API src

Found 40 results.

Related terms

Errichtung und Betrieb einer Lageranlage zur Lagerung von Black Mass und Abfällen aus der CAM-Produktion auf dem Betriebsgelände der BASF Schwarzheide GmbH in 01986 Schwarzheide; Vorhaben-ID Süd-G04622

Die Firma BASF Schwarzheide GmbH, Schipkauer Straße 1 in 01986 Schwarzheide, beantragt die Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück Schipkauer Straße 1, 01986 Schwarzheide in der Gemarkung Schwarzheide, Flur 6, Flurstück 470 eine Anlage zum Lagern von Abfällen über einen Zeitraum von jeweils mehr als einem Jahr mit einer Aufnahmekapazität von 10 Tonnen oder mehr je Tag zu errichten und zu betreiben. Bei dem Vorhaben handelt es sich um eine Anlage der Nummer 8.14.2.1 GE des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um ein Vorhaben nach der Nummer 8.9.1.1 X der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Für das Vorhaben besteht somit die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung. Weiterhin fällt das beantragte Vorhaben gemäß § 3 der 4. BImSchV unter die Industrieemissions-Richtlinie. Für das Vorhaben wurde eine Zulassung vorzeitigen Beginns gemäß § 8a BImSchG beantragt. Das Vorhaben umfasst im Wesentlichen die Ertüchtigung des bestehenden Gebäudes D206 auf dem Blockfeld D200 auf dem Betriebsgelände der BASF Schwarzheide GmbH und dessen Nutzung als Lageranlage für die Lagerung von Abfällen aus der Herstellung und dem Recycling von Lithiumionen-Batterien, darunter Black Mass (getrocknet oder pyrolysiert) und Abfälle aus der Produktion von kathodenaktiven Materialien (unter anderem Fehlchargen, Filterstäube), mit einer Aufnahmekapazität von 90 Tonnen pro Tag und einer Gesamtlagerkapazität von 6 500 Tonnen. Die Umschlagmenge beträgt 6 000 Tonnen pro Jahr. Bei Black Mass handelt es sich um ein pulverisiertes Stoffgemisch, unter anderem bestehend aus Mischoxiden von Nickel, Cobalt, Mangan, Aluminium und Lithium, Metallen (zum Beispiel Kupfer, Eisen und Aluminium), Lithiumsalzen, Graphit sowie Lösungsmitteln und Polymeren, das teilweise als wassergefährdend, störfallrelevant beziehungsweise als Gefahrstoff deklariert ist. Die Inbetriebnahme der Anlage ist für Mai 2023 vorgesehen.

Errichtung und Betrieb einer Lageranlage (D266) zur Lagerung von Black Mass und Abfällen aus der CAM-Produktion auf dem Betriebsgelände der BASF Schwarzheide GmbH in 01986 Schwarzheide; Vorhaben-ID: Süd-G00524

Die Firma BASF Schwarzheide GmbH, Schipkauer Straße 1 in 01986 Schwarzheide, beantragt die Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück Schipkauer Straße 1, 01986 Schwarzheide in der Gemarkung Schwarzheide, Flur 6, Flurstück 470 eine Anlage zum Lagern von Abfällen über einen Zeitraum von jeweils mehr als einem Jahr mit einer Aufnahmekapazität von 10 Tonnen oder mehr je Tag zu errichten und zu betreiben. Bei dem Vorhaben handelt es sich um eine Anlage der Nummer 8.14.2.1 GE des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um ein Vorhaben nach der Nummer 8.9.1.1 X der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Für das Vorhaben besteht somit die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung. Weiterhin fällt das beantragte Vorhaben gemäß § 3 der 4. BImSchV unter die Industrieemissions-Richtlinie. Für das Vorhaben wurde eine Zulassung vorzeitigen Beginns gemäß § 8a BImSchG beantragt. Das Vorhaben umfasst im Wesentlichen die Ertüchtigung des bestehenden Gebäudes D266 auf dem Blockfeld D200 auf dem Betriebsgelände der BASF Schwarzheide GmbH und dessen Nutzung als Lageranlage für die Lagerung von Abfällen aus der Herstellung und dem Recycling von Lithiumionen-Batterien, darunter Black Mass (getrocknet oder pyrolysiert) und Abfälle aus der Produktion von kathodenaktiven Materialien (unter anderem Fehlchargen, Filterstäube), mit einer Aufnahmekapazität von 90 Tonnen pro Tag und einer Gesamtlagerkapazität von 4 500 Tonnen. Bei Black Mass handelt es sich um ein pulverisiertes Stoffgemisch, unter anderem bestehend aus Mischoxiden von Nickel, Cobalt, Mangan, Aluminium und Lithium, Metallen (zum Beispiel Kupfer, Eisen und Aluminium), Lithiumsalzen, Graphit sowie Lösungsmitteln und Polymeren, das teilweise als wassergefährdend, störfallrelevant beziehungsweise als Gefahrstoff deklariert ist. Die Inbetriebnahme der Anlage ist für September 2024 vorgesehen.

Errichtung und Betrieb einer Lageranlage (G219) zur Lagerung von Black Mass und Abfällen aus der CAM-Produktion auf demBetriebsgelände der BASF Schwarzheide GmbH in 01986 Schwarzheide; Vorhaben-ID Süd-G00523

Die Firma BASF Schwarzheide GmbH, Schipkauer Straße 1 in 01986 Schwarzheide, beantragt die Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück Schipkauer Straße 1, 01986 Schwarzheide in der Gemarkung Schwarzheide, Flur 6, Flurstück 470 eine Anlage zum Lagern von Abfällen über einen Zeitraum von jeweils mehr als einem Jahr mit einer Aufnahmekapazität von 10 Tonnen oder mehr je Tag zu errichten und zu betreiben. Bei dem Vorhaben handelt es sich um eine Anlage der Nummer 8.14.2.1 GE des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um ein Vorhaben nach der Nummer 8.9.1.1 X der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Für das Vorhaben besteht somit die Pflicht zur Durchführung einer Umweltverträglichkeitsprüfung. Weiterhin fällt das beantragte Vorhaben gemäß § 3 der 4. BImSchV unter die Industrieemissions-Richtlinie. Für das Vorhaben wurde darüber hinaus eine wasserrechtliche Erlaubnis gemäß § 8 in Verbindung mit § 10 des Wasserhaushaltsgesetzes (WHG) zur Benutzung eines Gewässers bei der unteren Wasserbehörde des Landkreises Oberspreewald-Lausitz beantragt. Gegenstand dieses Verfahrens ist die Versickerung von Niederschlagswasser. Das Vorhaben umfasst im Wesentlichen die Ertüchtigung des bestehenden Gebäudes G219 auf dem Blockfeld G200 auf dem Betriebsgelände der BASF Schwarzheide GmbH und dessen Nutzung als Lageranlage für die Lagerung von Abfällen aus der Herstellung und dem Recycling von Lithiumionen-Batterien, darunter Black Mass (getrocknet oder pyrolysiert) und Abfälle aus der Produktion von kathodenaktiven Materialien (unter anderem Fehlchargen, Filterstäube), mit einer Aufnahmekapazität von 90 Tonnen pro Tag und einer Gesamtlagerkapazität von 2 500 Tonnen. Die Umschlagmenge beträgt 5 000 Tonnen pro Jahr. Bei Black Mass handelt es sich um ein pulverisiertes Stoffgemisch, unter anderem bestehend aus Mischoxiden von Nickel, Cobalt, Mangan, Aluminium und Lithium, Metallen (zum Beispiel Kupfer, Eisen und Aluminium), Lithiumsalzen, Graphit sowie Lösungsmitteln und Polymeren, das teilweise als wassergefährdend, störfallrelevant beziehungsweise als Gefahrstoff deklariert ist. Die Inbetriebnahme der Anlage ist für Oktober 2023 vorgesehen.

Uran in Oberflächengewässern ..... Ausgabe 8/2013

Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz August 2013 Uran in Oberflächengewässern Niedersachsens 1. Allgemeines Uran (chemisches Symbol: U) wurde 1789 von dem deutschen Chemieprofessor und Apotheker Klaproth aus dem Mineral Pechblende isoliert und nach dem Planeten Uranus benannt, der kurz zuvor, im Jahr 1781, entdeckt worden war. Das Schwermetall Uran ist ein natürlicher Bestandteil der Erdkruste. Somit lässt sich Uran in unterschiedlichen Anteilen in Gesteinen und Mineralien, im Boden, im Wasser und in der Luft nachweisen. Auf den wichtigen Aspekt von geogenen Uran- Hintergrundgehalten in Oberflächengewässern wird unter 4. konkret eingegangen. Natürlich auftretendes Uran ist ein Isotopengemisch, welches zu 99,27 % aus dem Isotop U-238, zu 0,72 % aus U-235 und 0,01 % aus U-234 besteht. Sämtliche Isotope sind radioaktiv (UBA 2012, WIKIPEDIA). Die Halbwertszeit von U-238 beträgt 4,468 Milliarden Jahre, d.h. dass eine Halbierung der Strahlung nach diesem unvorstellbar langen Zeitraum erfolgt. Uran ist in Form des Oxids und der Mischoxide mit Plutonium derzeit der wichtigste Kernbrennstoff. Abgereichertes Uran wird als Legierung zur Verbesserung der Korrosionsbeständigkeit als Werkstoff hoher Dichte in der Luftfahrindustrie, als Strahlenschutzmaterial und als Zusatz von Katalysatoren verwendet. Wegen seiner Dichte wird abgereichertes Uran auch in Geschossen benutzt, um deren Durchschlagskraft zu verbessern. Uran und seine Verbindungen wirken sowohl in radioaktiver als auch in chemisch- toxischer Hinsicht. Um Missverständnissen vorzubeugen sei darauf hingewiesen, dass sich die folgenden Ausführungen ausnahmslos auf die Betrachtung des chemisch-toxischen Aspektes beziehen. Uran kommt überwiegend in den Oxidationsstufen IV und VI vor, wobei das VI- wertige Uran durch die Bildung von bestimmten Komplexen - im Gegensatz zum IV- wertigen - sehr gut wasserlöslich und von daher für das aquatische System besonders relevant ist. Hinsichtlich der aquatischen Ökotoxizität zeigt sich, dass erhöhte Urankonzentrationen zu chronische/akute Wirkungen führen, wie beispielsweise bei Fischen, Kleinkrebsen und Algen. Dabei scheint die akute Toxizität von Uran gegenüber Fischen und Kleinkrebsarten mit der Wasserhärte korreliert zu sein, je geringer die Wasserhärte desto höher die toxische Wirkung. Bei Menschen ist bekannt, dass erhöhte Dosen zu Schädigungen der Nieren führen können, weil Nieren das wesentliche Ausscheidungsorgan sind. 1 2. Veranlassung Bei der Konzeption und Erstellung der „Verordnung zum Schutz der Oberflächengewässer“ (sog. Oberflächengewässerverordnung - OGewV), die als Bundesverordnung am 25. Juli 2011 in Kraft getreten ist, war zunächst vorgesehen Uran mit in die Stoffliste der Anlage 5 (flussgebietsspezifische Schadstoffe) aufzunehmen und mit einer (nationalen) Umweltqualitätsnorm zu versehen. Um diesbezüglich Erfahrungen zu sammeln, wurden die niedersächsischen Oberflächengewässer bereits in den Jahren 2010 und 2011 im Zusammenhang mit den Bestandsaufnahmen zur EG-Wasserrahmenrichtlinie mit auf Uran untersucht (siehe 3.). Uran wurde letztlich jedoch nicht in die OGewV integriert. Zudem vermehrten sich die Berichte bzw. Pressemitteilungen, dass durch die landwirtschaftliche Verwendung von Phosphatdüngern, in denen auch Uran enthalten ist, erhöhte Einträge von Uran in Gewässer festzustellen seien. Im Folgenden werden die Ergebnisse der in der Wasserphase durchgeführten landesweiten Untersuchungen dargestellt und – soweit möglich – bewertet. 3. Monitoringkonzept Messstellen und Untersuchungsfrequenz An den insgesamt 140 ausgewählten Messstellen wurden entweder im Jahr 2010 oder 2011 jeweils 4 Wasserprobenahmen (Stichproben) durchgeführt. Bei den im Tidebereich gelegenen Messstellen erfolgte die Probenahme bei Ebbestrom (ablaufend Wasser), bei den Küsten-(Nordsee-)Messstellen unter Einsatz eines Hubschraubers.Die untersuchten Messstellen können Tab. 2 bzw. Tab. 3 entnommen werden, die Lage der Messstellen geht aus Bild 1 hervor. Es wurden in die Untersuchungen somit Messstellen der Flussgebiete Ems, Elbe, Weser und Rhein einbezogen, wobei 6 der 140 Messstellen der Kategorie der Küstengewässer zuzuordnen sind. Darüber hinaus sind auch Stillgewässer in die Untersuchungen einbezogen worden, neben dem größten niedersächsischen See, das Steinhuder Meer, beispielsweise auch der Maschsee in Hannover (Bild 2). Analysenmethode Die entnommenen Wasserproben wurden vor Ort filtriert (0,45 µm) und mit speziell gereinigter konzentrierter Salpetersäure versetzt, bis ein pH-Wert < 2 eingestellt war. Die Analyse auf Uran erfolgte nach DIN EN ISO 17294-2 mittels induktiv gekoppelter Plasma-Massenspektrometrie (ICP-MS), bei einer Bestimmungsgrenze von 0,05 µg/L. 2 Umweltqualitätsnormen (UQN) bzw. Orientierungswert Eine gesetzlich festgelegte UQN für Oberflächengewässer existiert – wie bereits erwähnt – für Uran nicht. Zur Bewertung bzw. Einschätzung der Untersuchungsbefunde wurde im Folgenden ein Orientierungswert von 2 µg/L verwendet, wie er in dem Entwurf der Oberflächengewässerverordnung (OGewV) vom März 2011 vorgesehen war. Entsprechend den Kriterien der OGewV wurde dieser Orientierungswert mit den jeweiligen Jahresmittelwerten abgeglichen. Bild 1: Lage der 140 untersuchten Messstellen 4. Ergebnisse, Bewertung und Zusammenfassung der Befunde Von den ermittelten Urangehalten wurde das jeweilige arithmetische Jahresmittel gebildet. Bei Gehalten < Bestimmungsgrenze wurde näherungsweise mit der halben Bestimmungsgrenze (0,025 µg/L) gerechnet. Der Tab. 1 können die jeweiligen Jahresmittelwerte aller insgesamt 140 untersuchten Messstellen entnommen werden, in alphabetischer Reihenfolge nach Gewässern und Messstellen geordnet. Messstellen, bei denen im Jahresdurchschnitt die Urangehalte größer dem Orientierungswert von 2 µg/L ermittelt wurden, sind rot gekennzeichnet. Lagen die Jahres-Urangehalte zwischen > 1 µ/L bis 2 µg/L, somit der halbe Orientierungswert überschritten wurde, so sind die entsprechenden Messstellen gelb hinterlegt. 3

