<p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a>eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5 % zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOxund Stickstoff, N2). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> unberücksichtigt.</p><p></p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von<a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a>(Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die<strong>direkten Emissionen</strong>stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für<strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a>legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62 Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen finden Sie auf den Themenseiten<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>,<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a>und<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>
1. Untersuchung des Einflusses des Ausgangsgesteins und der Bodenart, des Humusgehaltes, der Witterungsverhaeltnisse sowie der mineralischen N-Duengung auf die Mineralisation der organischen Substanz des Bodens. 2. Pruefung der Verlagerung und des Austrags von Nitrat-Stickstoff. 3. Untersuchung der Zusammenhaenge zwischen Stickstoffangebot im Boden und der N-Aufnahme durch die Rebe. - Die o.g. Zielsetzungen sollen in einem 3-faktoriellen Versuch mit folgenden Faktoren geprueft werden: Faktor A: Bodenausgangsgesteine: 1. Buntsandstein, 2. Muschelkalk, 3. Gipskeuper. Faktor B: 1. ca. 1 v.H. Humus, 2. ca. 2 v.H. Humus. Faktor C: 1. 0 kg N/ha, 2. 120 kg N/ha. - Die Versuchskombinationen werden in 6 Wiederholungen angelegt. Jeweils 3 WH werden bereits ab dem Anlagejahr mit jeweils einer Pfropfrebe bepflanzt. Die Bepflanzung der uebrigen 3 WH erfolgt nach 3-jaehriger Versuchszeit. Der Rauminhalt der Container betraegt 0,6 m3.
a) Bei hohem Ertragsniveau ist die adaequate Zufuhr der mineralischen Duengung, insbesondere der Stickstoffduengung, ein bisher nicht geloestes Problem, so dass weitere Untersuchungen erforderlich sind. b) Freiland-, Gefaess- und Modelluntersuchungen in Verbindung mit chemischen Analysen bilden den Kern der Arbeiten. c) Langfristig.
Ziel des Projektes war die Ermittlung eines vereinfachten ökobilanziellen Ansatzes zum Emissionsvergleich verschiedener Verwertungs- und Entsorgungsoptionen von Bioabfall. Die Vereinfachung sollte über die CO2-Äquivalente erfolgen, da Kohlendioxid bezüglich der Masse die größten Emissionen darstellt und somit gut als maßgebendes Kriterium herangezogen werden kann. Trotz Reduktion, und der damit zwangsläufig verbundenen ungenaueren Emissionsaussage, sollte es möglich sein, verschiedene biologische Prozesse der Abfallbehandlung miteinander zu vergleichen und zu beurteilen. Ziel war es, ein Handwerkszeug zu schaffen, mit dem schnell, einfach und kostengünstig eine Entscheidungshilfe zum 'günstigsten' Weg des Bioabfalls gegeben werden kann. Bei der Verwertung des Bioabfalls zum Kompost wird, anders als bei der Behandlung zusammen mit Restmüll, die Möglichkeit einer längerfristigen Einbindung des enthaltenen Kohlenstoffs in Boden und Pflanzen gegeben. Dieser wird dem natürlichen Kohlenstoffkreislauf längerfristig entzogen, und trägt somit nicht zum Treibhauseffekt bei. Unter dem Aspekt des Treibhauseffektes ist die Bioabfallverwertung daher eine sinnvolle ökologische Verwertungsoption. So leistet Kompost auf Grund der Gehalte an organischer Substanz einen wichtigen Beitrag zur Bodenverbesserung. Weiterhin kann durch die im Kompost enthaltenen Nährstoffe mineralischer Dünger zum Teil substituiert werden. Das Projekt wird gemeinsam mit Fachgebiet Abfallwirtschaft/Abfalltechnik der Universität GH Essen bearbeitet.
