API src

Found 546 results.

Mineralisation von Brauereischlaemmen und deren Hygienisierung

Vererdung kaum oder schlecht zu entwaessernder Schlaemme, die mit Hefepilzen belastet sind, mit Hilfe geeigneter hoeherer Pflanzen in besonders aufgebauten Beeten und mit besonders langer Aufnahmezeit; sehr preiswert; keimtoetend; Patent erteilt.

Linking nutrient cycles, land use and biodiversity along an elevation gradient on Mt. Kilimanjaro

To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.

C-Umsatz und C-Festlegung im Boden unter Miscanthus x gigantheus mit Hilfe natürlicher 13C-Abundanz

Angesichts der durch steigende Kohlendioxid (CO2)- Konzentrationen bedingten Klimaerwärmung wird nach Möglichkeiten gesucht, CO2 unter anderem in terrestrischen Senken für längere Zeiträume festzulegen. Am Beispiel von Miscanthus x giganteus (Greef et Deu.) wurde untersucht, ob durch den Anbau von nachwachsenden Rohstoffen eine Kohlenstoff (C)- Festlegung in Böden unterschiedlicher Textur möglich ist. Zu diesem Zweck wird die Methode der natürlichen 13C-Abundanz angewandt. Mit dieser modernen Methode können C-Umsatzzeiten des Gesamtkohlenstoffs im Boden sowie seiner verschieden Pools abgeschätzt werden, aber auch die C-Dynamik auf molekularer Basis durch komponentenspezifische O13C Lipidanalysen untersucht werden. Die Untersuchungen zeigten, dass die unter Miscanthus ermittelten C-Verweilzeiten nur geringfügig länger sind als diejenigen unter Mais. Die jährliche Festlegung von miscanthusbürtigem C in der organischen Bodensubstanz (OBS) bestätigt nur für lehmigen Boden eine höhere C-Sequestrierung von Miscanthus. Es wurde eine vergleichbare C-Akkumulation durch den Miscanthusanbau wie in Grünlandböden festgestellt. Ebenso zeigen Inkubationsexperimente im Miscanthusboden eine ähnliche kumulative CO2-Freisetzung wie in Böden unter Grünland mit einer Tendenz zu geringfügig niedrigeren Freisetzungsraten im Miscanthusboden, Die Anteile von miscanthusbürtigem C am freigesetzten CO2 sind ähnlich wie in Versuchen mit Mais. Es lässt sich eine schnellere Umsetzung des miscanthusbürtigen C in der mikrobiellen Biomasse als leicht umsetzbarer C-Fraktion bestätigen. Die Zugabe leicht verfügbarer organischer Substanzen bewirkte eine verstärkte Mineralisierung der OBS, wobei dieser zusätzlich freigesetzte C entgegen den Erwartungen aus der alten, C3 bürtigen OBS Fraktion stammte. In 13C- Markierungsexperimenten konnte in Miscanthus, Mais, Weizen und Roggen die Verlagerung des kürzlich assimilierten CO2 in Pflanzenteilen verfolgt werden. Eine Verlagerung in den Boden fand hierbei kaum statt. Die O13C-Werte aus den komponentenspezifischen O13C- Lipidanalysen sind vielversprechend für die Diagnose von molekularen Markern und die daraus erfolgende Bestimmung der Umsatzraten. An den CO2- Konzentrationen der Bodenluft und der Herkunft des CO2 konnte der besondere Vegetationszyklus (später Wachstumsbeginn, verzögertes Wurzelwachstum) von Miscanthus wiedergespiegelt werden.

Die Umwandlung von Dreischichtmineralien in Boeden aus Loess

Die verwitterungsbedingten Umwandlungsprozesse glimmerartiger Dreischichtminerale sollten durch die Analyse natuerlicher Tonfraktionen von Boeden nachgewiesen werden. Eine wesentliche Voraussetzung methodischer Art ist dabei die erweiterte Tonfraktionierung mit Hilfe von Zentrifugen, wobei durch Gewinnung von Subfraktionen eine dynamische Betrachtung der Tonentwicklung moeglich wird.