Alternative reactor concepts

Alternative reactor concepts A number of reactor concepts are being developed around the world as future alternatives to conventional nuclear power plants. A report commissioned by BASE analyses the development status, safety and regulatory framework of these concepts. Study on alternative reactor concepts BASE has commissioned a research project to analyse current developments in alternative reactor concepts that differ significantly from light water reactors. The term "so-called 'novel' reactor concepts" is used to denote them in this report. Various reactor concepts that are seen as future alternatives to conventional nuclear power plants are currently being developed around the world. They are often summarised under collective terms such as "4th generation reactors", "novel reactor concepts" or "advanced reactors". These alternative reactors are characterised by the fact that they can provide electricity much more cheaply than conventional nuclear power plants, are safer than conventional nuclear power plants, should be able to incubate new nuclear fuel, should be able to recycle radioactive waste, produce less waste, are less suitable for producing fissile material for nuclear weapons. But will the alternative reactor concepts live up to expectations? BASE has commissioned an expert report to investigate this question, and to analyse and evaluate the concepts regarding development status, safety and regulatory framework. You can view an interim report on the expert opinion here. Here you can find the summary of the study results . Historical development Research into a variety of different reactor concepts based on the use of different nuclear fuels, coolants, moderator materials and neutron spectra has been conducted since the 1940s and 1950s. Light water reactors, which include the pressurised and boiling water reactors operated in Germany, were the most successful in industrial terms. Around 90% of the global output of nuclear power plants is currently generated by light water reactors. Development of alternative reactor concepts As light water reactors also have shortcomings in terms of safety, fuel utilisation, efficiency and cost-effectiveness, interest in alternative concepts has been growing again for some time. These are often referred to as novel reactor types, but some of them are based on designs that have been under development for many decades and have not produced any commercially competitive construction lines to date. For this reason, the report commissioned by BASE refers to "so-called 'novel' reactor concepts". The Generation IV International Forum International efforts to develop alternative reactor concepts have been coordinated through the Generation IV International Forum (GIF) since 2001. The aim is to produce operational nuclear reactors of alternative technology lines with improved properties in the near future. Six different technology lines are being pursued: 1. Very High Temperature Reactor (VHTR) 2. Molten Salt Reactor (MSR) 3. Supercritical-water-cooled reactor (SCWR) 4. Gas-cooled fast reactor (GFR) 5. Sodium-cooled fast reactor (SFR) 6. Lead-cooled fast reactor (LFR) Other concepts are currently being developed outside the GIF's area of work, for example 7. Accelerator-driven subcritical reactor (Accelerator-driven Systems, ADS) Alternative technology lines 1) Very High Temperature Reactor (VHTR) While most conventional reactors (including the light water reactors operated in Germany) heat the water used as a cooling medium to temperatures of approx. 300°C, other reactor types operate at significantly higher temperatures. The high-temperature reactor is designed to reach temperatures of 750°C to over 1000°C. Such high temperatures allow for significantly higher efficiencies than other reactor types, i.e. a better yield when converting heat into electricity. Furthermore, the heat can alternatively be utilised for certain industrial processes such as the production of hydrogen. Very High Temperature Reactor © BASE How does the high-temperature reactor work? High-temperature reactor concepts use helium gas as a coolant instead of water. This allows the reactor to operate at lower pressure, making it more controllable at extremely high temperatures compared to conventional light water reactors. Uranium oxide or carbide is predominantly used as fuel. The fuel comes in small pellets that are encased in a protective shell. The pellets, in turn, are embedded in spheres or prismatic blocks of graphite, which serves as a moderator. These spheres or blocks represent the fuel elements. Coolant flows around them and absorbs the heat generated during the nuclear reaction. This heat can be used, for example, to heat water and drive a steam turbine. Advantages and disadvantages of high-temperature reactors? In addition to an increased efficiency and the generation of process heat at high temperatures, high-temperature reactors offer further advantages over conventional reactors. The design of the fuel elements and the helium cooling offer improved safety features. This means that additional safety systems can be used, some of which are not available in water-cooled reactors. Due to its design, the high-temperature reactor has a relatively low output in relation to the total volume of the reactor core. A core meltdown can, therefore, be ruled out. If the plant is suitably designed, natural uranium , thorium, plutonium or mixed oxides can also be used as fuel in addition to enriched uranium . However, the technology also has major disadvantages. The high temperature and the helium coolant pose a challenge in terms of selecting suitable materials. Gas-cooled reactors also often exhibit problems such as uneven cooling, high abrasion and dust formation as well as an increased risk of fire in the event of water or air ingress. This can lead to the release of radioactive substances . Due to the high content of radioactive graphite, the final disposal of spent fuel elements is estimated to be significantly more cost-intensive compared to conventional fuel elements. Development status of high-temperature reactors Gas-cooled high-temperature reactors have been the subject of research since the 1960s. Prototype plants based on this concept (the pebble bed reactors in Jülich and Hamm-Uentrop) were also developed in Germany. At the end of the 1980s, both plants were shut down due to various technical problems, and the technology was gradually abandoned in Germany. Other high-temperature reactor projects have been and continue to be developed in the UK, the USA , Japan and France, among others. A project in South Africa, which was based on AVR Jülich technology, was paused indefinitely due to technical difficulties and a lack of funding in 2010. A high-temperature experimental reactor, the HTR-10, which is also based on the pebble bed design , has been in operation in the People's Republic of China since 2003. Two further high-temperature reactors of the HTR-PM type there reached criticality as demonstration plants in autumn 2021. A similar project in the USA was discontinued before a prototype reactor was even built, but research on the high-temperature reactor concept is ongoing there. A general trend towards moderately high operating temperatures of 700-850°C can be observed in current developments. To date, there is no high-temperature reactor for commercial power generation in operation. 2.) Molten Salt Reactor – (MSR) Fuel in nuclear reactors is usually used in solid form as so-called fuel rods. In molten salt reactors, however, the fuel is molten salt that is pumped through the reactor. Molten Salt Reactor © BASE How does the molten salt reactor work? The fuel is a mix of molten salts (fluorides and chlorides). The concentration of the fissile fuel can be adjusted very accurately via the selection of the salts and their mixing ratio. This allows the production of the exact concentration required to maintain a stable chain reaction. The temperatures in the molten salt are approx. 600-700°C. Controlled nuclear reactions that generate heat take place inside the reactor. This heat can be used to heat water vapour and power a turbine for electricity generation. What are the advantages and disadvantages of molten salt reactors? The safety concept of molten salt reactors is based on basic physico-chemical properties and requires less active safety technology than conventional light water reactors, for example. A central feature of the safety concept is to drain the molten salt into designated containers in the event of malfunctions, thus preventing any further chain reaction. In addition, molten salt reactors can integrate what is known as chemical treatment. The fission products and the composition of the fission products , the fuel and the salt mixture used can be optimised during operation in an additional system in the primary circuit (fuel processing system). In contrast to light water reactors, there is no increased pressure in the primary circuit of a molten salt reactor, which means that some accident scenarios can be ruled out. A major disadvantage of the molten salt reactor is the increased corrosion inside the pipe systems. The hot fuel-salt mix corrodes the metals in the reactor, thus limiting their service life. This problem is also the subject of current research and an important reason why, to date, molten salt reactors only exist as research or pilot plants. Some concepts for molten salt reactors advertise the fact that they can also recycle radioactive waste . The idea is that so-called transuranium elements, which are produced in the reactor during nuclear fission , as well as individual long-lived fission products can be specifically converted, i.e. transmuted. This has not yet been developed to the point where it is ready for use. According to the current state of research , however, it would not be possible to convert all of the radioactive waste . New fission products would also be generated. There would, thus, be no advantage in terms of the final storage strategy pursued in Germany. Depending on the specific design of the molten salt reactor concept, radioactive residues would be produced that differ from those of previous light water reactors. The entire disposal chain would have to be adapted, from the development of suitable conditioning processes and new containers to the requirements for interim and final storage of the radioactive residues. Development status of molten salt reactors Molten salt reactors were last operated in the USA in the 1950s and 1960s in the form of two experimental reactors. Research into the further development of this technology is currently underway in several countries. This research is at very different stages and includes concept studies as well as theoretical and experimental preliminary work. The development of an experimental reactor in China (TMSR-LF1) is the most advanced such concept. The commissioning of this reactor, which has been under construction since 2018, was approved by the Chinese authorities in summer 2022. 