Die Zusammenstellung von jaehrlich ca. 1000 Klaerschlammanalysen, getrennt nach Nassschlaemmen bzw. kalkstabilisierten Schlaemmen, ermoeglicht eine Bewertung sowohl des Einsparungspotentials entsprechender Mineralduenger als auch des Belastungsrisikos der mit Klaerschlamm geduengten Flaechen. Ueber die in der Klaerschlammverordnung geregelten Stoffe hinaus werden regelmaessig weitere anorganische Stoffe sowie PAK und Chlorierte Kohlenwasserstoffe analysiert und die betreffenden Schlaemme vergleichend bewertet ( Medianwert- Konzept der Landwirtschaftskammer Hannover). In einzelnen Erhebungen wurden Chlorphenole, Phthalate und Tenside untersucht. In entsprechender Weise werden die Naehr- und Schadstoffgehalte von Komposten ausgewertet, um auch hier differenzierte Anwendungsempfehlungen geben zu koennen.
Einfluss von mineralischer Duengung sowie von Guelleduengung auf den Nitrataustrag mit dem Sickerwasser und Auswirkung von Guelleverduennung und Nachregnen auf die NH4- Verluste sowie auf die Bedeckung des Aufwuchses mit Guelle.
Der ökologische Landbau ist eine umweltschonende Form der Landbewirtschaftung. Zu den Grundsätzen der ökologischen Wirtschaftsweise gehören insbesondere: ein möglichst geschlossener Betriebskreislauf (die Tierhaltung ist mit der zur Verfügung stehenden Fläche gekoppelt), eine natürliche Bodenfruchtbarkeit und Artenvielfalt (es werden eigene Wirtschaftsdünger genutzt, Zwischenfrüchte und Feldfutter - insbesondere Hülsenfrüchte - werden angebaut und es gibt weite und abwechslungsreiche Fruchtfolgen), eine tiergerechte Haltung (arteigene Bedürfnisse der Tiere werden bestmöglich berücksichtigt, es wird artgemäß gefüttert, für die Tiere gibt es Einstreu und Auslauf, die Lebendtransportzeiten sind kurz), Ressourcenschutz (durch Verzicht auf chemisch-künstliche Pflanzenschutzmittel und leicht lösliche Mineraldünger werden Wasser, Luft und Boden geschont), keine gentechnisch veränderten Kulturpflanzen und Tiere, in Folge keine Erzeugnisse mit gentechnisch veränderten Inhaltsstoffen. Die ökologische Produktion schließt über die ökologische Landwirtschaft hinaus auch die Verarbeitung und den Handel mit ein. Seit Anfang der neunziger Jahre entscheiden sich immer mehr Betriebe, auf die Erzeugung, die Verarbeitung und den Handel von Öko-Produkten umzusteigen. Aktuell ist in Sachsen-Anhalt ein leichter Rückgang der ökologisch bewirtschafteten Fläche zu verzeichnen.Nach der vorliegenden Jahresmeldung für 2024 (Stichtag 31.12.2024) waren insgesamt 944 Öko-Unternehmen gemeldet. Davon sind 597 landwirtschaftliche Betriebe (Erzeugerbetriebe). Neben den landwirtschaftlichen Betrieben gibt es in Sachsen-Anhalt 302 Verarbeitungsunternehmen, darunter 14 Betriebe die nur im Bereich der Außer-Haus-Verpflegung (AHV) tätig sind, 9 Unternehmen, die Futtermittel, Mischfuttermittel und Futtermittelausgangserzeugnisse aufbereiten sowie 35 Handelsunternehmen und einen Importeur in der Ökobranche. Insgesamt wurden in Sachsen-Anhalt im Jahr 2024 ca. 112.200 Hektar ökologisch bewirtschaftet. Das sind rund 7.400 Hektar weniger als im Vorjahr. Der Anteil ökologisch