API src

Found 402 results.

Related terms

Novel Productivity Enhancement Concept for a Sustainable Utilization of a Geothermal Resource (SURE)

Das Projekt "Novel Productivity Enhancement Concept for a Sustainable Utilization of a Geothermal Resource (SURE)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Within the project SURE (Novel Productivity Enhancement Concept for a Sustainable Utilization of a Geothermal Resource) the radial water jet drilling (RJD) technology will be investigated and tested as a method to increase inflow into insufficiently producing geothermal wells. Radial water jet drilling uses the power of a focused jet of fluids, applied to a rock through a coil inserted in an existing well. This technology is likely to provide much better control of the enhanced flow paths around a geothermal well and does not involve the amount of fluid as conventional hydraulic fracturing, reducing the risk of induced seismicity considerably. RJD shall be applied to access and connect high permeable zones within geothermal reservoirs to the main well with a higher degree of control compared to conventional stimulation technologies. A characterization of the parameters controlling the jet-ability of different rock formations, however, has not been performed for the equipment applied so far. SURE will investigate the technology for deep geothermal reservoir rocks at different geological settings such as deep sedimentary basins or magmatic regions at the micro-, meso- and macro-scale. Laboratory tests will include the determination of parameters such as elastic constants, permeability and cohesion of the rocks as well as jetting experiments into large samples in. Samples will be investigated in 3D with micro CT scanners and with standard microscopy approaches. In addition, advanced modelling will help understand the actual mechanism leading to the rock destruction at the tip of the water jet. Last but not least, experimental and modelling results will be validated by controlled experiments in a quarry (mesoscale) which allows precise monitoring of the process, and in two different geothermal wells. The consortium includes the only company in Europe offering the radial drilling service.

Silica incorporation into newly synthesized cell walls and its effects on physiological properties of plant cells

Das Projekt "Silica incorporation into newly synthesized cell walls and its effects on physiological properties of plant cells" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Department für Nutzpflanzen- und Tierwissenschaften, Fachgebiet Phytomedizin durchgeführt. Siliziumoxid erhöht die Ernteausbeute und mildert den Einfluss von Stressfaktoren in Pflanzen. Der Wirkmechanismus ist bisher nur wenig verstanden. Man geht davon aus, dass Silica die Porosität der Zellwand reduziert und sie versteift, giftige Metalle durch Ko-Abscheidung entfernt und die pflanzliche Antwort auf Virusattacken beschleunigt. Anderseits behindert viel Silica die Nutzung von Pflanzen als Futter und Biobrennstoff. Ziel des Projekts ist, die Wechselwirkungen der Pflanzenzelle mit Silica aufzuklären. Dafür schlagen wir vor, den Prozess an Pflanzenzellen aus Zellkultur und an keimendem Pollengewebe in molekularer, untrastruktureller, mikroskopischer und makroskopischer Dimension zu untersuchen. Unser multi-disziplinärer Ansatz verbindet molekulare, physikalische und Strukturuntersuchungen mit molekularbiologischen und physiologischen Untersuchungen und Bioinformatik. Silzifikation wird insbesondere mit Augenmerk auf die sich entwickelnde Zellwand in Zellen, welche unter Einfluss hoher Kieselsäurekonzentration wachsen, untersucht. Wir werden die Reaktion der Zellen unter dem Einfluss verschiedener Stressfaktoren wie Schwermetallnanopartikel, hohe Salzkonzentrationen, hohe Osmolarität und Virsuinfektion untersuchen. Die komplementären Sichtweisen auf den Prozess der Bio Silizifikation werden die Aufklärung der Silica-induzierten Stress-Toleranz ermöglichen. Dies kann in der Zukunft die Entwicklung von Pflanzen mit vorteilhaftem Eigenschaften ermöglichen.

