Dieser Dienst stellt für das INSPIRE-Thema Mineralische Bodenschätze aus dem Geofachdaten umgesetzte Daten bereit.:Dieser Layer visualisiert die saarländischen Mineralvorkommen(Mineralien für chemische Zwecke). Die Datengrundlage erfüllt die INSPIRE Datenspezifikation.
Dieser Dienst stellt für das INSPIRE-Thema Mineralische Bodenschätze aus dem Geofachdaten umgesetzte Daten bereit.:Dieser Layer visualisiert die saarländischen Mineralvorkommen(Spezialgesteine und andere Industriegesteine und Mineralien). Die Datengrundlage erfüllt die INSPIRE Datenspezifikation.
Der Datensatz zum Informationssystem Rohstoffübersichtskarte von Nordrhein-Westfalen 1:500.000 [IS RÜK 500] gibt einen generalisierten Überblick über die Verteilung der Rohstoffvorkommen in dem Bundesland. Das Kartenwerk zeigt aktuell und historisch relevante Rohstoffvorkommen von Kohle und Gas, der Steine und Erden sowie von Steinsalz, Erzen und Mineralen.
Geotope sind erdgeschichtliche Bildungen der unbelebten Natur, die Kenntnisse über die Entwicklung der Erde oder des Lebens vermitteln. Sie umfassen Aufschlüsse von Gesteinen, Böden, Mineralien und Fossilien sowie natürliche Landschaftsteile. Dargestellt werden Punktdaten für 110 Objekte. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen), der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik), der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = gt exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: TYP: Geotoptyp; KURZFORM: Kürzel; BEZEICHNUNG: Name bzw. Lage des Geotops; BESCHREIBUNG: Beschreibung des Geotops.
Dieser Dienst stellt für das INSPIRE-Thema Mineralische Bodenschätze aus dem Geofachdaten umgesetzte Daten bereit.:Eine Anreicherung von Mineralen in der Lithosphäre.
Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.
Die mineralhaltigen Waesser in Hessen besitzen neben hohen Ionenkonzentrationen oft auch hohe Kohlensaeuregehalte. Sie sind durch Bohrungen erschlossen und treten in Form von Quellen oder Brunnen auf. Viele dieser Waesser werden als Trink-, Mineral-, Heil- und Badewasser genutzt. Die Herkunft der zum Teil grossen CO2-Mengen wurde bereits frueher von den in dieser Region vorkommenden Basalten abgeleitet. Da jedoch keine rezente vulkanische Aktivitaet existiert, konnte letztlich nicht geklaert werden, wie das CO2-Gas, das bis heute stetig in den Kohlensaeuerlingen gefoerdert wird, ueber den langen Zeitraum fixiert werden konnte. Anhand der durchgefuehrten chemischen und 13C/12C-isotopenchemischen Untersuchungen liess sich bereits zeigen, dass vulkanogenes CO2 mit hoher Wahrscheinlichkeit in den Evaporit-Gesteinen des Zechsteins gebunden sein kann. In fortgesetzten Arbeiten wird das Untersuchungsgebiet erweitert. Hierbei sind andere moegliche Lagerungsformen von vulkanogenem CO2-Gas zu beachten. Die Zusammensetzung der Waesser wird im wesentlichen durch die Zusammensetzung der im Gesteinsverband vorkommenden Minerale bestimmt. Die im Vergleich zum Input-Wasser des Aquifers angereicherten Spurenelemente spiegeln die Aufloesungsprozesse sowie die Verweilzeit der Waesser im Gesteinsuntergrund wider. Die 18O/16O-Signatur des geloesten Gesamtkarbonats zeigt eindeutig die Anwesenheit von meteorischem Wasser.
| Origin | Count |
|---|---|
| Bund | 1969 |
| Land | 205 |
| Wissenschaft | 203 |
| Type | Count |
|---|---|
| Chemische Verbindung | 95 |
| Daten und Messstellen | 766 |
| Förderprogramm | 906 |
| Gesetzestext | 11 |
| Infrastruktur | 48 |
| Kartendienst | 1 |
| Taxon | 1 |
| Text | 249 |
| Umweltprüfung | 24 |
| unbekannt | 245 |
| License | Count |
|---|---|
| geschlossen | 971 |
| offen | 1194 |
| unbekannt | 135 |
| Language | Count |
|---|---|
| Deutsch | 1842 |
| Englisch | 1389 |
| Resource type | Count |
|---|---|
| Archiv | 128 |
| Bild | 7 |
| Datei | 759 |
| Dokument | 164 |
| Keine | 841 |
| Multimedia | 1 |
| Unbekannt | 3 |
| Webdienst | 29 |
| Webseite | 1237 |
| Topic | Count |
|---|---|
| Boden | 2300 |
| Lebewesen und Lebensräume | 1629 |
| Luft | 923 |
| Mensch und Umwelt | 2300 |
| Wasser | 1047 |
| Weitere | 2120 |