wirtschaftender Unternehmen an der Gesamtzahl der landwirtschaftlichen Unternehmen des Landes beträgt 15,1 Prozent. Der Anteil der ökologisch bewirtschafteten Fläche an der gesamten landwirtschaftlich genutzten Fläche des Landes umfasst derzeit 8,8 Prozent. Die durchschnittliche Flächenausstattung je Betrieb beträgt in Sachsen-Anhalt rund 188 Hektar. Einen Überblick zur Entwicklung des Ökolandbaus in Sachsen-Anhalt bietet die Koordinierungsstelle ökologische Produktion. Wenn eine Umstellung des landwirtschaftlichen Unternehmens auf ökologischen Landbau in Betracht gezogen wird, ist es ratsam sich über die gesetzlichen Rahmenbedingungen, die Herausforderungen bei der Umstellung und in der Praxis des Ökolandbaus zu informieren. Es ist empfehlenswert, das Gespräch mit einem Ökoberater zu suchen, um gemeinsam zu prüfen, ob eine Umstellung grundsätzlich möglich ist, welche Maßnahmen getroffen werden müssen und welche Auswirkungen diese auf den Betrieb haben werden. Ist die Entscheidung zur Umstellung gefallen, sollte ein Umstellungsplan für mindestens drei Jahre aufgestellt und ein Kontrollvertrag mit einer privaten, staatlich zugelassenen Kontrollstelle über die Verpflichtung zur Einhaltung der Regeln des Ökolandbaus eingegangen werden. Im Hinblick auf einzuhaltende Rahmenbedingungen und Vermarktungsabsichten sollte abgewogen werden, ob der Betrieb als EU-Ökobetrieb oder als Mitglied in einem Anbauverband wirtschaften soll. Detaillierte Informationen zur Umstellung auf ökologischen Landbau sind auf der Seite der Koordinierungsstelle ökologische Produktion abrufbar. Zahlreiche Menschen nutzen tagtäglich die Angebote der Außer-Haus-Verpflegung in Restaurants, Imbissen, Kantinen, Mensen und anderen Einrichtungen der Gemeinschaftsverpflegung. Für den Einsatz von ökologisch erzeugten Zutaten oder Lebensmitteln in der Außer-Haus-Verpflegung wurde mit der Bio-Außer-Haus-Verpflegung-Verordnung (Bio-AHVV) ein Rechtsrahmen geschaffen, mit dem Unternehmen mit wenig Aufwand Bio in ihren Küchen kennzeichnen können. Damit wird für die Gäste schnell erkennbar, welche Produkte in Bio-Qualität angeboten werden. Darüber hinaus ermöglicht die Verordnung, dass Unternehmen der AHV den prozentualen Anteil ihrer eingesetzten Bio-Lebensmittel angeben können. (Gold/Silber/Bronze-Staffelung). Dafür können sie ein staatliches AHV-Kennzeichen nutzen. Durch das neue Kennzeichnen in Bronze, Silber und Gold können die Gäste auf einen Blick den Einsatz von Bio-Produkten in der Außer-Haus-Verpflegung von Imbiss über Kantinen bis zum Restaurant erkennen. Detaillierte Informationen zu Bio in der AHV Um den Ökolandbau in Sachsen-Anhalt zu stärken, hat das damalige Ministerium für Umwelt, Landwirtschaft und Energie des Landes Sachsen-Anhalt (MULE) gemeinsam mit der Landesanstalt für Landwirtschaft und Gartenbau des Landes Sachsen-Anhalt (LLG), den Bio-Verbänden, dem Bauernverband, dem Bauernbund und der Arbeitsgemeinschaft bäuerliche Landwirtschaft einen Öko-Aktionsplan mit Umsetzungskonzept entwickelt. 