Teilvorhaben 1: Feldversuche zur Biomasse bei Energietriticale

Das Projekt "Teilvorhaben 1: Feldversuche zur Biomasse bei Energietriticale" wird vom Umweltbundesamt gefördert und von Saatzucht Dr. Hege GbR, Außenstelle durchgeführt. Ziel dieses Projekts ist die Einführung von Triticalehybriden zur Steigerung des Biomasseertrags. Somit kann eine dringend notwendige Diversifizierung der Energiepflanzenfruchtfolge, die zur Zeit von Mais dominiert wird, erreicht werden. Durch eine QTL Kartierung sollen relevante Restorergene für das CMS-induzierende Cytoplasma im Genom lokalisiert und ihre Effekte geschätzt werden. Außerdem soll durch die Sequenzierung mehrerer Mitochondriengenome die genetische Basis dieser Cytoplasmen untersucht werden. In einem Vergleich zwischen Hybriden und Linien unter ökologisch divergierenden Bedingungen soll die erwartete Überlegenheit der Hybriden in Bezug auf den Biomasseertrag quantifiziert werden. Im Rahmen dieses Projekts sollen dadurch die Grundlagen für eine wissensbasierte Hybridzüchtung bei Energietriticale geschaffen werden - ein vielversprechender Schritt hin zu einer Diversifizierung der Energiepflanzenfruchtfolge in Deutschland. Die Feldversuche erfolgen als fünf-ortige Prüfung mit zwei Wiederholungen pro Ort, in 2 Jahren. Die Isolierung und Aufreinigung der mitochondrialen DNA erfolgt an der Landessaatzuchtanstalt. Die Sequenzierung und das de novo Assembly der Mitochondriengenome wird an einen externen Dienstleister vergeben. Die Genotypisierung der beiden Kartierungspopulationen mit DArT Markern erfolgt extern (Diversity Arrays Technology Pty Limited in Australien). Die Phänotypisierung der Pflanzen auf Restorerfähigkeit erfolgt und a. mittels Stereomikroskop.

Teil III

Das Projekt "Teil III" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Lebensmittelwissenschaft und Biotechnologie, Fachgebiet Lebensmittelmikrobiologie und -hygiene durchgeführt. Ziel des Vorhabens ist, den Einfluss des Bodentyps, von organischem Dünger sowie der Einarbeitung von belasteten Pflanzenresten in den Boden für die Aufnahme und Verteilung von Salmonella enterica und enterohämorrhagischen Escherichia coli (EHEC) in die Nutzpflanzen aufzuklären. Die Ziele des Vorhabens sind in drei Gruppen unterteilt: i) Etablierung von Methoden für den spezifischen Nachweis von Salmonella und EHEC in pflanzlichen Geweben und im Boden; ii) Untersuchung von Faktoren die den Umfang der Besiedlung von Nutzpflanzen mit Humanpathogenen beeinflussen. Aufgrund der bestehenden Gefährdung für den Verbraucher wird die Besiedelung von Kopfsalat und Feldsalat untersucht; und iii) Risikoeinschätzung für den Verbraucher. In dem Teilvorhaben werden spezifische Nachweisverfahren für EHEC in Pflanzen- und Bodenproben unter besonderer Berücksichtigung des Viable But Non-Culturable (VBNC)-Status etabliert (AP1). Weiterhin soll die Rolle von Adhärenzfaktoren für die Aufnahme der EHEC über das Wurzelgewebe und die Persistenz und Verbreitung in Blattgewebe untersucht werden (AP2). Hierzu werden in zwei EHEC-Stämmen der Serogruppen O157:H- und O104:H4 Gene für Adhärenzfaktoren, die bei der Anheftung an und Verbreitung in Pflanzengewebe von Bedeutung sein können, inaktiviert. Darüber hinaus soll das Transkriptom der Bakterien, die mit Pflanzengeweben in Kontakt kommen, untersucht werden. Ferner soll im S3-Labor untersucht werden, ob EHEC-Bakterien über das Wurzelsystem in die Pflanze aufgenommen werden und wie sie sich dort im Gewebe verteilen (AP3). Neben üblichen Färbe- und Schneidtechniken werden auch EHEC-Bakterien verwendet, die mit dem grünen fluoreszierenden Protein markiert wurden und so unter dem Fluoreszenz-Mikroskop analysiert werden können. Parallel hierzu werden in der Forschungsanstalt Wädenswill im S3-Gewächshaus Inokulationsversuche von Feldsalat mit EHEC-Bakterien unter bestimmten Bodenbedingungen durchgeführt.

