s/mirosystemtechnik/Mikrosystemtechnik/gi
Das Projekt "Rückführung des Treibhausgases CO2 in den Energiekreislauf durch seine Reduktion in flüssiges Ethanol" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Ostbayerische Technische Hochschule Regensburg, Fakultät Allgemeinwissenschaften und Mikrosystemtechnik, Kompetenzzentrum Nanochem.
Das Projekt "Begleitforschung zum großskaligen Aufbau der Produktion von grünem Methanol und DME in Chile, Teilvorhaben: Nachhaltigkeitsanalyse der MeOH- und DME-Herstellung in Chile" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Mikrotechnik und Mikrosysteme.
Das Projekt "Entwicklung und Erprobung eines Relaxed Eddy Accumulation (REA)-Systems zur Bestimmung vertikaler Flüsse von salpetriger Säure (HONO)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Physikalische und Theoretische Chemie.Während der letzten Jahre wurde Salpetrige Säure (HONO) als eine Hauptquelle von OH-Radikalen in der unteren Atmosphäre erkannt. Da das OH Radikal für den Abbau der meisten Schadstoffe und die Bildung von Photooxidantien, wie z.B. Ozone, verantwortlich ist, sind die Identifizierung und die Quantifizierung von atmosphärischen HONO-Quellen von großer Bedeutung. Basierend auf Laborstudien wurden hauptsächlich bodennahe HONO-Quellen vorgeschlagen, um die unerwartet hohen HONO-Tageskonzentrationen in der unteren Atmosphäre zu erklären. Daraus resultierende vertikale Flussmessungen von HONO über atmosphärischen Oberflächen werden jedoch nur selten durchgeführt. Zudem wird hierbei auf Grund fehlender schneller und empfindlicher HONO-Messgeräte meist nur die aerodynamische Gradientenmethode eingesetzt, die mit großen Unsicherheiten behaftet ist. Daher soll im Rahmen des hier beantragten Projektes ein REA (Relaxed Eddy Accumulation) System, zur Quantifizierung vertikaler Flüsse salpetriger Säure (HONO) entwickelt und erprobt werden. Es soll ein Zweikanal-Messgerät aufgebaut werden, das auf dem LOPAP (Long Path Absorption Photometer)-Messprinzip basiert und das mit einem mikrometeorologischen Einlasssystem gekoppelt wird. Hierbei werden zwei schnelle Magnetventile mit Hilfe eines Ultraschallanemometers gesteuert und somit die beiden Kanäle für jeweils auf- und absteigende Luftmassen beprobt. Zusätzlich werden in einem dritten Kanal chemische Interferenzen bestimmt und zur Korrektur der Messsignale verwendet. Parallel zum Aufbau der Hardware soll für die Steuerung der Ventile und die Datenerfassung der meteorologischen Daten eine passende Software entwickelt werden. Das Gerät wird zunächst an der BUW auf seine technische Funktionalität getestet und optimiert. Zum Ende des Projektes sollen dann mit Hilfe des Messgerätes und begleitenden anderen Spurengasmessungen Tagesquellen von HONO über einem landwirtschaftlich genutzten Feld in Grignon (Frankreich) identifiziert und quantifiziert werden. Die gewonnenen Daten sollen mit Ergebnissen aus HONO-Gradientenmessungen verglichen werden, die im Rahmen eines früheren DFG-Projekts des Antragstellers am selben Messort gewonnen wurden.
Das Projekt "Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen" wird/wurde ausgeführt durch: Ostbayerische Technische Hochschule Regensburg, Fakultät Allgemeinwissenschaften und Mikrosystemtechnik, Kompetenzzentrum Nanochem.Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.