Wirkungen wasserlöslicher organischer Substanzen auf die Stabilisierung und den Abbau organischer Bodensubstanz

Mikrobielle Umsetzungsprozesse im Boden verlaufen fast ausschließlich unter Beteiligung einer gelösten Phase, da alle lebenden Zellen von einem Wasserfilm umgeben sind, durch den Substrate hindurchdiffundieren müssen, oder über den Exoenzyme und andere Exsudate abgegeben werden. Bei der Mineralisierung organischer Substanzen kommt daher der gelösten organischen Substanz (DOM) als Substrat für Mikroorganismen eine entscheidende Rolle zu. In dem Vorhaben wird der Frage nachgegangen, ob bestimmte streu- und wurzelbürtige DOM-Komponenten wie Kohlenhydrate oder Phenole darüberhinaus die mikrobielle Aktivität in einem Maße fördern oder hemmen können, daß von ihnen Auswirkungen auf den Abbau oder die Stabilisierung der organischen Bodensubstanz auftreten können. Zur Untersuchung solcher 'Priming Effekte' sollen umfangreiche Inkubationsversuche durchgeführt werden, bei denen die Wirkung unterschiedlicher gelöster 14C-markierter Einzelverbindungen und von DOM-Lösungen unterschiedlicher 13C-Signatur auf die Mineralisierung von Modellsubstanzen und der organischen Substanz verschiedener Bodenproben ermittelt wird. Ein daraus berechneter Priming Index gibt Auskunft darüber, inwieweit es durch die zugesetzten DOM-Lösungen zu einem verstärkten oder vermindertem Abbau der organischen Bodensubstanz kommt

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Microbial P mobilization and immobilization in the rhizosphere and root-free soil (SPP: P Nutrition & recycling)

Soil microorganisms can mobilize and immobilize phosphorus (P), and therefore strongly affect the availability of P to plants. In this project we hypothesize that the ratio of labile P to microbial P increases during the transition from acquiring to recycling ecosystems. Microbial and plant P uptake will be studied with 33P that will be quantified in microbial and plant biomass as well as in lipids. To what extent microorganisms immobilize and mobilize P during decomposition of soil organic matter will be explored with a 14C/33P labeled monoester. Seasonal dynamics of actual and potential P mineralization (33P dilution and phosphatase activity), and microbial P immobilization will be studied with soils of the transition from acquiring to recycling ecosystems. The contribution of litter-derived P will be explored in a litter exclusion experiment in the field. Spatial patterns of microbial and plant P mineralization in the rhizosphere will be explored by analyses of areas of high acid and alkaline (=microbial-derived) phosphatase activity by soil zymography, and their relations with areas of high rhizodeposition (14C imaging). In conclusion, we will analyse mechanisms of actual and potential microbial P mineralization and immobilization, localization, and consequences for P uptake by plants.

Linking soil architecture formation with changing permafrost regime to carbon turnover in high latitude soils at multiple spatial scales

Most soils develop distinct soil architecture during pedogenesis and soil organic carbon (SOC) is sequestered within a hierarchical system of mineral-organic associations and aggregates. Permafrost soils store large amounts of carbon due to their permanently frozen subsoil and a lack of oxygen in the active layer, but they lack complex soil structure. With permafrost thaw more oxidative conditions and increasing soil temperature presumably enhance the build-up of more complex units of soil architecture and may counterbalance, at least partly, SOC mineralization. We aim to explore the development of mineral-organic associations and aggregates under different permafrost impact with respect to SOC stabilization. This information will be linked to environmental control factors relevant for SOC turnover at the pedon and stand scale to bridge processes occurring at the aggregate scale to larger spatial dimensions. We will combine in situ spectroscopic techniques with fractionation approaches and identify mechanisms relevant for SOC turnover at different scales by multivariate statistics and variogram analyses. From this we expect a deeper knowledge about soil architecture formation in the transition of permafrost soils to terrestrial soils and a scale-spanning mechanistic understanding of SOC cycling in permafrost regions.