Teil I

Das Projekt "Teil I" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Phytopathologie durchgeführt. Ziel des Vorhabens ist, den Einfluss des Bodentyps, von organischem Dünger sowie der Einarbeitung von belasteten Pflanzenresten in den Boden für die Aufnahme und Verteilung von Salmonella enterica und enterohämorrhagischen Escherichia coli (EHEC) in die Nutzpflanzen aufzuklären. Die Ziele des Vorhabens sind in drei Gruppen unterteilt: i) Etablierung von Methoden für den spezifischen Nachweis von Salmonella und EHEC in pflanzlichen Geweben und im Boden; ii) Untersuchung von Faktoren die den Umfang der Besiedlung von Nutzpflanzen mit Humanpathogenen beeinflussen. Aufgrund der bestehenden Gefährdung für den Verbraucher wird die Besiedelung von Kopfsalat und Feldsalat untersucht; und iii) Risikoeinschätzung für den Verbraucher. In dem Teilvorhaben soll der Einfluss von Anbaubedingungen auf die Reaktion von Kopf- und Feldsalat auf Infektionen mit EHEC und Salmonella untersucht werden. Darüber hinaus wird die Verteilung der Bakterien in der Pflanze untersucht und eine Einschätzung der Gesundheitsgefährdung der Konsumenten gemacht. In zwei Schritten wird ermittelt, wie Kopfsalat und Feldsalat, die in verschiedenen Böden/Dünger Kombinationen gewachsen, auf die Infektion durch EHEC und S. Typhimurium reagieren. Zunächst wird die Expression ausgewählter Gene ermittelt, danach die globale Änderung der Genexpression. Nachfolgend wird die Effizienz der Abwehrmechanismen untersucht. Die Verteilung der Bakterien in Kopf- und Feldsalat wird mit Hilfe von Wildtypstämmen, die gfp oder dsRed Gene exprimieren und konfokaler Mikroskopie ermittelt. Für die Basis der Einschätzung der Gesundheitsgefährdung der Konsumenten wird die quantifizierte Anzahl der Bakterien in Pflanzengewebe, die bekannte Infektionsdosis von Salmonella und EHEC, sowie die bereits bekannte Virulenz von Salmonella aus pflanzlichem Gewebe dienen.

Bionik (2): Bionischer Oxygenator nach dem Vorbild der Lunge von Säugetieren

Das Projekt "Bionik (2): Bionischer Oxygenator nach dem Vorbild der Lunge von Säugetieren" wird vom Umweltbundesamt gefördert und von Charite, Universitätsmedizin Berlin, Campus Virchow, Labor für Biofluidmechanik durchgeführt. Vorhabenziel: Nach dem Prinzip der Bionik soll eine Problemlösung der Natur auf ein technisches Problem übertragen werden. Für unseren Fall bedeutet dies, in einer Machbarkeitsstudie die Möglichkeit einer Bildung von stabilen alveolenähnlichen Ausstülpungen auf der Oberfläche von Kapillar- bzw. Plattenmembranen, die die Flüssigkeits- und Gasphase trennen, zu prüfen. Dadurch soll die Erhöhung der Effizienz von Oxygenatoren bzw. von Bioreaktoren zur Züchtung von Zellen erreicht werden. Arbeitsplanung: 1. Auslegung des Oxygenators nach dem neuen Prinzip für die Oxygenierung des Blutes und des Nährmediums ' Dicken der Membranschichten, Größen der Öffnungen und Größen der Ausstülpungen, Volumenströme und Drücke. 2. Entwicklung und Bau einer Testkammer zur mikroskopischen Untersuchung. 3. Herstellung von neuen Oxygenatormembranen mit verschiedenen Stoffen für die Beschichtung und deren Testung in der Testkammer. Die gewonnenen Ergebnisse sollen zur Erhöhung der Effizienz und der Reduzierung der Größe von Oxygenatoren eingesetzt werden. Dies ermöglicht die Entwicklung von implantierbaren Oxygenatoren. Eine weitere Ergebnisverwertung ist der Einsatz bei der Entwicklung von Bioreaktoren.

Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples

Das Projekt "Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The results of the first funding period, particularly the proof of several weakening and hardening mechanisms operating in the fault gouge of four SAFOD core samples (e.g. amorphous material, nano-scale pore spaces, dissolution-precipitation processes, intracrystalline plasticity) inspired a more detailed study of microstructures in order to specify the cause of mechanical weakness along the San Andreas Fault (SAF). Therefore we applied for and received four additional core samples from different depths and different distances to the fault contact. In particular, we will focus on: - The analysis of dominant microstructures in the new SAFOD samples. Based on our previous experience we will predominantly use the transmission electron microscopy (TEM). These studies have proven to be the most powerful tool for analyzing microstructures. The cutting of foils with the focused ion beam technique (FIB) allows identifying microstructures down to the nm scale without damage. - The observed microstructures will be interpreted in view of their implication for fault weakening mechanisms integrating previous results of the core samples from the first funding period. - The observed agglomeration of flocculated clay particles in previous samples calls for further detailed TEM investigations of clay minerals. - Some vein-calcites show evidence for intense intracrystalline plasticity (deformation twins and dislocation creep). We will measure dislocation and twin densities in calcite veins in the new sample set. The results will be used for stress estimations based on paleo-piezometric relationships. - First results of stable isotope analyses of vein calcites provide indications that the fluids were dominantly derived from deeper sources. We will further analyze stable isotopes with the aim to characterize the origin of fluids penetrating the fault gouge. - Mercury porosimetry and the BET gas adsorption methods will be used to measure the connected rock porosity pore volume and pore surface areas of our new samples. Porosity data will be used to roughly estimate permeability. - SAFOD microstructures will be compared to samples recently obtained from the Taiwan Chelungpu fault Drilling Project (TCDP).

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Bayerisches Landesamt für Umwelt durchgeführt. Das Projekt hat drei Schwerpunkte: 1) Die Bewertung und der Vergleich von Analyseverfahren für Submikrometer-Plastikpartikel (teilw. inkl. adsorbierter Spurenstoffe) an definierten Referenzpartikeln im Labor, in Laborkläranlagen und in Umweltproben. 2) Bewertung der Auswirkungen der Partikel auf aquatische Umwelt und menschliche Gesundheit. 3) Problemwahrnehmungen und Bewältigungsstrategien in Bezug auf Submikropartikel in der Umwelt in Gesellschaft und Politik sowie Einbindung der Ergebnisse in Rechtssetzungsprozesse. Das LfU ist an vier Arbeitspaketen (AP) beteiligt. In AP 1 werden in Abstimmung mit den Partnern Modellpartikel festgelegt. In AP 2 entwickelt das LfU eine Analysenmethode für Klärschlamm. Diese wird mit Proben aus AP 4 validiert. Die Proben aus den Laborkläranlagen (LKA) der AP 3 und 4 werden vom LfU aufbereitet und je nach Partikelgröße an die Partner weitergegeben oder selbst mit dem FT-IR-Mikroskop gemessen. Weiter werden Modellpartikel analysiert und die Grenzen der Methode getestet. Im AP 3 untersucht das LfU die Desorption von Spurenstoffen von Plastikpartikeln unter umweltrelevanten Bedingungen. An der TUM-SWW werden Partikel variierender Größe und Materials mit Spurenstoffen belegt, beim LfU in den LKA behandelt und die Spurenstoffe im Kläranlagenablauf und im Klärschlamm gemessen. Im AP 4 stellt das LfU Klärprozesse nach und untersucht den Verbleib der Partikel im System. Zuerst werden die LKA zur Blindwertreduktion optimiert. Daraufhin wird der Rückhalt der Plastikpartikel größen- und materialspezifisch durch kontinuierliche Dosierung verschiedener Partikel in die Anlagen und Messung des Kläranlagenablaufs und des Klärschlamms bestimmt. Es sollen mindestens drei verschiedene Plastikarten sowie bis zu fünf verschiedene Größenbereiche von 50 nm bis 100 Mikro m untersucht werden. Zum Abschluss wird eine größen- und materialspezifische Massenbilanz aufgestellt und mit den vom IUTA durchgeführten Feldmessungen in AP 4 verglichen.