3.) Supercritical-water-cooled Reactor – (SCWR) The supercritical-water-cooled reactor is similar in structure to a boiling water reactor, but the pressure and temperature are such that the water does not boil; instead it reaches a supercritical state. The water circulates in a simple cooling circuit and is fed directly into the turbine. Supercritical-water-cooled Reactor © BASE How do supercritical-water-cooled reactors work? The supercritical-water-cooled reactor is a nuclear reactor that uses supercritical water as a working medium. The water is always in a supercritical state, i.e. it has a temperature of over 374°C and a pressure of at least 221 bar. No phase transitions take place above this point, known as the ‘critical point’ of water, which means that the water will no longer boil or condense. The structure of the reactor corresponds to that of a boiling water reactor . The water in the reactor core is heated in a simple cooling circuit, and then fed directly into the turbine. Unlike in a boiling water reactor , the water does not vaporise in supercritical state. The coolant has a higher density and can, thus, absorb the heat more efficiently and transport it away from the core. The core temperature is higher than that of boiling and pressurised water reactors, and the pressure is significantly higher than that of pressurised water reactors (usually a maximum of 160 bar). What are the advantages and disadvantages of a reactor cooled with supercritical water? The design of the reactor is simple and the efficiency is high (up to 45 % ). The special neutron spectrum of the supercritical light water reactor has fast neutrons as well as thermal neutrons. These cause long-lived radionuclides to be transmuted into shorter-lived ones, meaning that the spent nuclear fuel will radiate for less time. One disadvantage is that, similar to the boiling water reactor , the turbine gets radioactively contaminated through direct contact with the cooling water in the primary circuit. The pressure in the circuit ( approx. 250 bar) is very high, which is why the reactor pressure vessel and all other components of the primary circuit have to be thicker and more stable than in conventional light water reactors. Due to the high pressure, damage to the primary circuit also poses an increased risk . Development status of reactors cooled with supercritical water The operation of coal-fired power plants with supercritical water was first trialled in the 1950s and is now standard in new construction projects. Research into the transfer of the concept to nuclear technology has been intensified since the 1990s. However, materials used in modern coal-fired power plants do not have sufficient corrosion resistance for use in the nuclear sector. Further relevant research and development into cladding and structural materials and safety functions is needed. At present, the most advanced designs come from China, the EU , Japan, Canada, Korea, Russia and the US. On the whole, however, development is at an early stage. There are currently no plans for a prototype system. 4.) Gas-cooled Fast Reactor – (GFR) Fast neutrons are used to split the nuclear fuel in gas-cooled fast reactors. These neutrons have a higher kinetic energy than the thermal neutrons used in light water reactors. Similar to high-temperature reactors, helium is used as a coolant. This facilitates particularly high outlet temperatures and increased efficiency compared to conventional light water reactors. Gas-cooled Fast Reactor © BASE How does a gas-cooled fast reactor work? The design of the reactor is similar to that of a classic pressurised water reactor (light water reactor). But instead of water, helium (other gases are also conceivable) is used as a coolant. Uranium, thorium, plutonium or compounds thereof are used as fuel. Unlike high-temperature reactors, which work with moderated thermal neutrons like conventional light water reactors, the fuel in fast reactors is split with fast neutrons. This means that the use of a moderator is not necessary. The high operating temperature of around 850°C yields high efficiencies or can be utilised as process heat for industrial processes. What are the advantages and disadvantages of gas-cooled fast reactors? The envisaged design of the reactor is relatively simple, and there is no need for a moderator at all. The use of unmoderated neutrons leads to transmutation, resulting in less long-lived nuclear waste. Moreover, helium as a coolant can be heated to very high temperatures and does not become radioactive itself. This is the drawback of fast gas-cooled reactors, as helium is not very thermally conductive, which results in increased requirements for cooling the reactor core during operation and immediately after shutdown. Due to the high temperatures, only particularly heat-resistant materials can be used. An additional stress arises from the high neutron flux. The unmoderated fast neutrons are more difficult to shield and can penetrate further into materials than moderated neutrons. This impairs the service life of these materials. Development status of gas-cooled fast reactors Work on the fast gas-cooled reactor concept has been ongoing in the US and Germany since the 1960s, and later also in the UK and Japan. Since the 2000s, research has primarily been driven by France. So far, however, no helium-cooled fast reactor has been built and operated. Extensive research and development are still required, particularly to find suitable fuels and cladding and structural materials for the high-temperature design . In addition, many questions regarding the necessary safety systems and the safety and reliability of operation in general remain unanswered. Generally speaking, development is still at the applied research stage, with no existing prototype designs. Commercial utilisation for power generation or industrial applications is not foreseeable. 5.) Sodium-cooled Fast Reactor – (SFR) In sodium-cooled fast reactors, the nuclear fuel is split using fast neutrons. The reactor core is located in a cooling pool (so-called pool design), which is filled with liquid sodium. A secondary sodium circuit absorbs the heat from the primary sodium pool and conducts it out of the reactor vessel for use in power generation. Sodium-cooled Fast Reactor © BASE How does the sodium-cooled fast reactor work? The reactor core containing the fuel is located in a pool-type container filled with liquid sodium. Sodium is used for its high thermal capacity and good conductivity. Sodium does not boil during operation, so there is no elevated pressure in the reactor vessel. A heat exchanger inside the reactor vessel transfers the heat from the main circuit sodium to a secondary circuit, which also contains liquid sodium. From this secondary circuit, the heat is transferred to a water-bearing tertiary circuit that drives a turbine to generate electricity. In contrast to many other reactor concepts, fast reactors use unmoderated fast neutrons. They can produce additional fissile material from non-fissile isotopes such as uranium -238 or thorium-232 during breeding reactions. Following reprocessing , the fissile material produced in this way can be used as nuclear fuel . Another promise is the reduction of long-lived nuclear waste through transmutation, provided the reactor and fuel production are designed accordingly. What are the advantages and disadvantages of sodium-cooled fast reactors? Thanks to its excellent heat capacity, sodium can completely absorb the decay heat of the fuel elements even without circulation. If, for example, the cooling system should fail due to a power failure, a core meltdown would be passively prevented. In the event of a leak, less coolant will escape as the primary and secondary circuits operate without pressure. This should result in advantages in terms of safety. However, specific accident risks such as sodium leaks and fires must be considered. In the event of a coolant leak, it is necessary to prevent the highly reactive sodium from coming into contact with water and oxygen. This requires additional safety barriers . The system is complex and comparatively expensive, not least because it requires three cooling circuits. Earlier decades saw the possibility of incubating additional fuel in reactors (breeder reaction) as an advantage in some cases. However, due to the quantity of uranium deposits worldwide, there were no major economic advantages to such an application. In addition, depending on the configuration, weapons-grade plutonium is incubated in the reactor. This increases the risk of proliferation of nuclear weapons-grade material. With regard to the transmutation of long-lived waste materials, it must be noted that no such application has yet been developed to operational maturity. According to the current state of research , it would not be possible to transmute all of the radioactive waste . In addition, new fission products would be produced. This would therefore not be an advantage for the final storage strategy pursued in Germany, for example. Development status of sodium-cooled fast reactors The sodium-cooled fast reactor was one of the first reactor concepts in the early days of civil nuclear energy utilisation. Sodium-cooled breeder reactors were and are in operation in several countries. One such experimental facility, the KNK -II, was operated at the German research centre in Karlsruhe from 1977 to 1991. The Kalkar nuclear power plant, which was based on the same technology, was never put into operation due to safety concerns. Three fast sodium-cooled reactors are currently in commercial operation in Russia and China, and others are under construction in both countries and in India. Research and development of reactor concepts for this technology line is ongoing in a large number of countries around the world. The "Generation IV International Forum" has given top priority to this development project. The plan is to press ahead with the development of an advanced fast sodium-cooled reactor with the option of transmuting particularly long-lived waste materials, and to move on to a trial phase in the 2020s. China, EURATOM , France, Japan, Korea, Russia and the USA are contributing to the research and development work. 6.) Lead-cooled Fast Reactor – (LFR) The lead-cooled fast reactor is based on nuclear fission using fast neutrons. Lead or a lead-bismuth alloy is used as the coolant. The primary circuit is designed to allow the liquid metal to circulate by natural convection. This means that there is no need for circulation pumps on the primary side. Electricity is generated by a turbine powered in the secondary circuit. Lead-cooled Fast Reactor © BASE How does the lead-cooled fast reactor work? The reactor has a pool design , which means that the reactor core is located in a pool-shaped container. The pool is filled with the coolant, which is either liquid lead or a lead-bismuth alloy. The metallic coolant does not boil during operation, meaning that normal pressure prevails in the reactor vessel. The heating and cooling processes in the various zones of the reactor vessel allow the coolant to circulate naturally without the need for pumps. A heat exchanger transfers the heat to a secondary circuit where a turbine is run to generate electricity. Depending on the design , the fast neutrons used in the reactor can incubate additional fuel (breeding reaction) or potentially cause a reduction in long-lived waste materials through transmutation. What are the advantages and disadvantages of lead-cooled fast reactors? Like other fast reactors, the lead-cooled fast reactor can be used to incubate additional fuel or to convert long-lived waste material into shorter-lived or stable material by means of transmutation. The reactor core can be designed in such a way that the amount of heat generated per volume is relatively low. The lead alloy can dissipate all of the heat via an automatically adjusted circulation system; no primary circuit pumps are needed. The primary circuit also operates completely without pressure. In addition, lead has very good shielding properties against the ionising radiation emitted by the fuel. One disadvantage of the system is that the lead-bismuth alloy must always be kept at temperatures above its melting point (min. 123 °C ). If not, it will solidify and the entire reactor will become unusable. The coolant must also be filtered at great expense. Lead and bismuth have very high densities, so the system requires stronger structures due to the enormous weight. Bismuth is also very rare and expensive. Development status of lead-cooled fast reactors A research project on lead-cooled fast reactors was already