2018 wurde ein zeitlich befristeter Kompetenzkreis unter Leitung des damaligen Fachreferates im MULE eingerichtet. Dieser begleitete das Umsetzungskonzept formulierten Aufgaben erfolgte in vier Arbeitsgruppen (AG): AG 1 "Förderung, Beratung, Agrar-Umwelt-Klimaschutz-Maßnahmen (AUKM)" AG 2 "Umsetzung der Öko-Verordnung" AG 3 "Marketing, Vermarktung, Verbraucheraufklärung" AG 4 "Vernetzung der Forschung (Versuchswesen) und Bildung". Aktuell wird der Ökoaktionsplan überarbeitet. Das Land Sachsen-Anhalt gewährt Betrieben mit landwirtschaftlich genutzten Flächen im Land Zuwendungen zur Förderung ökologischer Anbauverfahren. Diese Förderung wird in Form einer Flächenprämie bei der Umstellung eines Betriebes auf ökologischen Landbau und bei der Beibehaltung dieser Bewirtschaftungsform nach Abschluss des jeweiligen Förderjahres ausgezahlt. Der Antrag auf Förderung ist rechtzeitig und vollständig bei dem zuständigen ALFF zu stellen. Die Antragsunterlagen dazu sind auf den Seiten zum Elektronischen Agrarantrag zu finden. Außerdem können die ökologisch wirtschaftenden Betriebe die Möglichkeiten der einzelbetrieblichen Förderung für landwirtschaftliche Betriebe nutzen. Immer mehr Verbraucherinnen und Verbraucher entscheiden sich für Eier aus der ökologischen Freilandhaltung, vor allem dann, wenn die Produkte aus der Region kommen. Eine Chance für Öko-Betriebe, in diesen Markt einzusteigen, bieten mobile Hühnerställe. Diese besonders artgemäße und umweltschonende Haltungsform für Hühner ist ein großer Gewinn für das Tierwohl in der Eierproduktion. Über das Agrarinvestitionsprogramm (AFP) ist eine Förderung der mobilen Hühnerhaltung möglich. Zuständige Behörde für den Vollzug der Öko-Verordnungen in Sachsen-Anhalt ist die Landesanstalt für Landwirtschaft und Gartenbau (LLG). Von hier aus nimmt die Koordinierungsstelle ökologische Produktion die grundlegenden Aufgaben des Ökolandbaus landesweit wahr. Die Umsetzung der gesetzlichen Vorgaben für die Unternehmen wird in Sachsen-Anhalt durch 19 zugelassene private Kontrollstellen geprüft. Eine Kontrollstelle davon (Grünstempel EU-Ökoprüfstelle) hat ihren Sitz im Land. Eine Übersicht zu den in Sachsen-Anhalt tätigen Kontrollstellen ist auf der Internetseite der LLG eingestellt (Koordinierungsstelle ökologische Produktion). Die rechtlichen Grundlagen für den zertifizierten Ökolandbau sind mit Wirkung vom 1.1.2022 in der Verordnung (EU) 2018/848 und den dazu gehörigen Durchführungsregelungen neu aufgestellt. Die Basisverordnung 2018/848 wurde durch zahlreiche delegierte Rechtsakte geändert, berichtigt oder konkretisiert. Eine Übersicht der geltenden Rechtsgrundlagen ist auf der Homepage des BMEL eingestellt. In Sachsen-Anhalt sind die sieben folgenden Öko-Anbauverbände aktiv: Bioland e.V. Demeter e.V. Verbund Ökohöfe e.V. Naturland e.V. Biopark e.V. Biokreis e.V. und Gäa e.V. Mit der Biohöfegemeinschaft Sachsen-Anhalt e.V. gibt es einen Förderverein für die ökologische Land- und Lebensmittelwirtschaft. Der Verein arbeitet im Interesse aller Erzeuger, Verarbeiter und Vermarkter unabhängig von deren Verbandszugehörigkeit. Mitglied der Biohöfegemeinschaft sind unter anderem Unternehmen aller in Sachsen-Anhalt tätigen Ökoverbände.