Defect-tolerant Solar Cell Materials: Putting Grain Boundaries to Work in Thin Film Chalcopyrite Solar Cells

Das Projekt "Defect-tolerant Solar Cell Materials: Putting Grain Boundaries to Work in Thin Film Chalcopyrite Solar Cells" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Berlin für Materialien und Energie GmbH durchgeführt. The project aims at improving the understanding of the physical properties of individual grain boundaries in next generation Cu-chalcopyrite solar cell materials. The role of grain boundaries will be studied by scanning probe microscopy methods and ways to improve grain boundary limited device effciencies will be invetsigated. Kelvin probe force microscopy (KPFM) will be used to quantify charges located at grain boundaries. In addition to experimental work also simulations are required to obtain quantitative results. Two ultrahigh vacuum (UHV) KPFM will beused, one working at low temperatures and one connected to an in-situ UHV physical vapor deposition system for growth of clean sample surfaces, enhanced by conductive AFM for electrical grain boundary characterization. The controlled manipulation of grain boundary properties, for example by chemical treatment or by adjustment of growth conditions (i. e. preferred film orientation) will also addressed. Obtaind results from KPFM and c-AFM characterization will help improving the understanding of the role of grain boundaries. Investigated strategies for their passivation might improve solar cell device efficiencies.

Zur Holzbildungsdynamik von Birke und Kiefer an der borealen Waldgrenze

Das Projekt "Zur Holzbildungsdynamik von Birke und Kiefer an der borealen Waldgrenze" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft, Ordinariat für Holzbiologie und Institut für Holzbiologie und Holzschutz der Bundesforschungsanstalt für Forst- und Holzwirtschaft durchgeführt. Das Probengebiet fuer die Untersuchung der Holzbildungsdynamik von Birke und Kiefer liegt nahe der Naturwissenschaftlichen Forschungsstation Abisko in Hoehe des 68. Breitengrades. Unter den dort herrschenden extremen Klimabedingungen mit einer Jahresdurchschnittstemperatur von - 10 Grad Celsius ist die Vegetationsperiode auf einen sehr kurzen Zeitraum begrenzt. Der Wald besteht ueberwiegend aus Birken (Betula pubescens Ehrh. ssp. tortuosa) und einzelnen Kiefern (Pinus sylvestris L.). Zur Ermittlung der saisonalen Holzbildungsdynamik dieser Baumarten mit hoher zeitlicher Aufloesung wurde die 'pinning'-Technik eingesetzt. Dabei wird mit einer duennen Nadel durch die Rinde und das Kambium in das aeussere Holz gestochen, wodurch das Gewebe um den Einstichkanal abstirbt. Im Bereich des Kambiums wird die Holzbildung abgebrochen, in 1-2 mm Entfernung vom Einstichkanal bleibt das Kambium am Leben, bildet aber nachfolgend strukturell modifiziertes Gewebe. Durch die abgebrochene Holzbildung um den Einstichkanal sowie den zumeist markanten Strukturwechsel kann die Lage des Kambiums zum Zeitpunkt des 'pinning' rueckblickend bestimmt werden. Ergebnis: Die mikroskopische Auswertung der 'pinning'-Markierungen, die woechentlich von Anfang Juni bis Ende August 1996 gesetzt und am Ende der Vegetationsperiode entnommen wurden, ergaben fuer Birke eine Holzbildungsdauer von vier Wochen und fuer Kiefer von fuenf Wochen. Die Holzbildung setzte bei Kiefer in der ersten Juliwoche, bei Birke eine Woche spaeter ein und endete fuer alle Versuchsbaeume in der ersten Augustwoche. Die Holzbildungsrate stieg uebereinstimmend zu Beginn allmaehlich an, gefolgt von einer vergleichsweise hohen Aktivitaet des Kambiums Anfang der zweiten Julihaelfte und einer kontinuierlich nachlassenden Holzbildung bis Anfang August. Die vorliegenden Befunde sollen als Grundlage fuer weitergehende Arbeiten dienen, in denen die Baeume an der borealen Waldgrenze als moegliche Bioindikatoren fuer ein 'global warming' dienen.

1 2 3 4 539 40 41