underway in the USA in the 1940s, but was discontinued in 1950. In the Soviet Union, reactors of this type were developed to power submarines, and were used until 1996. The 1990s/2000s witnessed a renewed interest in exploring the concept. Research and development projects are underway in the USA, China, Russia, South Korea and the EU, among others. Problems that still remain unresolved include the minimisation of corrosion and erosion risks due to the liquid metal circulating in the primary circuit and the filtration of the coolant. How does the high-temperature reactor work? High-temperature reactor concepts use helium gas as a coolant instead of water. This allows the reactor to operate at lower pressure, making it more controllable at extremely high temperatures compared to conventional light water reactors. Uranium oxide or carbide is predominantly used as fuel. The fuel comes in small pellets that are encased in a protective shell. The pellets, in turn, are embedded in spheres or prismatic blocks of graphite, which serves as a moderator. These spheres or blocks represent the fuel elements. Coolant flows around them and absorbs the heat generated during the nuclear reaction. This heat can be used, for example, to heat water and drive a steam turbine. Advantages and disadvantages of high-temperature reactors? In addition to an increased efficiency and the generation of process heat at high temperatures, high-temperature reactors offer further advantages over conventional reactors. The design of the fuel elements and the helium cooling offer improved safety features. This means that additional safety systems can be used, some of which are not available in water-cooled reactors. Due to its design, the high-temperature reactor has a relatively low output in relation to the total volume of the reactor core. A core meltdown can, therefore, be ruled out. If the plant is suitably designed, natural uranium , thorium, plutonium or mixed oxides can also be used as fuel in addition to enriched uranium . However, the technology also has major disadvantages. The high temperature and the helium coolant pose a challenge in terms of selecting suitable materials. Gas-cooled reactors also often exhibit problems such as uneven cooling, high abrasion and dust formation as well as an increased risk of fire in the event of water or air ingress. This can lead to the release of radioactive substances . Due to the high content of radioactive graphite, the final disposal of spent fuel elements is estimated to be significantly more cost-intensive compared to conventional fuel elements. Development status of high-temperature reactors Gas-cooled high-temperature reactors have been the subject of research since the 1960s. Prototype plants based on this concept (the pebble bed reactors in Jülich and Hamm-Uentrop) were also developed in Germany. At the end of the 1980s, both plants were shut down due to various technical problems, and the technology was gradually abandoned in Germany. Other high-temperature reactor projects have been and continue to be developed in the UK, the USA , Japan and France, among others. A project in South Africa, which was based on AVR Jülich technology, was paused indefinitely due to technical difficulties and a lack of funding in 2010. A high-temperature experimental reactor, the HTR-10, which is also based on the pebble bed design , has been in operation in the People's Republic of China since 2003. Two further high-temperature reactors of the HTR-PM type there reached criticality as demonstration plants in autumn 2021. A similar project in the USA was discontinued before a prototype reactor was even built, but research on the high-temperature reactor concept is ongoing there. A general trend towards moderately high operating temperatures of 700-850°C can be observed in current developments. To date, there is no high-temperature reactor for commercial power generation in operation. How does the molten salt reactor work? The fuel is a mix of molten salts (fluorides and chlorides). The concentration of the fissile fuel can be adjusted very accurately via the selection of the salts and their mixing ratio. This allows the production of the exact concentration required to maintain a stable chain reaction. The temperatures in the molten salt are approx. 600-700°C. Controlled nuclear reactions that generate heat take place inside the reactor. This heat can be used to heat water vapour and power a turbine for electricity generation. What are the advantages and disadvantages of molten salt reactors? The safety concept of molten salt reactors is based on basic physico-chemical properties and requires less active safety technology than conventional light water reactors, for example. A central feature of the safety concept is to drain the molten salt into designated containers in the event of malfunctions, thus preventing any further chain reaction. In addition, molten salt reactors can integrate what is known as chemical treatment. The fission products and the composition of the fission products , the fuel and the salt mixture used can be optimised during operation in an additional system in the primary circuit (fuel processing system). In contrast to light water reactors, there is no increased pressure in the primary circuit of a molten salt reactor, which means that some accident scenarios can be ruled out. A major disadvantage of the molten salt reactor is the increased corrosion inside the pipe systems. The hot fuel-salt mix corrodes the metals in the reactor, thus limiting their service life. This problem is also the subject of current research and an important reason why, to date, molten salt reactors only exist as research or pilot plants. Some concepts for molten salt reactors advertise the fact that they can also recycle radioactive waste . The idea is that so-called transuranium elements, which are produced in the reactor during nuclear fission , as well as individual long-lived fission products can be specifically converted, i.e. transmuted. This has not yet been developed to the point where it is ready for use. According to the current state of research , however, it would not be possible to convert all of the radioactive waste . New fission products would also be generated. There would, thus, be no advantage in terms of the final storage strategy pursued in Germany. Depending on the specific design of the molten salt reactor concept, radioactive residues would be produced that differ from those of previous light water reactors. The entire disposal chain would have to be adapted, from the development of suitable conditioning processes and new containers to the requirements for interim and final storage of the radioactive residues. Development status of molten salt reactors Molten salt reactors were last operated in the USA in the 1950s and 1960s in the form of two experimental reactors. Research into the further development of this technology is currently underway in several countries. This research is at very different stages and includes concept studies as well as theoretical and experimental preliminary work. The development of an experimental reactor in China (TMSR-LF1) is the most advanced such concept. The commissioning of this reactor, which has been under construction since 2018, was approved by the Chinese authorities in summer 2022. How do supercritical-water-cooled reactors work? The supercritical-water-cooled reactor is a nuclear reactor that uses supercritical water as a working medium. The water is always in a supercritical state, i.e. it has a temperature of over 374°C and a pressure of at least 221 bar. No phase transitions take place above this point, known as the ‘critical point’ of water, which means that the water will no longer boil or condense. The structure of the reactor corresponds to that of a boiling water reactor . The water in the reactor core is heated in a simple cooling circuit, and then fed directly into the turbine. Unlike in a boiling water reactor , the water does not vaporise in supercritical state. The coolant has a higher density and can, thus, absorb the heat more efficiently and transport it away from the core. The core temperature is higher than that of boiling and pressurised water reactors, and the pressure is significantly higher than that of pressurised water reactors (usually a maximum of 160 bar). What are the advantages and disadvantages of a reactor cooled with supercritical water? The design of the reactor is simple and the efficiency is high (up to 45 % ). The special neutron spectrum of the supercritical light water reactor has fast neutrons as well as thermal neutrons. These cause long-lived radionuclides to be transmuted into shorter-lived ones, meaning that the spent nuclear fuel will radiate for less time. One disadvantage is that, similar to the boiling water reactor , the turbine gets radioactively contaminated through direct contact with the cooling water in the primary circuit. The pressure in the circuit ( approx. 250 bar) is very high, which is why the reactor pressure vessel and all other components of the primary circuit have to be thicker and more stable than in conventional light water reactors. Due to the high pressure, damage to the primary circuit also poses an increased risk . Development status of reactors cooled with supercritical water The operation of coal-fired power plants with supercritical water was first trialled in the 1950s and is now standard in new construction projects. Research into the transfer of the concept to nuclear technology has been intensified since the 1990s. However, materials used in modern coal-fired power plants do not have sufficient corrosion resistance for use in the nuclear sector. Further relevant research and development into cladding and structural materials and safety functions is needed. At present, the most advanced designs come from China, the EU , Japan, Canada, Korea, Russia and the US. On the whole, however, development is at an early stage. There are currently no plans for a prototype system. How does a gas-cooled fast reactor work? The design of the reactor is similar to that of a classic pressurised water reactor (light water reactor). But instead of water, helium (other gases are also conceivable) is used as a coolant. Uranium, thorium, plutonium or compounds thereof are used as fuel. Unlike high-temperature reactors, which work with moderated thermal neutrons like conventional light water reactors, the fuel in fast reactors is split with fast neutrons. This means that the use of a moderator is not necessary. The high operating temperature of around 850°C yields high efficiencies or can be utilised as process heat for industrial processes. What are the advantages and disadvantages of gas-cooled fast reactors? The envisaged design of the reactor is relatively simple, and there is no need for a moderator at all. The use of unmoderated neutrons leads to transmutation, resulting in less long-lived nuclear waste. Moreover, helium as a coolant can be heated to very high temperatures and does not become radioactive itself. This is the drawback of fast gas-cooled reactors, as helium is not very thermally conductive, which results in increased requirements for cooling the reactor core during operation and immediately after shutdown. Due to the high temperatures, only particularly heat-resistant materials can be used. An additional stress arises from the high neutron flux. The unmoderated fast neutrons are more difficult to shield and can penetrate further into materials than moderated neutrons. This impairs the service life of these materials. Development status of gas-cooled fast reactors Work on the fast gas-cooled reactor concept has been ongoing in the US and Germany since the 1960s, and later also in the UK and Japan. Since the 2000s, research has primarily been driven by France. So far, however, no helium-cooled fast reactor has been built and operated. Extensive research and development are still required, particularly to find suitable fuels and cladding and structural materials for the high-temperature design . In addition, many questions regarding the necessary safety systems and the