<p>Die wichtigsten Fakten</p><p><ul><li>An mehr als der Hälfte aller Messstellen an deutschen Flüssen werden zu hohe Phosphor-Konzentrationen gemessen und die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewssergte#alphabar">Gewässergüte</a> muss herabgestuft werden.</li><li>Messstellen mit hohen Konzentrationen sind seit Beginn der 1980er Jahre um rund ein Drittel zurückgegangen. Extreme Belastungen treten nur noch selten auf.</li><li>Ziel der Nachhaltigkeitsstrategie ist es, die Phosphor-Orientierungswerte spätestens 2030 in allen Gewässern einzuhalten.</li><li>Dafür muss die Landwirtschaft ihre Düngepraxis verändern und besonders kleine Kläranlagen die Phosphorelimination an den Stand der Technik anpassen.<br></p><p>Welche Bedeutung hat der Indikator?</p><p>Die Gewässer Deutschlands sind mehrheitlich in keinem guten Zustand (siehe Indikatoren zum ökologischen Zustand der<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-fluesse">Flüsse</a>,<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-seen">Seen</a>und<a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-uebergangs">Meere</a>). Die Überdüngung der Gewässer (<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>) mit Phosphor ist eines der größten Probleme, weil es ein übermäßiges Wachstum von Algen und Wasserpflanzen auslöst. Sterben diese ab, werden sie von Mikroorganismen zersetzt. Dabei wird viel Sauerstoff verbraucht. Sauerstoffdefizite im Gewässer wirken sich auf Fische und andere aquatische Organismen negativ aus; in Extremsituationen kann es zu Fischsterben führen. Um die Überdüngung zu vermeiden, muss vor allem die Belastung durch Phosphor verringert werden. Der Kartendienst<a href="https://gis.uba.de/maps/resources/apps/acp/index.html?lang=de">„Nährstoffe und Salze“</a>zeigt Auswertungen für ca. 250 Messstellen in deutschen Flüssen.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Anfang der 1980er Jahre wurden an fast 90 % aller Messstellen überhöhte Phosphorgehalte gemessen. Seit 2018 liegt der Anteil bei knapp 60 %. Betrachtet man die unterschiedlichen Güteklassen, sieht man eine weitere Verbesserung: Insgesamt ist der Anteil der stärker belasteten Gewässer zurückgegangen. Zu dieser Verbesserung haben vor allem die Einführung phosphatfreier Waschmittel und die Phosphatfällung in den größeren Kläranlagen beigetragen.</p><p>Derzeit bestehen Engpässe bei der Lieferung von Fällmitteln (z.B. Aluminiumsalze), mit denen der Phosphor in Kläranlagen aus dem Abwasser entfernt wird. Stehen diese Chemikalien zur Abwasserreinigung nicht in ausreichender Menge zur Verfügung, hat dies eine Erhöhung der Phosphorkonzentrationen im Gewässer zur Folge.</p><p>Nach der europäischen<a href="http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32000L0060">Wasserrahmenrichtlinie</a>(EU-RL 2000/60/EG) müssen alle Gewässer bis 2027 einen guten ökologischen Zustand erreichen. In Deutschland haben fast zwei Drittel der Gewässer hierfür zu hohe Phosphorgehalte. Um die Einträge in Gewässer zu reduzieren, schreibt die neue<a href="https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/_Texte/Duengung.html">Düngeverordnung</a>vor, auf Böden mit hohen Phosphorgehalten wenig Gülle oder phosphorhaltige Mineraldünger auszubringen. In eutrophierten Gebieten können die Anforderungen verschärft werden. Ob dies ausreicht, wird ein Wirkungsmonitoring zeigen. Daneben soll die Abwasserverordnung nach einer Anpassung regeln, dass auch kleine Kläranlagen Phosphor nach dem Stand der Technik entfernen. In größeren Anlagen erfolgt dies bereits. Gemäß Ziel 6.1.a der<a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Nachhaltigkeitsstrategie</a>der Bundesregierung sind die Orientierungswerte für Phosphor spätestens im Jahr 2030 einzuhalten.