschichtfiltration von kompressiblen Filterkuchen aus biologischen und organischen Mikropartikeln mittels Vakuumtrommelfilter

ERA CoBlueBio Call1: CASEAWA - Hochleistungsmaterialien aus biogenem Calciumcarbonat aus Muschelschalenabfällen

1 2 3 4 59 10 11