safety and reliability of operation in general remain unanswered. Generally speaking, development is still at the applied research stage, with no existing prototype designs. Commercial utilisation for power generation or industrial applications is not foreseeable. How does the sodium-cooled fast reactor work? The reactor core containing the fuel is located in a pool-type container filled with liquid sodium. Sodium is used for its high thermal capacity and good conductivity. Sodium does not boil during operation, so there is no elevated pressure in the reactor vessel. A heat exchanger inside the reactor vessel transfers the heat from the main circuit sodium to a secondary circuit, which also contains liquid sodium. From this secondary circuit, the heat is transferred to a water-bearing tertiary circuit that drives a turbine to generate electricity. In contrast to many other reactor concepts, fast reactors use unmoderated fast neutrons. They can produce additional fissile material from non-fissile isotopes such as uranium -238 or thorium-232 during breeding reactions. Following reprocessing , the fissile material produced in this way can be used as nuclear fuel . Another promise is the reduction of long-lived nuclear waste through transmutation, provided the reactor and fuel production are designed accordingly. What are the advantages and disadvantages of sodium-cooled fast reactors? Thanks to its excellent heat capacity, sodium can completely absorb the decay heat of the fuel elements even without circulation. If, for example, the cooling system should fail due to a power failure, a core meltdown would be passively prevented. In the event of a leak, less coolant will escape as the primary and secondary circuits operate without pressure. This should result in advantages in terms of safety. However, specific accident risks such as sodium leaks and fires must be considered. In the event of a coolant leak, it is necessary to prevent the highly reactive sodium from coming into contact with water and oxygen. This requires additional safety barriers . The system is complex and comparatively expensive, not least because it requires three cooling circuits. Earlier decades saw the possibility of incubating additional fuel in reactors (breeder reaction) as an advantage in some cases. However, due to the quantity of uranium deposits worldwide, there were no major economic advantages to such an application. In addition, depending on the configuration, weapons-grade plutonium is incubated in the reactor. This increases the risk of proliferation of nuclear weapons-grade material. With regard to the transmutation of long-lived waste materials, it must be noted that no such application has yet been developed to operational maturity. According to the current state of research , it would not be possible to transmute all of the radioactive waste . In addition, new fission products would be produced. This would therefore not be an advantage for the final storage strategy pursued in Germany, for example. Development status of sodium-cooled fast reactors The sodium-cooled fast reactor was one of the first reactor concepts in the early days of civil nuclear energy utilisation. Sodium-cooled breeder reactors were and are in operation in several countries. One such experimental facility, the KNK -II, was operated at the German research centre in Karlsruhe from 1977 to 1991. The Kalkar nuclear power plant, which was based on the same technology, was never put into operation due to safety concerns. Three fast sodium-cooled reactors are currently in commercial operation in Russia and China, and others are under construction in both countries and in India. Research and development of reactor concepts for this technology line is ongoing in a large number of countries around the world. The "Generation IV International Forum" has given top priority to this development project. The plan is to press ahead with the development of an advanced fast sodium-cooled reactor with the option of transmuting particularly long-lived waste materials, and to move on to a trial phase in the 2020s. China, EURATOM , France, Japan, Korea, Russia and the USA are contributing to the research and development work. How does the lead-cooled fast reactor work? The reactor has a pool design , which means that the reactor core is located in a pool-shaped container. The pool is filled with the coolant, which is either liquid lead or a lead-bismuth alloy. The metallic coolant does not boil during operation, meaning that normal pressure prevails in the reactor vessel. The heating and cooling processes in the various zones of the reactor vessel allow the coolant to circulate naturally without the need for pumps. A heat exchanger transfers the heat to a secondary circuit where a turbine is run to generate electricity. Depending on the design , the fast neutrons used in the reactor can incubate additional fuel (breeding reaction) or potentially cause a reduction in long-lived waste materials through transmutation. What are the advantages and disadvantages of lead-cooled fast reactors? Like other fast reactors, the lead-cooled fast reactor can be used to incubate additional fuel or to convert long-lived waste material into shorter-lived or stable material by means of transmutation. The reactor core can be designed in such a way that the amount of heat generated per volume is relatively low. The lead alloy can dissipate all of the heat via an automatically adjusted circulation system; no primary circuit pumps are needed. The primary circuit also operates completely without pressure. In addition, lead has very good shielding properties against the ionising radiation emitted by the fuel. One disadvantage of the system is that the lead-bismuth alloy must always be kept at temperatures above its melting point (min. 123 °C ). If not, it will solidify and the entire reactor will become unusable. The coolant must also be filtered at great expense. Lead and bismuth have very high densities, so the system requires stronger structures due to the enormous weight. Bismuth is also very rare and expensive. Development status of lead-cooled fast reactors A research project on lead-cooled fast reactors was already underway in the USA in the 1940s, but was discontinued in 1950. In the Soviet Union, reactors of this type were developed to power submarines, and were used until 1996. The 1990s/2000s witnessed a renewed interest in exploring the concept. Research and development projects are underway in the USA, China, Russia, South Korea and the EU, among others. Problems that still remain unresolved include the minimisation of corrosion and erosion risks due to the liquid metal circulating in the primary circuit and the filtration of the coolant. Further information on transmutation Partitioning and transmutation

Alternative Reaktorkonzepte

Alternative Reaktorkonzepte Weltweit wird derzeit an verschiedenen Reaktorkonzepten gearbeitet, die als zukünftige Alternativen zu herkömmlichen Atomkraftwerken gesehen werden. Ein vom BASE in Auftrag gegebenes Gutachten analysiert den Entwicklungsstand, die Sicherheit und den regulatorischen Rahmen der Konzepte. Studie zu alternativen Reaktorkonzepten Im Auftrag des BASE wurden im Rahmen eines Forschungsvorhabens aktuelle Entwicklungen von alternativen Reaktorkonzepten, die sich wesentlich von Leichtwasserreaktoren unterscheiden, untersucht. In dieser Studie wird der Begriff „sogenannte ‚neuartige‘ Reaktorkonzepte“ verwendet. International werden seit Jahrzehnten alternative Reaktorkonzepte diskutiert, erforscht und entwickelt. Sie werden oft unter Sammelbegriffen wie „Reaktoren der 4. Generation“, „neuartige Reaktorkonzepte“ oder auch mit der englischen Bezeichnung „advanced reactors“ („fortgeschrittene Reaktoren“) zusammengefasst. Diese alternativen Reaktoren sollen sich dadurch auszeichnen, dass sie deutlich günstiger Strom bereitstellen können als herkömmliche Atomkraftwerke , gegenüber herkömmlichen Atomkraftwerken sicherer sind, in der Lage sein sollen, neue Kernbrennstoffe zu erbrüten, in der Lage sein sollen, radioaktiven Abfall zu verwerten, weniger Abfallstoffe erzeugen, weniger geeignet zur Erzeugung von Spaltstoffen für Atomwaffen sind. Doch werden die alternativen Reaktorkonzepte den Erwartungen gerecht? Das BASE hat dazu eine wissenschaftliche Studie erstellt, das dieser Fragestellung nachgeht und den Entwicklungsstand, die Sicherheit und den regulatorischen Rahmen der Konzepte analysiert und bewertet. Hier finden Sie die Zusammenfassung der Studienergebnisse . Historische Entwicklung Bereits seit den 1940er und 1950er Jahren wurde an einer Vielzahl verschiedener Reaktorkonzepte geforscht, die auf der Verwendung unterschiedlicher Kernbrennstoffe , Kühlmittel, Moderator -Materialien und Neutronenspektren beruhen. Industriell durchsetzen konnten sich vor allem die Leichtwasserreaktoren, zu denen auch die in Deutschland betriebenen Druck- und Siedewasserreaktoren gehören. Etwa 90% der weltweiten Leistung von Atomkraftwerken wird derzeit von Leichtwasserreaktoren erbracht. Entwicklung alternativer Reaktorkonzepte Da auch Leichtwasserreaktoren Mängel hinsichtlich ihrer Sicherheit, Brennstoffausnutzung, Wirkungsgrad und Wirtschaftlichkeit aufweisen, steigt seit einiger Zeit wieder das Interesse an alternativen Konzepten. Sie werden häufig als neuartige Reaktoren bezeichnet, beruhen zum Teil aber auf Designs, die sich bereits seit vielen Jahrzehnten in der Entwicklung befinden und bislang keine kommerziell konkurrenzfähigen Baulinien hervorbringen konnten. Im vom BASE beauftragten Gutachten wird aus diesem Grund der Begriff „sogenannte ‚neuartige‘ Reaktorkonzepte“ verwendet. Das Generation IV International Forum Seit 2001 werden Bestrebungen zur Entwicklung alternativer Reaktorkonzepte international im „Generation IV International Forum“ (GIF) koordiniert. Ziel ist es, zeitnah einsatzfähige Kernreaktoren alternativer Technologielinien hervorzubringen, die verbesserte Eigenschaften aufweisen. Es werden sechs verschiedene Technologielinien verfolgt: Hochtemperaturreaktor (Very High Temperature Reactor, VHTR) Salzschmelzereaktor (Molten Salt Reactor, MSR) Mit superkritischem Wasser gekühlter Reaktor (Supercritical-water-cooled Reactor, SCWR) Gasgekühlter Schneller Reaktor (Gas-cooled Fast Reactor, GFR) Natriumgekühlter Schneller Reaktor (Sodium-cooled Fast Reactor, SFR) Bleigekühlter Schneller Reaktor (Lead-cooled Fast Reactor, LFR) Außerhalb des Arbeitsfeldes des GIF befinden sich weitere Konzepte in Entwicklung, so zum Beispiel: Beschleunigergetriebener unterkritischer Reaktor (Accelerator-driven Systems, ADS) Alternative Technologielinien 1.) Hochtemperaturreaktor (Very High Temperature Reactor – VHTR) Während die meisten herkömmlichen Reaktoren (so auch die in Deutschland betriebenen Leichtwasserreaktoren) das verwendete Kühlmedium Wasser auf Temperaturen von etwa 300 °C erhitzen, arbeiten einige Reaktortypen bei deutlich höheren Temperaturen. Das Konzept des Hochtemperaturreaktors sieht vor, Temperaturen von 750 °C bis über 1000 °C zu erreichen. Diese hohen Temperaturen ermöglichen zum einen deutlich höhere Wirkungsgrad e als bei anderen Reaktortypen, also eine verbesserte Ausbeute bei der Umwandlung von Wärme in elektrischen Strom. Zum anderen kann die Wärme alternativ für bestimmte Industrieprozesse wie die Produktion von Wasserstoff genutzt werden. Schematische Darstellung eines Hochtemperaturreaktors © BASE Wie funktioniert der Hochtemperaturreaktor? Anstelle von Wasser sehen Hochtemperaturreaktor-Konzepte das Gas Helium als Kühlmittel vor. Dadurch kann der Reaktor bei niedrigerem Druck arbeiten und ist so bei extrem hohen Temperaturen besser beherrschbar als herkömmliche Leichtwasserreaktoren. Als Brennstoff kommt überwiegend Uranoxid oder -carbid zum Einsatz. Der Brennstoff liegt in Form kleiner Kügelchen vor, die mit einer Schutzhülle umgeben sind. Die Kügelchen wiederum sind eingelassen in Kugeln oder prismatische Blöcke aus Graphit, welches als Moderator dient. Diese Kugeln bzw. Blöcke stellen die Brennelemente dar. Sie werden vom Kühlmittel umströmt, welches die in der Kernreaktion entstehende Wärme abtransportiert. Diese Wärme kann