</p><p>Wie wird der Indikator berechnet?</p><p>Die Bundesländer übermitteln dem Umweltbundesamt Messwerte von etwa 250 repräsentativen Messstellen. Für die<a href="https://www.umweltbundesamt.de/themen/wasser/gewaesser/fluesse/ueberwachung-bewertung">Einordnung in eine Gewässergüteklasse</a>wird der Mittelwert der Phosphor-Konzentration mit der Konzentration verglichen, die für den guten ökologischen Zustand in dem jeweiligen Gewässertyp nicht überschritten werden sollte<a href="http://www.gesetze-im-internet.de/ogewv_2016/BJNR137310016.html">(OGewV 2016)</a>. Sie liegen je nach <a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fliegewssertyp#alphabar">Fließgewässertyp</a> zwischen 0,1 und 0,15 mg/l Phosphor (bei einem Typ 0,3 mg/l) sowie in Übergangsgewässern bei 0,045 mg/l. Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> entspricht dem Anteil der Messstellen, die diese Orientierungswerte nicht einhalten.</p>
Zink ist ein für Pflanze, Tier und Mensch essentielles Spurenelement, welches jedoch bei extrem hohen Gehalten auf Pflanzen und Mikroorganismen toxisch wirken kann. Die Zn-Konzentration in der oberen kontinentalen Erdkruste (Clarkewert) beträgt 52 mg/kg, sie kann aber in Abhängigkeit vom Gesteinstyp stark schwanken. Die mittleren Zn-Gehalte (Median) der sächsischen Hauptgesteinstypen liegen zwischen 11 bis 140 mg/kg, der regionale Clarke des Erzgebirges beträgt ca. 79 mg/kg. Sphalerit (Zinkblende) führende polymetallische La-gerstätten können lokal zu zusätzlichen geogenen Zn-Anreicherungen in den Böden führen. Anthropogene Zn-Einträge erfolgen vor allem durch die Eisen- und Buntmetallurgie bzw. durch die Zn-verarbeitenden Industrien (Farben, Legierungen, Galvanik) und durch Großfeuerungsanlagen. Im Bereich von Ballungsgebieten sind Zn-Anreicherungen relativ häufig zu beobachten. Anthropogene Zn-Einträge sind in der Landwirtschaft durch die Verwendung von organischen und mineralischen Düngemitteln möglich. Für unbelastete Böden gelten Zn-Gehalte von 10 bis 80 mg/kg als normal. Die regionale Verbreitung der Zn-Gehalte in den sächsischen Böden wird vor allem durch die geogene Prägung der Substrate bestimmt; niedrige bis mittlere Gehalte sind über den periglaziären Sanden und Lehmen im Norden und den Lössböden in Mittelsachsen (10 bis 50 mg/kg) sowie den Verwitterungsböden über den Festgesteinen des Erzgebirges/Vogtlandes (50 bis 150 mg/kg) zu erwarten. Innerhalb der Grundgebirgseinheiten treten über den polymetallischen Lagerstätten des Erzgebirges, in Abhängigkeit von der Intensität der Vererzung, deutliche positive Zn-Anomalien auf (Freiberg, Annaberg-Buchholz - Marienberg, Aue - Schwarzenberg). Böden über Substraten mit extrem niedrigen Zn-Gehalten (Granit von Eibenstock, Orthogneise der Erzgebirgs-Zentralzone, Osterzgebirgischer Eruptivkomplex, kretazische Sandsteine) treten als negative Zn-Anomalien im Kartenbild in Erscheinung. Verstärkte Zn-Akkumulationen sind in den Auenböden des Muldensystems festzustellen. Auf Grund der höheren geogenen Grundgehalte im Wassereinzugsgebiet, dem Auftreten Zn-führender polymetallischer Vererzungen und insbesondere der Bergbau- und Hüttentätigkeit im Freiberger Raum, kommt es vor allem in den Auenböden der Freiberger und Vereinigten Mulde zu hohen Zn-Konzentrationen (Mediangehalte 370 bzw. 240 mg/kg). Für die Wirkungspfade Boden-Mensch sowie Boden-Pflanze wurden keine Prüf- und Maßnahmenwerte für Gesamtgehalte in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgeschrieben, da Zn bei der Gefahrenbeurteilung nur von geringer Bedeutung ist.