Vertical partitioning and sources of CO2 production and effects of temperature, oxygen and root location within the soil profile on C turnover

For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.

Aetiologie, Biokristallographie und Spurenelementgehalte von Sialolithen und Konkrementen im Mundbereich

Mineralisierte Plaque in Form von Zahnstein sowie Konkremente sind entscheidendeFaktoren bei der Entstehung von Parodonthopatien. Aufgrund klinischer Beobachtungen wurde ein spezieller Anamnesebogen entwickelt, um Korrelationen zwischen Bildungsparametern und Haeufigkeit der Zahnsteinentfernung, Speichelkonsistenz, Mundhygienegewohnheiten etc. und dem Grad der parodontalen Erkrankung aufzeigen zu koennen. Fuer Teilbereiche der Ergebnisse werden statistische Auswertungen durchgefuehrt. Elektronen- und phasenkontrastmikroskopische, roentgenographische, infrarotspektroskopische und chemische Untersuchungen zeigen charakteristische, gewohnheitsbedingte Unterschiede in der Zusammensetzung von menschlichen Zahn- und Speichelkonkrementen. Typisch sind geschlechts- und berufsspezifische Abweichungen bei umweltrelevanten Schwermetallen wie Pb, Cd, Cu und Zn. Besonderheiten hinsichtlich Menge, Konsistenz und Haerte von Zahnstein, sowie pH-Wert des Speichels ergeben sich bei Bergleuten.

Streuzersetzung und Nährstofffreisetzung in Mischwäldern

Als man im 19. Jahrhundert begann, Fichte (Picea abies) außerhalb ihres natürlichen Verbreitungsgebietes in typischen Mischwaldgebieten aufzuforsten, wurden die unterschiedlichen Effekte von Buche (Fagus sylvatica) und Fichte auf den Waldboden diskutiert. Aufgrund der heute vielfach praktizierten naturnahen Forstwirtschaft denkt man vermehrt über eine Rückführung in gemischte Fichten/Buchenbestände nach, obwohl auch die Buche nicht immer die natürliche Baumart darstellt. Die versauernde Wirkung der Fichte ist zwar erwiesen, nicht jedoch deren negative Auswirkung auf das Baumwachstum. Aus diesem Grund soll die Annahme, dass Fichten/Buchenwälder eine bessere Alternative zu reinen Fichtenwäldern auf ehemaligen Laub-baumstandorten darstellen, kritisch überprüft werden, insbesondere da bodenchemische Prozesse in Mischbeständen aufgrund von Studien in reinen Buchen- oder Fichtenbeständen nicht vorher-gesagt werden können. Die Arbeitshypothesen lauten: i) die Streuzersetzung und Nährstofffreisetzung von Buchen- und Fichtenstreu ist abhängig von der Qualität der Streu und dem Standort, ii) die Netto-Mineralisationsraten von Kalzium, und Stickstoff (N) im Oberboden unterscheiden sich zwischen den Baumarten und iii) die Nährstoffspeicherung bzw. -freisetzung des Waldbestandes ist folglich abhängig von der Baumartenmischung, wobei nicht lineare Zusammenhänge zwischen dem Mischbestand und den betreffenden Reinbeständen prognostiziert werden. Das angestrebte Ziel ist es, (i) die Zersetzung von gemischter Fichten/Buchen-Streu anhand der Abbauraten in den Reinbeständen abzuschätzen, (ii) den Einfluss der Baumartenmischung auf ausgewählte N-Kreislaufparameter zu verstehen, und letztendlich die Frage zu beantworten, (iii) in welchem Ausmaß die Nährstoffspeicherung bzw. -freisetzung mittels waldbaulicher Maßnahmen (z.B., unterschiedliche Beimischung von Buche) zu beeinflussen ist. Diese Themen haben unmittelbare praktische Relevanz, beispielsweise, auf die Produktivität von Mischbeständen und deren Auswirkungen auf die Grundwasserqualität (z.B.: Nitrat).

1 2 3 4 553 54 55