zum Beispiel genutzt werden, um Wasser zu erhitzen und damit eine Dampfturbine anzutreiben. Was sind die Vor- und Nachteile von Hochtemperaturreaktoren? Neben dem erhöhten Wirkungsgrad und der Bereitstellung von Prozesswärme mit hohen Temperaturen bieten Hochtemperaturreaktoren weitere Vorteile gegenüber herkömmlichen Reaktoren. Das Design der Brennelemente und die Heliumkühlung weisen verbesserte Sicherheitsmerkmale auf. So lassen sich zusätzliche Sicherheitssysteme einsetzen, welche bei wassergekühlten Reaktoren zum Teil nicht zur Verfügung stehen. Konstruktionsbedingt weist der Hochtemperaturreaktor im Verhältnis zum Gesamtvolumen des Reaktorkerns eine relativ geringe Leistung auf, eine Kernschmelze gilt damit als ausgeschlossen. Neben angereichertem Uran können bei geeigneter Auslegung der Anlage auch Natururan, Thorium, Plutonium oder Mischoxide als Brennstoff verwendet werden. Die Technologie bringt jedoch auch große Nachteile mit sich. Die hohe Temperatur und das Kühlmittel Helium stellen eine Herausforderung für die Auswahl einsetzbarer Materialien dar. Gasgekühlte Reaktoren weisen zudem oftmals Probleme wie eine ungleichmäßige Kühlung, hohen Abrieb und Staubbildung sowie eine erhöhte Brandgefahr bei Wasser- oder Lufteintritt auf, infolgedessen es wiederum zur Freisetzung von radioaktiven Stoffen kommen kann. Die Endlagerung der abgebrannten Brennelemente wird aufgrund des hohen Anteils an radioaktivem Graphit im Vergleich zu herkömmlichen Brennelementen als deutlich kostenintensiver eingeschätzt. Entwicklungsstand von Hochtemperaturreaktoren Gasgekühlte Hochtemperaturreaktoren werden bereits seit den 1960er Jahren erforscht. Mit den Kugelhaufenreaktoren in Jülich und Hamm-Uentrop wurden auch in Deutschland Prototypanlagen nach diesem Konzept entwickelt. Ende der 1980er Jahre wurden beide Anlagen aufgrund diverser technischer Probleme abgeschaltet und die Technologie in Deutschland sukzessvive aufgegeben. Weitere Hochtemperaturreaktor-Projekte gab und gibt es unter anderem in Großbritannien, den USA , Japan und Frankreich. Ein Projekt in Südafrika, das auf der Technik des AVR Jülich basierte, wurde 2010 wegen technischer Schwierigkeiten und mangelnder Finanzierung auf unbestimmte Zeit pausiert. Seit 2003 ist in der Volksrepublik China ein Hochtemperatur-Versuchsreaktor in Betrieb, der ebenfalls auf dem Kugelhaufen-Design beruhende HTR-10. Im Herbst 2021 erreichten dort zwei weitere Hochtemperaturreaktoren des Typs HTR-PM als Demonstrationsanlagen Kritikalität . Ein ähnliches Projekt in den USA wurde vor der Realisierung eines Demonstrationsreaktors eingestellt, am Konzept des Hochtemperaturreaktors wird dort aber weiter geforscht. Bei den aktuellen Entwicklungen ist ein genereller Trend hin zu moderat hohen Betriebstemperaturen von 700-850 °C zu beobachten. Bis heute ist keine Anlage des Typs Hochtemperaturreaktor zur kommerziellen Stromerzeugung in Betrieb. 2.) Salzschmelzereaktor (Molten Salt Reactor – MSR) Üblicherweise werden in Kernreaktoren Brennstoffe in fester Form als sogenannte Brennstäbe verwendet. In Salzschmelzereaktoren liegt der Brennstoff dagegen als geschmolzenes Salz vor, das durch den Reaktor gepumpt wird. Ein Reaktordesign, das meist zu den Salzschmelzereaktoren gezählt wird, ist der Dual-Fluid-Reaktor . Teilweise werden Salzschmelzereaktoren auch als Flüssigsalzreaktoren bezeichnet. Schematische Darstellung eines Salzschmelzereaktors © BASE Wie funktioniert der Salzschmelzereaktor? Der Brennstoff ist Bestandteil einer Mischung geschmolzener Salze (Fluoride und Chloride). Durch die Auswahl der Salze und deren Mischungsverhältnis lässt sich die Konzentration des spaltbaren Brennstoffes sehr präzise einstellen. So kann genau die Konzentration hergestellt werden, die für die Aufrechterhaltung einer stabilen Kettenreaktion notwendig ist. Die Temperaturen in der Salzschmelze betragen ca. 600-700 °C. Im Inneren des Reaktors kommt es zu kontrollierten Kernreaktionen, die Wärme produzieren. Mit dieser Wärme kann Wasserdampf erhitzt und damit eine Turbine zur Stromerzeugung angetrieben werden. Was sind die Vor- und Nachteile von Salzschmelzereaktoren? Das Sicherheitskonzept von Salzschmelzereaktoren basiert auf grundlegenden physikalisch-chemischen Eigenschaften und kommt mit weniger aktiver Sicherheitstechnik als beispielsweise herkömmliche Leichtwasserreaktoren aus. Zentraler Bestandteil des Sicherheitskonzepts ist, die flüssige Salzschmelze bei Störungen des Betriebs in vorgesehene Behältnisse abfließen zu lassen, in denen eine weitere Kettenreaktion nicht möglich ist. Außerdem können Salzschmelzereaktoren eine sogenannte chemische Aufbereitung integrieren. In einer zusätzlichen Anlage im Primärkreis (Brennstoffbearbeitungsanlage) können dabei die Spaltprodukte und die Zusammensetzung der Spaltprodukte , des Brennstoffs und des eingesetzten Salzgemisches im laufenden Betrieb optimiert werden. Im Gegensatz zu Leichtwasserreaktoren herrscht im Primärkreislauf eines Salzschmelzereaktors kein erhöhter Druck, wodurch einige Unfallszenarien ausgeschlossen werden können. Ein großer Nachteil des Salzschmelzereaktors ist die erhöhte Korrosion im Inneren der Rohrsysteme. Das heiße Brennstoff-Salz-Gemisch greift die Metalle des Reaktors an, sodass deren Lebensdauer eingeschränkt ist. Diese Problematik ist auch Bestandteil aktueller Forschung und ein wichtiger Grund, warum Salzschmelzereaktoren zurzeit nur als Forschungs- oder Pilotanlagen existieren. Einige Konzepte für Salzschmelzereaktoren werben damit, dass sie auch radioaktiven Abfall verwerten könnten. Damit sollen sogenannte Transurane, die im Reaktor bei der Kernspaltung entstehen, sowie auch einzelne langlebige Spaltprodukte gezielt umgewandelt, also transmutiert werden können. Dies konnte bisher nicht zur Einsatzreife entwickelt werden. Nach derzeitigem Forschungsstand wäre es jedoch nicht möglich, sämtliche dieser radioaktiven Abfälle umzuwandeln. Zudem würden neue Spaltprodukte entstehen. Ein Vorteil für die in Deutschland verfolgte Endlagerstrategie ergäbe sich daher nicht. Abhängig von der konkreten Ausgestaltung des Konzepts eines Salzschmelzereaktors würden von bisherigen Leichtwasserreaktoren abweichende radioaktive Reststoffe entstehen. Die gesamte Entsorgungskette müsste angepasst werden, von der Entwicklung geeigneter Konditionierung sverfahren und neuer Behälter bis hin zu den Anforderungen an eine Zwischen- und Endlagerung der radioaktiven Reststoffe. Entwicklungsstand von Salzschmelzereaktoren Salzschmelzereaktoren wurden in Form zweier Experimentalreaktoren zuletzt in den 1950er und 1960er Jahren in den USA betrieben. Aktuell wird in mehreren Ländern an der Weiterentwicklung dieser Technologie geforscht. Die Forschungsarbeiten finden sich in sehr unterschiedlichen Stadien und umfassen Konzeptstudien sowie theoretische und experimentelle Vorarbeiten. Am weitesten vorangeschritten ist die Entwicklung eines Experimentalreaktors in China (TMSR-LF1). Die Inbetriebnahme dieses seit 2018 erbauten Reaktors wurde im Sommer 2022 durch die chinesischen Behörden genehmigt. Ein Reaktordesign, das meist zu den Salzschmelzereaktoren gezählt wird, ist der Dual-Fluid-Reaktor . 3.) Mit superkritischem Wasser gekühlter Reaktor (Supercritical-water-cooled Reactor – SCWR) Der mit superkritischem Wasser gekühlte Reaktor ist aufgebaut wie ein Siedewasserreaktor , allerdings sind Druck und Temperatur so hoch, dass das Wasser nicht siedet; es befindet sich im sogenannten superkritischen (oder auch überkritischen) Zustand. Das Wasser zirkuliert in einem einfachen Kühlkreislauf und wird direkt in die Turbine gespeist. Schematische Darstellung eines mit superkritischem Wasser gekühlten Reaktors © BASE Wie funktioniert der mit superkritischem Wasser gekühlte Reaktor? Der mit superkritischem Wasser gekühlte Reaktor ist ein Kernreaktor, der superkritisches Wasser als Arbeitsmedium verwendet. Das Wasser befindet sich stets im superkritischen Zustand, hat also eine Temperatur von über 374 °C und einen Druck von mindestens 221 bar. Oberhalb dieses als „kritischer Punkt“ des Wassers bezeichneten Punkts finden keine Phasenübergänge statt, das heißt, das Wasser siedet und kondensiert nicht mehr. Der Aufbau des Reaktors entspricht einem Siedewasserreaktor . In einem einfachen Kühlkreislauf wird das Wasser im Reaktorkern erhitzt und anschließend direkt in die Turbine gespeist. Im superkritischen Zustand verdampft das Wasser dabei nicht, anders als beim Siedewasserreaktor . Das Kühlmittel hat somit eine höhere Dichte und kann die Wärme effizienter aufnehmen und aus dem Kern transportieren. Die Kerntemperatur ist höher als bei Siede- und Druckwasserreaktoren , der Druck liegt deutlich höher als bei Druckwasserreaktoren (dort in der Regel maximal 160 bar). Was sind die Vor- und Nachteile des mit superkritischem Wasser gekühlten Reaktors? Der Aufbau des Reaktors ist einfach und der Wirkungsgrad hoch (bis zu 45 % ). Das spezielle Neutronenspektrum des superkritischen Leichtwasserreaktors weist neben thermischen auch schnelle Neutronen auf. Durch diese findet eine Transmutation langlebiger Radionuklide in kurzlebigere statt, der abgebrannte Kernbrennstoff strahlt also weniger lang. Ein Nachteil ist, dass wie im Siedewasserreaktor die Turbine durch den direkten Kontakt mit dem Kühlwasser im Primärkreislauf radioaktiv kontaminiert wird. Der Druck im Kreislauf ist mit ca. 250 bar sehr hoch, weshalb der Reaktordruckbehälter sowie alle anderen Bauteile des Primärkreises dicker und stabiler ausgeführt werden müssen als bei herkömmlichen Leichtwasserreaktoren. Beschädigungen am Primärkreis bedeuten aufgrund des hohen Drucks auch eine erhöhte Gefahr . Entwicklungsstand von mit superkritischem Wasser gekühlten Reaktoren Der Betrieb von Kohlekraftwerken mit superkritischem Wasser wurde erstmals in den 1950er Jahren erprobt und ist heute Standard bei Neubauprojekten. Die Übertragung des Konzepts in die Kerntechnik wurde spätestens seit den 1990er Jahren intensiver beforscht. Allerdings weisen Materialien, die in modernen Kohlekraftwerken eingesetzt werden, für den Einsatz im nuklearen Bereich keine ausreichende Korrosionsbeständigkeit auf. So gibt es weiteren relevanten Forschungs- und Entwicklungsbedarf in den Bereichen Hüllrohr- und Strukturmaterialien und Sicherheitsfunktionen. Am weitesten fortgeschritten sind derzeit Designs aus China, der EU , Japan, Kanada, Korea, Russland und den USA . Die Entwicklung befindet sich aber insgesamt in einem frühen Stadium. Es ist derzeit noch keine Prototypanlage in Planung. 4.) Gasgekühlter Schneller Reaktor (Gas-cooled Fast Reactor – GFR) In Gasgekühlten Schnellen Reaktoren wird der Kernbrennstoff mithilfe schneller Neutronen gespalten. Diese haben eine höhere Bewegungsenergie als thermische Neutronen , die in Leichtwasserreaktoren verwendet werden. Ähnlich wie bei Hochtemperaturreaktoren findet dabei Helium als Kühlmittel Verwendung. Dadurch werden besonders hohe Austrittstemperaturen und ein gegenüber herkömmlichen Leichtwasserreaktoren erhöhter Wirkungsgrad ermöglicht. Schematische Darstellung eines Gasgekühlten Schnellen Reaktors © BASE Wie funktioniert der Gasgekühlte Schnelle Reaktor? Der Reaktor ist ähnlich wie ein klassischer Druckwasserreaktor ( Leichtwasserreaktor ) aufgebaut. Anstelle von Wasser wird jedoch Helium (denkbar sind auch andere Gase) als Kühlmittel verwendet. Als Brennstoff kommen Uran , Thorium, Plutonium oder Mischungen davon zum Einsatz. Anders als beim Hochtemperaturreaktor, welcher wie herkömmliche Leichtwasserreaktoren mit moderierten thermischen Neutronen arbeitet, wird der Brennstoff in schnellen Reaktoren mithilfe schneller Neutronen gespalten. Daher ist die Verwendung eines Moderator s nicht notwendig. Die hohe Arbeitstemperatur von etwa 850 °C ermöglicht hohe Wirkungsgrade oder kann als Prozesswärme für Industrieprozesse genutzt werden. Was sind die Vor- und Nachteile von Gasgekühlten Schnellen Reaktoren? Der vorgesehene Aufbau des Reaktors ist relativ einfach und auf einen Moderator kann gänzlich verzichtet werden. Durch die Verwendung von unmoderierten Neutronen kommt es zu Transmutation en, wodurch weniger langlebiger Atommüll entsteht. Außerdem kann Helium als Kühlmittel auf sehr hohe Temperaturen erhitzt werden und wird selbst nicht radioaktiv. Hier liegt auch der Nachteil der schnellen gasgekühlten Reaktoren, denn Helium ist nicht sehr wärmeleitfähig, wodurch sich erhöhte Anforderungen an die Kühlung des Reaktorkerns während des Betriebs, aber auch direkt nach Abschaltung ergeben. Aufgrund der hohen Temperaturen könnten zudem nur besonders hitzebeständige Werkstoffe zum Einsatz kommen. Eine zusätzliche Belastung entsteht durch den hohen Neutronenfluss. Die unmoderierten schnellen Neutronen sind schwieriger abzuschirmen und dringen weiter in Materialien ein als moderierte Neutronen . Dies beeinträchtigt die Lebensdauer dieser Materialien. Entwicklungsstand von Gasgekühlten Schnellen Reaktoren Arbeiten am Konzept des schnellen gasgekühlten Reaktors liefen seit den 1960er Jahren in den USA und Deutschland, später auch in Großbritannien und Japan. Seit den 2000er Jahren wird die Forschung vor allem von Frankreich vorangetrieben. Bis heute wurde allerdings noch kein heliumgekühlter Schneller Reaktor gebaut und betrieben. Insbesondere für geeignete Brennstoffe sowie Hüllrohr- und Strukturmaterialien für die Hochtemperaturauslegung muss noch umfangreiche Forschungs- und Entwicklungsarbeit geleistet werden. Auch hinsichtlich notwendiger Sicherheitssysteme sowie allgemein Sicherstellung eines zuverlässigen und sicheren Betriebs sind viele Fragen ungeklärt. Insgesamt befindet sich die Entwicklung noch im Bereich der angewandten Forschung ohne existierende Prototypdesigns. Eine kommerzielle Nutzung zur Stromerzeugung oder für industrielle Anwendungen ist nicht absehbar. 