Zink ist ein für Pflanze, Tier und Mensch essentielles Spurenelement, welches jedoch bei extrem hohen Gehalten auf Pflanzen und Mikroorganismen toxisch wirken kann. Die Zn-Konzentration in der oberen kontinentalen Erdkruste (Clarkewert) beträgt 52 mg/kg, sie kann aber in Abhängigkeit vom Gesteinstyp stark schwanken. Die mittleren Zn-Gehalte (Median) der sächsischen Hauptgesteinstypen liegen zwischen 11 bis 140 mg/kg, der regionale Clarke des Erzgebirges beträgt ca. 79 mg/kg. Sphalerit (Zinkblende) führende polymetallische La-gerstätten können lokal zu zusätzlichen geogenen Zn-Anreicherungen in den Böden führen. Anthropogene Zn-Einträge erfolgen vor allem durch die Eisen- und Buntmetallurgie bzw. durch die Zn-verarbeitenden Industrien (Farben, Legierungen, Galvanik) und durch Großfeuerungsanlagen. Im Bereich von Ballungsgebieten sind Zn-Anreicherungen relativ häufig zu beobachten. Anthropogene Zn-Einträge sind in der Landwirtschaft durch die Verwendung von organischen und mineralischen Düngemitteln möglich. Für unbelastete Böden gelten Zn-Gehalte von 10 bis 80 mg/kg als normal. Die regionale Verbreitung der Zn-Gehalte in den sächsischen Böden wird vor allem durch die geogene Prägung der Substrate bestimmt; niedrige bis mittlere Gehalte sind über den periglaziären Sanden und Lehmen im Norden und den Lössböden in Mittelsachsen (10 bis 50 mg/kg) sowie den Verwitterungsböden über den Festgesteinen des Erzgebirges/Vogtlandes (50 bis 150 mg/kg) zu erwarten. Innerhalb der Grundgebirgseinheiten treten über den polymetallischen Lagerstätten des Erzgebirges, in Abhängigkeit von der Intensität der Vererzung, deutliche positive Zn-Anomalien auf (Freiberg, Annaberg-Buchholz - Marienberg, Aue - Schwarzenberg). Böden über Substraten mit extrem niedrigen Zn-Gehalten (Granit von Eibenstock, Orthogneise der Erzgebirgs-Zentralzone, Osterzgebirgischer Eruptivkomplex, kretazische Sandsteine) treten als negative Zn-Anomalien im Kartenbild in Erscheinung. Verstärkte Zn-Akkumulationen sind in den Auenböden des Muldensystems festzustellen. Auf Grund der höheren geogenen Grundgehalte im Wassereinzugsgebiet, dem Auftreten Zn-führender polymetallischer Vererzungen und insbesondere der Bergbau- und Hüttentätigkeit im Freiberger Raum, kommt es vor allem in den Auenböden der Freiberger und Vereinigten Mulde zu hohen Zn-Konzentrationen (Mediangehalte 370 bzw. 240 mg/kg). Für die Wirkungspfade Boden-Mensch sowie Boden-Pflanze wurden keine Prüf- und Maßnahmenwerte für Gesamtgehalte in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgeschrieben, da Zn bei der Gefahrenbeurteilung nur von geringer Bedeutung ist.
Origin | Count |
---|---|
Bund | 415 |
Land | 56 |
Wissenschaft | 3 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 329 |
Taxon | 3 |
Text | 104 |
Umweltprüfung | 1 |
unbekannt | 28 |
License | Count |
---|---|
geschlossen | 128 |
offen | 336 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 444 |
Englisch | 73 |
Resource type | Count |
---|---|
Bild | 7 |
Datei | 11 |
Dokument | 74 |
Keine | 293 |
Unbekannt | 2 |
Webdienst | 1 |
Webseite | 127 |
Topic | Count |
---|---|
Boden | 400 |
Lebewesen und Lebensräume | 447 |
Luft | 297 |
Mensch und Umwelt | 467 |
Wasser | 309 |
Weitere | 454 |