Das Projekt "Faseroptischer Gassensor auf Basis von Metal Organic Frameworks zum Einsatz in Transformatorenöl für predicti-ve Maintenance in Hochspannungsanlagen, Teilvorhaben: Entwicklung von Metal Organic Frameworks zur Dispergierung in Tintenform und anschließenden Herstellung sensorischer Dünnschichten" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Ostbayerische Technische Hochschule Regensburg, Fakultät Allgemeinwissenschaften und Mikrosystemtechnik, Kompetenzzentrum Nanochem.Im Zuge der Energiewende findet ein Übergang von wenigen Kraftwerken mit gleichmäßiger Energieerzeugung hin zu zahlreichen Kraftwerken mit variabler Energieerzeugung. Dieser Wandel stellt neue Herausforderungen an die Netzregulierung und -überwachung. Im Verbundvorhaben 'TrafoMOF' wird aus diesem Grund ein faseroptischer Gassensor auf Basis von Metal Organic Frameworks (kurz: MOFs) entwickelt. Zielanwendung für diesen Sensor ist die 'Dissolved Gas Analysis' (kurz: DGA) in Isoliermedien von Hochspannungsanlagen. Die Alterung der Isoliermedien ist die Hauptursache für Ausfälle von Hochspannungsanlagen. Durch die Detektion von Zersetzungsprodukten der Isoliermedien kann eine Aussage über den Fortschritt der Alterung getroffen und damit die Betriebsfähigkeit der Hochspannungsanlage beurteilt werden. Im Fokus der Analysen stehen die Zersetzungsprodukte Methan, Ethan, Ethen, Ethin, Wasserstoff, Methanol, Kohlendioxid und die Stoffgruppe der Furane. Durch den Einsatz MOFs ist es möglich sensorische Dünnschichten zu erzeugen, die hochgradig selektiv auf jeweils eines der zu analysierenden Zersetzungsprodukte ansprechen. Bei den MOFs handelt es sich um eine vielfältige Gruppe mikroporöser Stoffe, die andere Moleküle in ihre Mikroporen einlagern. Hierdurch ändern sich die Stoffeigenschaften der MOFs, was genutzt wird, um die Lichtführungseigenschaften von Glasfasern zu modulieren. Diese Sensortechnik erreicht einen neuen Stand der Technik im Feld der Sensorik für Hochspannungsanlagen. Durch die generierten Messergebnisse werden neue Möglichkeiten für Netzregulierung und -überwachung geschaffen.
Das Projekt "KMU-innovativ - KMUi-BÖ02: Next Generation Sample Preparation - Entwicklung eines nachhaltigen, ressourcenschonenden und innovativen Probentransportsystems für Tupfer und Abstriche mit integrierter Extraktion von Nukleinsäuren und Kontrollen zur Überprüfung der Probenqualität, KMU-innovativ - KMUi-BÖ02: Next Generation Sample Preparation - Entwicklung eines nachhaltigen, ressourcenschonenden und innovativen Probentransportsystems für Tupfer und Abstriche mit integrierter Extraktion von Nukleinsäuren und Kontrollen zur Überprüfung der Probenqualität" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: gerbion GmbH & Co. KG.
Das Projekt "Passive Sampling und Passive Dosing - ein innovativer Ansatz zur kombinierten chemischen und biologischen Analyse hydrophoben organischen Schadstoffen im Sediment-Porenwasser mariner Systeme" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Umweltforschung, Lehr- und Forschungsgebiet Ökosystemanalyse (ESA).Ziel dieses Projektes ist die Entwicklung von innovativen Indikatoren, die eine räumlich strukturierte Beschreibung und Bewertung der Belastungssituation und des Risikopotenzials von sedimentgebundenen Schadstoffen in marinen Systemen ermöglichen. Dieses Projekt wird es zum ersten Mal ermöglichen, Daten zur Toxizität der Porenwasserkonzentration von hydrophoben organischen Schadstoffen mit sehr geringer Unsicherheit zu erheben, direkt mit einer chemischen Analyse zu korrelieren und schließlich über entsprechende künstliche Mischungen zu verifizieren. Um dies zu erreichen, wird in diesem Projekt ein in situ Gleichgewichtssammlers (Passivsammlers) auf Basis der Festphasenmikroextraktion (passive sampling) für die Untersuchung von hydrophoben organischen Schadstoffen im marinen Bereich adaptiert. Anschließend werden die mittels Silikon Hohlfasern gesammelten Schadstoffmischungen direkt durch passive dosing in kleinskalige Biotestsysteme eingebracht. Durch Verzicht auf die vorherige Extraktion der Fasern wird das Risiko, die ursprüngliche Probenzusammensetzung zu verändern, deutlich reduziert. Erhobene Daten sind daher in hohem Maße repräsentativ für die tatsächliche Belastungssituation vor Ort. Des Weiteren werden die analysierten Schadstoffmischungen künstlich wiederhergestellt, um sie mittels passive dosing in unterschiedlichen Konzentrationen in Biotests zu untersuchen. Damit sollen Konzentrations-Wirkungskurven erstellt werden, die es erlauben, das von den sedimentgebundenen Schadstoffen ausgehende Risiko abzuschätzen (Mischtoxizität).