5.) Natriumgekühlter Schneller Reaktor (Sodium-cooled Fast Reactor – SFR) In Natriumgekühlten Schnellen Reaktoren wird der Kernbrennstoff mittels schneller Neutronen gespalten. Der Reaktorkern befindet sich dabei in einem Kühlbecken (sogenannte Pool-Bauweise), welches mit flüssigem Natrium gefüllt ist. Ein sekundärer Natriumkreislauf nimmt die Wärme aus dem primärseitigen Natrium-Pool auf und leitet sie zur Verwendung für die Stromerzeugung aus dem Reaktorbehälter heraus. Schematische Darstellung eines Natriumgekühlten Schnellen Reaktors © BASE Wie funktioniert der Natriumgekühlte Schnelle Reaktor? Der Reaktorkern mit dem Brennstoff befindet sich in einem beckenförmigen Behälter, welcher mit flüssigem Natrium gefüllt ist. Natrium wird wegen seiner hohen Wärmekapazität und guten Leitfähigkeit verwendet. Es siedet im Betrieb nicht, sodass kein erhöhter Druck im Reaktorbehälter herrscht. Über einen Wärmetauscher innerhalb des Reaktorbehälters wird die Wärme vom primärseitigen Natrium auf einen Sekundärkreis übertragen, in welchem ebenfalls flüssiges Natrium zirkuliert. Aus diesem Sekundärkreis wird die Wärme auf einen wasserführenden Tertiärkreis ausgekoppelt, in welchem eine Turbine zur Stromerzeugung angetrieben wird. Im Gegensatz zu vielen anderen Reaktorkonzepten kommen bei schnellen Reaktoren unmoderierte, schnelle Neutronen zum Einsatz. Sie können in Brutreaktion en zusätzliches Spaltmaterial aus nicht spaltbaren Isotopen wie Uran -238 oder Thorium-232 produzieren. Nach einer Aufarbeitung kann das so entstehende Spaltmaterial als Kernbrennstoff verwendet werden. Auch eine Reduktion der entstehenden langlebigen nuklearen Abfälle durch Transmutation wird bei entsprechender Auslegung des Reaktors und der Brennstofffertigung versprochen. Was sind die Vor- und Nachteile von Natriumgekühlten Schnellen Reaktoren? Dank seiner hohen Wärmekapazität kann das Natrium die Nachzerfallswärme der Brennelemente auch ohne Umwälzung vollständig aufnehmen. Fällt beispielsweise durch einen Stromausfall die Kühlung aus, wird somit eine Kernschmelze passiv verhindert. Im Fall eines Lecks tritt weniger Kühlmittel aus, da Primär- und Sekundärkreislauf drucklos arbeiten. Daher sollen sich hier Vorteile im Bereich Sicherheit ergeben. Allerdings müssen spezifische Störfallrisiken wie Natrium-Leckagen und -brände berücksichtigt werden. Im Fall eines Kühlmittelaustritts muss ein Kontakt des sehr reaktionsfreudigen Natriums mit Wasser und Sauerstoff unterbunden werden, dafür sind zusätzliche Sicherheitsbarrieren notwendig. Das System ist komplex und vergleichsweise teuer, nicht zuletzt da es drei Kühlkreisläufe erfordert. In früheren Jahrzehnten wurde die Möglichkeit, zusätzlichen Brennstoff in Reaktoren erbrüten zu können ( Brutreaktion ), teilweise als Vorteil gesehen. Allerdings ergaben sich aufgrund der Menge der weltweiten Uranvorkommen keine wirtschaftlichen Vorteile einer solchen Anwendung in größerem Maßstab. Außerdem wird je nach Konfiguration waffentaugliches Plutonium im Reaktor erbrütet. Dies erhöht Risiken bzgl. der Verbreitung von atomwaffenfähigem Material (Proliferation). Hinsichtlich der Transmutation langlebiger Abfallstoffe muss festgestellt werden, dass so eine Anwendung bisher nicht zur Einsatzreife entwickelt werden konnte. Nach derzeitigem Forschungsstand wäre es nicht möglich, sämtliche radioaktiven Abfälle umzuwandeln. Zudem würden neue Spaltprodukte entstehen. Ein Vorteil für die z.B. in Deutschland verfolgte Endlagerstrategie ergäbe sich daher nicht. Entwicklungsstand von Natriumgekühlten Schnellen Reaktoren Der schnelle natriumgekühlte Reaktor war eines der ersten Reaktorkonzepte aus den Anfangszeiten der zivilen Atomenergienutzung. Natriumgekühlte Brutreaktoren waren und sind in mehreren Ländern im Einsatz. Auch im deutschen Forschungszentrum Karlsruhe lief von 1977 bis 1991 mit dem KNK -II eine derartige Versuchsanlage. Das auf derselben Technologie basierende Atomkraftwerk Kalkar ging aufgrund von Sicherheitsbedenken nie in Betrieb. In Russland und China laufen derzeit drei schnelle natriumgekühlte Reaktoren im kommerziellen Betrieb, weitere befinden sich dort sowie in Indien im Bau. Forschung und Entwicklung von Reaktorkonzepten der Technologielinie finden weltweit in einer Vielzahl von Ländern statt. Das „Generation IV International Forum“ hat dem Entwicklungsprojekt höchste zeitliche Priorität eingeräumt. Geplant ist die Entwicklung eines fortgeschrittenen schnellen natriumgekühlten Reaktors mit der Möglichkeit zur Transmutation besonders langlebiger Abfallstoffe voranzutreiben und in den 2020er Jahren in eine Demonstrationsphase überzugehen. Die Forschungs- und Entwicklungsarbeiten hierfür werden von China, EURATOM , Frankreich, Japan, Korea, Russland und den USA getragen. 6.) Bleigekühlter Schneller Reaktor (Lead-cooled Fast Reactor – LFR) Der Bleigekühlte Schnelle Reaktor beruht auf Kernspaltung mittels schneller Neutronen . Als Kühlmittel werden Blei oder eine Blei-Bismut-Legierung verwendet. Der Primärkreislauf ist so konstruiert, dass das flüssige Metall aufgrund natürlicher Konvektion zirkuliert. Auf primärseitige Umwälzpumpen kann somit verzichtet werden. Die Stromerzeugung erfolgt über eine im Sekundärkreislauf angetriebene Turbine. Schematische Darstellung eines Bleigekühlten Schnellen Reaktors © BASE Wie funktioniert der Bleigekühlte Schnelle Reaktor? Der Reaktor ist in Pool-Bauweise konstruiert, das heißt, dass sich der Reaktorkern in einem beckenförmigen Behälter befindet. Das Becken ist mit dem Kühlmittel befüllt, hierfür kommt flüssiges Blei oder eine Blei-Bismut-Legierung zum Einsatz. Das metallische Kühlmittel siedet im Betrieb nicht, sodass im Reaktorbehälter Normaldruck herrscht. Aufgrund der Aufheiz- und Abkühlvorgänge in den verschiedenen Zonen des Reaktorbehälters zirkuliert das Kühlmittel auf natürliche Weise, ohne dass eine Umwälzung durch Pumpen stattfinden muss. Die Wärme wird über einen Wärmetauscher auf einen Sekundärkreis übertragen, in welchem eine Turbine zur Stromerzeugung angetrieben wird. Die im Reaktor zum Einsatz kommenden schnellen Neutronen können je nach Auslegung zusätzlichen Brennstoff erbrüten ( Brutreaktion ) oder potentiell eine Verringerung der langlebigen Abfallstoffe durch Transmutation bewirken. Was sind die Vor- und Nachteile von Bleigekühlten Schnellen Reaktoren? Wie andere schnelle Reaktoren bietet der schnelle bleigekühlte Reaktor die Möglichkeiten, zusätzlichen Brennstoff zu erbrüten oder auch langlebige Abfallstoffe durch Transmutation in kurzlebigere oder stabile Stoffe umzuwandeln. Der Reaktorkern kann so dimensioniert werden, dass die pro Volumen entstehende Wärmemenge relativ gering ist. Die Blei-Legierung kann die gesamte Wärme in einer sich automatisch einstellenden Zirkulation abführen, es werden keine Primärkreispumpen benötigt. Der Primärkreis arbeitet außerdem drucklos. Zusätzlich hat Blei sehr gute Abschirmeigenschaften gegen die vom Brennstoff ausgehende ionisierende Strahlung . Ein Nachteil des Systems ist, dass die Blei-Bismut-Legierung stets bei Temperaturen oberhalb ihres Schmelzpunktes (min. 123 °C) gehalten werden muss. Andernfalls verfestigt sie sich und der gesamte Reaktor wird unbrauchbar. Das Kühlmittel muss außerdem aufwändig filtriert werden. Blei und Bismut haben sehr hohe Dichten, sodass die Anlage aufgrund des enormen Gewichts stärkere Strukturen erfordert. Bismut ist zudem sehr selten und teuer. Entwicklungsstand von Bleigekühlten Schnellen Reaktoren Bereits in den 1940er bestand ein Forschungsprojekt zum schnellen bleigekühlten Reaktor in den USA , das 1950 eingestellt wurde. In der Sowjetunion wurden Reaktoren dieser Bauart zum Antrieb von U-Booten entwickelt, diese fanden bis 1996 Verwendung. Seit den 1990er/2000er Jahren wird wieder vermehrt an dem Konzept geforscht. Unter anderem laufen in den USA , China, Russland, Südkorea und der EU diesbezügliche Forschungs- und Entwicklungsprojekte. Besonders die Minimierung von Korrosions- und Erosionsrisiken durch das im Primärkreislauf zirkulierende Flüssigmetall sowie die Filtrierung des Kühlmittels stellen aktuell noch zu lösende Probleme bei der Entwicklung dar. 7.) Beschleunigergetriebener unterkritischer Reaktor (Accelerator-driven Systems – ADS) Konzepte für beschleunigergetriebene Reaktoren kombinieren einen unterkritischen Reaktorkern, in welchem keine selbsterhaltende Kernspaltungs-Kettenreaktion zustande kommen kann, mit einer externen Neutronenquelle, welche die für die Kernspaltung notwendigen Neutronen zur Verfügung stellt. Die Neutronenquelle ist beschleunigergetrieben, das heißt, sie arbeitet mithilfe eines Teilchenbeschleunigers. Die Leistung des Reaktors soll direkt über die Leistung des externen Teilchenbeschleunigers gesteuert werden können. Wird der Beschleuniger (und damit die Neutronenquelle) abgeschaltet, kommen die Kernspaltungsreaktionen zum Erliegen. Schematische Darstellung eines beschleunigergetriebenen unterkritischen Reaktors © BASE Wie funktioniert der beschleunigergetriebene unterkritische Reaktor? Wesentlich für die Funktion des Reaktors ist die räumliche Integration einer Neutronenquelle in den Reaktorkern. Hierfür wird eine sogenannte Spallation squelle vorgesehen. Mithilfe eines externen Teilchenbeschleunigers (Protonen-Beschleuniger) werden Protonen auf ein Stück Schwermetall im Reaktorkern geschossen. Die Protonen zerschmettern die Atome des Schwermetalls in kleinere Bruchstücke. Bei diesem als Spallation bezeichneten Vorgang werden hochenergetische (schnelle) Neutronen frei, die im Kernbrennstoff Spaltungsreaktionen verursachen und dabei weitere Neutronen erzeugen, die wiederum für Spaltprozesse zur Verfügung stehen. Die Konstruktion des Reaktors soll sich an anderen Schnellen Reaktoren orientieren und wird als Pool-System vorgesehen, bei dem der Reaktorkern sich in einem beckenförmigen Behälter befindet. Das Becken ist mit Blei oder einer Blei-Bismut-Legierung als Kühlmittel gefüllt. Die Spallations-Neutronenquelle ist zentral im Reaktorkern angeordnet. Von ihr ausgehende Neutronen bewirken Spaltungsreaktionen im Brennstoff, wobei weitere Neutronen frei werden. Die in Form von Wärme frei werdende Energie wird auf das Kühlmittel übertragen. Über einen Wärmetauscher geht die Wärme auf einen Sekundärkreis über und steht zur Stromerzeugung zur Verfügung. Was sind die Vor- und Nachteile des beschleunigergetriebenen unterkritischen Reaktors? Neben den sich aus der Bleikühlung ergebenden Vorteilen (siehe hierzu Bleigekühlter Schneller Reaktor) soll die beschleunigergetriebene unterkritische Anordnung zusätzliche Sicherheitsvorteile mit sich bringen. Insbesondere ist die