Das Projekt "Wärmefluss-Optimierung zur Sektorenkopplung in Fernwärmenetzen mittels MPC unter Berücksichtigung eines strommarktorientierten Betriebes, Teilvorhaben: Methoden- und Softwareentwicklung für die Optimierung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität, Institut für Mikrosystemtechnik (IMTEK), Professur für Systemtheorie, Regelungstechnik und Optimierung.Das Vorhaben WOpS - Wärmefluss-Optimierung zur Sektorkopplung hat das Ziel, eine Modell- und Optimierungs-Bibliothek zur optimierungsbasierten Betriebsführung dezentraler Einspeisepunkte in Fernwärmenetzen unter Berücksichtigung eines strommarktorientierten Betriebs der Anlagentechnik zu entwickeln. Diese wird möglichst robust und generisch verfasst, um eine größtmögliche und einfach umzusetzende Übertragbarkeit zu ermöglichen. Ein wesentliches Alleinstellungsmerkmal der Bibliothek ist die Abbildung der thermohydraulischen zeit- und ortsabhängigen Charakteristika von Wärmeflüssen, die eine optimale Verteilung der Wärme im Wärmenetz ermöglicht. Ziel ist eine gemeinsame Vermarktung der dezentralen Anlagen mit den Koppelprodukten Wärme und der an der Börse gehandelten elektrischen Energie. Für die im Betrieb zu lösenden gemischt-ganzzahligen Optimierungsprobleme wird ein neuer, quell-offener numerischer Löser entwickelt. Zur Erprobung der Verfahren wird eine direkte, praxisnahe Umsetzung in Demonstratoren unter Berücksichtigung der Anforderungen aus dem Netzbetrieb (z.B. 'Redispatch 2.0') sowie einer autonomen Teilnahme der Einheiten am Strommarkt realisiert und die Strom-Wärme-optimierten Fahrpläne in den Demonstratoren umgesetzt. In der Betrachtung werden primär Bestands-Wärmenetze angegangen, die in ihrer Transformation durch die Inbetriebnahmen neuer dezentraler Einspeisepunkte mit unterschiedlichen Anforderungen (z.B. neuartige Wärmequellen in Verbindung mit Großwärmepumpen) unter Berücksichtigung eines strommarkt- wie auch netzorientierten Betriebes der Anlagentechnik neue Herausforderungen an die Versorgungs- und Betriebssicherheit, Energieeffizienz und hohe Lebensdauer der Anlagentechnik stellen. Das Ergebnis ist ein für den Markt verfügbares Modul mit einer Komponentenbibliothek für eine IoT-Plattform und stellt damit einen wesentlichen Baustein für die Transformation von klassischen Unternehmen der Energieversorgung hin zu Energiedienstleistern dar.
Das Projekt "Quantum Wastewater Sensing (QUATERNION), Teilvorhaben: Quantensensorik für integriertes Abwassermonitoring" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Professur für Optische Systeme.
Das Projekt "Entwicklung einer rohstoffoptimierten, recyclefähigen und wiederaufladbaren Zink-Luft-Batterie für stationäre Anwendungen, ZinCycle - Entwicklung einer rohstoffoptimierten, recyclefähigen und wiederaufladbaren Zink-Luft-Batterie für stationäre Anwendungen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Westfälische Hochschule Gelsenkirchen Bocholt Recklinghausen, Fachbereich 2: Elektrotechnik und angewandte Naturwissenschaften - Physikalische Technik , Medizintechnik , Mikrosystemtechnik.
Origin | Count |
---|---|
Bund | 424 |
Land | 6 |
Type | Count |
---|---|
Förderprogramm | 423 |
Text | 4 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 7 |
offen | 423 |
Language | Count |
---|---|
Deutsch | 423 |
Englisch | 38 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 176 |
Webseite | 254 |
Topic | Count |
---|---|
Boden | 233 |
Lebewesen & Lebensräume | 225 |
Luft | 186 |
Mensch & Umwelt | 430 |
Wasser | 154 |
Weitere | 427 |