Leistung des Reaktors direkt von der Leistung des Beschleunigers abhängig – wird dieser abgeschaltet, kommt die Kettenreaktion sofort zum Erliegen. Danach muss wie bei herkömmlichen Reaktoren die Nachzerfallswärme abgeführt werden, sodass reguläre und Notkühlsysteme ebenfalls erforderlich sind. Hinsichtlich der Brennstoffzusammensetzung sollen beschleunigergetriebene Systeme aufgrund der externen Kritikalität ssteuerung besonders flexibel sein, sodass ihnen eine besondere Eignung zur Transmutation langlebiger Abfallstoffe zugesprochen wird. Zu den Nachteilen der Bleikühlung kommen große Herausforderungen bei der Entwicklung geeigneter Systeme, insbesondere der Spallation squellen und den dafür notwendigen Beschleunigern. Die Protonen-Beschleuniger sind kostspielig und groß. Für beschleunigergetriebene unterkritische Systeme wären zudem besonders zuverlässige und langlebige Beschleuniger vonnöten. Darüber hinaus muss die Wärmeabfuhr aus dem mit Protonen beschossenen Schwermetallstück sichergestellt werden. Außerdem ist permanent ein Teil des erzeugten Stroms für den Betrieb des Beschleunigers aufzuwenden. Entwicklungsstand von beschleunigergetriebenen unterkritischen Reaktoren In den 1950er Jahren entstand die Idee, Kernbrennstoff mithilfe von Spallations-Neutronenquellen zu erbrüten. Konzepte und erste Experimente wurden in den USA , später u. a. auch in Kanada und Russland erarbeitet. Aufgrund des Fortschritts der Beschleuniger-Technologie erhielt das Konzept ab den 1990er Jahren neue Aufmerksamkeit. Auch wenn sich seither in mehreren Ländern Reaktorsysteme in der Entwicklung befinden, wurden bisher nur Spallationsquellen für Forschungszwecke verwirklicht. Eine Demonstration der Kombination von Spallationsquelle und unterkritischem Reaktor sieht derzeit beispielsweise das europäische MYRRHA-Pilotprojekt in Belgien vor, das nach derzeitigem Planungsstand voraussichtlich in den 2030er Jahren in den Betrieb gehen soll. Wie funktioniert der Hochtemperaturreaktor? Anstelle von Wasser sehen Hochtemperaturreaktor-Konzepte das Gas Helium als Kühlmittel vor. Dadurch kann der Reaktor bei niedrigerem Druck arbeiten und ist so bei extrem hohen Temperaturen besser beherrschbar als herkömmliche Leichtwasserreaktoren. Als Brennstoff kommt überwiegend Uranoxid oder -carbid zum Einsatz. Der Brennstoff liegt in Form kleiner Kügelchen vor, die mit einer Schutzhülle umgeben sind. Die Kügelchen wiederum sind eingelassen in Kugeln oder prismatische Blöcke aus Graphit, welches als Moderator dient. Diese Kugeln bzw. Blöcke stellen die Brennelemente dar. Sie werden vom Kühlmittel umströmt, welches die in der Kernreaktion entstehende Wärme abtransportiert. Diese Wärme kann zum Beispiel genutzt werden, um Wasser zu erhitzen und damit eine Dampfturbine anzutreiben. Was sind die Vor- und Nachteile von Hochtemperaturreaktoren? Neben dem erhöhten Wirkungsgrad und der Bereitstellung von Prozesswärme mit hohen Temperaturen bieten Hochtemperaturreaktoren weitere Vorteile gegenüber herkömmlichen Reaktoren. Das Design der Brennelemente und die Heliumkühlung weisen verbesserte Sicherheitsmerkmale auf. So lassen sich zusätzliche Sicherheitssysteme einsetzen, welche bei wassergekühlten Reaktoren zum Teil nicht zur Verfügung stehen. Konstruktionsbedingt weist der Hochtemperaturreaktor im Verhältnis zum Gesamtvolumen des Reaktorkerns eine relativ geringe Leistung auf, eine Kernschmelze gilt damit als ausgeschlossen. Neben angereichertem Uran können bei geeigneter Auslegung der Anlage auch Natururan, Thorium, Plutonium oder Mischoxide als Brennstoff verwendet werden. Die Technologie bringt jedoch auch große Nachteile mit sich. Die hohe Temperatur und das Kühlmittel Helium stellen eine Herausforderung für die Auswahl einsetzbarer Materialien dar. Gasgekühlte Reaktoren weisen zudem oftmals Probleme wie eine ungleichmäßige Kühlung, hohen Abrieb und Staubbildung sowie eine erhöhte Brandgefahr bei Wasser- oder Lufteintritt auf, infolgedessen es wiederum zur Freisetzung von radioaktiven Stoffen kommen kann. Die Endlagerung der abgebrannten Brennelemente wird aufgrund des hohen Anteils an radioaktivem Graphit im Vergleich zu herkömmlichen Brennelementen als deutlich kostenintensiver eingeschätzt. Entwicklungsstand von Hochtemperaturreaktoren Gasgekühlte Hochtemperaturreaktoren werden bereits seit den 1960er Jahren erforscht. Mit den Kugelhaufenreaktoren in Jülich und Hamm-Uentrop wurden auch in Deutschland Prototypanlagen nach diesem Konzept entwickelt. Ende der 1980er Jahre wurden beide Anlagen aufgrund diverser technischer Probleme abgeschaltet und die Technologie in Deutschland sukzessvive aufgegeben. Weitere Hochtemperaturreaktor-Projekte gab und gibt es unter anderem in Großbritannien, den USA , Japan und Frankreich. Ein Projekt in Südafrika, das auf der Technik des AVR Jülich basierte, wurde 2010 wegen technischer Schwierigkeiten und mangelnder Finanzierung auf unbestimmte Zeit pausiert. Seit 2003 ist in der Volksrepublik China ein Hochtemperatur-Versuchsreaktor in Betrieb, der ebenfalls auf dem Kugelhaufen-Design beruhende HTR-10. Im Herbst 2021 erreichten dort zwei weitere Hochtemperaturreaktoren des Typs HTR-PM als Demonstrationsanlagen Kritikalität . Ein ähnliches Projekt in den USA wurde vor der Realisierung eines Demonstrationsreaktors eingestellt, am Konzept des Hochtemperaturreaktors wird dort aber weiter geforscht. Bei den aktuellen Entwicklungen ist ein genereller Trend hin zu moderat hohen Betriebstemperaturen von 700-850 °C zu beobachten. Bis heute ist keine Anlage des Typs Hochtemperaturreaktor zur kommerziellen Stromerzeugung in Betrieb. Wie funktioniert der Salzschmelzereaktor? Der Brennstoff ist Bestandteil einer Mischung geschmolzener Salze (Fluoride und Chloride). Durch die Auswahl der Salze und deren Mischungsverhältnis lässt sich die Konzentration des spaltbaren Brennstoffes sehr präzise einstellen. So kann genau die Konzentration hergestellt werden, die für die Aufrechterhaltung einer stabilen Kettenreaktion notwendig ist. Die Temperaturen in der Salzschmelze betragen ca. 600-700 °C. Im Inneren des Reaktors kommt es zu kontrollierten Kernreaktionen, die Wärme produzieren. Mit dieser Wärme kann Wasserdampf erhitzt und damit eine Turbine zur Stromerzeugung angetrieben werden. Was sind die Vor- und Nachteile von Salzschmelzereaktoren? Das Sicherheitskonzept von Salzschmelzereaktoren basiert auf grundlegenden physikalisch-chemischen Eigenschaften und kommt mit weniger aktiver Sicherheitstechnik als beispielsweise herkömmliche Leichtwasserreaktoren aus. Zentraler Bestandteil des Sicherheitskonzepts ist, die flüssige Salzschmelze bei Störungen des Betriebs in vorgesehene Behältnisse abfließen zu lassen, in denen eine weitere Kettenreaktion nicht möglich ist. Außerdem können Salzschmelzereaktoren eine sogenannte chemische Aufbereitung integrieren. In einer zusätzlichen Anlage im Primärkreis (Brennstoffbearbeitungsanlage) können dabei die Spaltprodukte und die Zusammensetzung der Spaltprodukte , des Brennstoffs und des eingesetzten Salzgemisches im laufenden Betrieb optimiert werden. Im Gegensatz zu Leichtwasserreaktoren herrscht im Primärkreislauf eines Salzschmelzereaktors kein erhöhter Druck, wodurch einige Unfallszenarien ausgeschlossen werden können. Ein großer Nachteil des Salzschmelzereaktors ist die erhöhte Korrosion im Inneren der Rohrsysteme. Das heiße Brennstoff-Salz-Gemisch greift die Metalle des Reaktors an, sodass deren Lebensdauer eingeschränkt ist. Diese Problematik ist auch Bestandteil aktueller Forschung und ein wichtiger Grund, warum Salzschmelzereaktoren zurzeit nur als Forschungs- oder Pilotanlagen existieren. Einige Konzepte für Salzschmelzereaktoren werben damit, dass sie auch radioaktiven Abfall verwerten könnten. Damit sollen sogenannte Transurane, die im Reaktor bei der Kernspaltung entstehen, sowie auch einzelne langlebige Spaltprodukte gezielt umgewandelt, also transmutiert werden können. Dies konnte bisher nicht zur Einsatzreife entwickelt werden. Nach derzeitigem Forschungsstand wäre es jedoch nicht möglich, sämtliche dieser radioaktiven Abfälle umzuwandeln. Zudem würden neue Spaltprodukte entstehen. Ein Vorteil für die in Deutschland verfolgte Endlagerstrategie ergäbe sich daher nicht. Abhängig von der konkreten Ausgestaltung des Konzepts eines Salzschmelzereaktors würden von bisherigen Leichtwasserreaktoren abweichende radioaktive Reststoffe entstehen. Die gesamte Entsorgungskette müsste angepasst werden, von der Entwicklung geeigneter Konditionierung sverfahren und neuer Behälter bis hin zu den Anforderungen an eine Zwischen- und Endlagerung der radioaktiven Reststoffe. Entwicklungsstand von Salzschmelzereaktoren Salzschmelzereaktoren wurden in Form zweier Experimentalreaktoren zuletzt in den 1950er und 1960er Jahren in den USA betrieben. Aktuell wird in mehreren Ländern an der Weiterentwicklung dieser Technologie geforscht. Die Forschungsarbeiten finden sich in sehr unterschiedlichen Stadien und umfassen Konzeptstudien sowie theoretische und experimentelle Vorarbeiten. Am weitesten vorangeschritten ist die Entwicklung eines Experimentalreaktors in China (TMSR-LF1). Die Inbetriebnahme dieses seit 2018 erbauten Reaktors wurde im Sommer 2022 durch die chinesischen Behörden genehmigt. Ein Reaktordesign, das meist zu den Salzschmelzereaktoren gezählt wird, ist der Dual-Fluid-Reaktor . Wie funktioniert der mit superkritischem Wasser gekühlte Reaktor? Der mit superkritischem Wasser gekühlte Reaktor ist ein Kernreaktor, der superkritisches Wasser als Arbeitsmedium verwendet. Das Wasser befindet sich stets im superkritischen Zustand, hat also eine Temperatur von über 374 °C und einen Druck von mindestens 221 bar. Oberhalb dieses als „kritischer Punkt“ des Wassers bezeichneten Punkts finden keine Phasenübergänge statt, das heißt, das Wasser siedet und kondensiert nicht mehr. Der Aufbau des Reaktors entspricht einem Siedewasserreaktor . In einem einfachen Kühlkreislauf wird das Wasser im Reaktorkern erhitzt und anschließend direkt in die Turbine gespeist. Im superkritischen Zustand verdampft das Wasser dabei nicht, anders als beim Siedewasserreaktor . Das Kühlmittel hat somit eine höhere Dichte und kann die Wärme effizienter aufnehmen und aus dem Kern transportieren. Die Kerntemperatur ist höher als bei Siede- und Druckwasserreaktoren , der Druck liegt deutlich höher als bei Druckwasserreaktoren (dort in der Regel maximal 160 bar). Was sind die Vor- und Nachteile des mit superkritischem Wasser gekühlten Reaktors? Der Aufbau des Reaktors ist einfach und der Wirkungsgrad hoch (bis zu 45 % ). Das spezielle Neutronenspektrum des superkritischen Leichtwasserreaktors weist neben thermischen auch schnelle Neutronen auf. Durch diese findet eine Transmutation langlebiger Radionuklide in kurzlebigere statt, der abgebrannte Kernbrennstoff strahlt also weniger lang. Ein Nachteil ist, dass wie im Siedewasserreaktor die Turbine durch den direkten Kontakt mit dem Kühlwasser im Primärkreislauf radioaktiv kontaminiert wird. Der Druck im Kreislauf ist mit ca. 250 bar sehr hoch, weshalb der Reaktordruckbehälter sowie alle anderen Bauteile des Primärkreises dicker und stabiler ausgeführt werden müssen als bei herkömmlichen Leichtwasserreaktoren. Beschädigungen am Primärkreis bedeuten aufgrund des hohen Drucks auch eine erhöhte Gefahr . Entwicklungsstand von mit superkritischem Wasser gekühlten Reaktoren Der Betrieb von Kohlekraftwerken mit superkritischem Wasser wurde erstmals in den 1950er Jahren erprobt und ist heute Standard bei Neubauprojekten. Die Übertragung des Konzepts in die Kerntechnik wurde spätestens seit den 1990er Jahren intensiver beforscht. Allerdings weisen Materialien, die in modernen Kohlekraftwerken eingesetzt werden, für den Einsatz im nuklearen Bereich keine ausreichende Korrosionsbeständigkeit auf. So gibt es weiteren relevanten Forschungs- und Entwicklungsbedarf in den Bereichen Hüllrohr- und Strukturmaterialien und Sicherheitsfunktionen. Am weitesten fortgeschritten sind derzeit Designs aus China, der EU , Japan, Kanada, Korea, Russland und den USA . Die Entwicklung befindet sich aber insgesamt in einem frühen Stadium. Es ist derzeit noch keine Prototypanlage in Planung. Wie funktioniert der Gasgekühlte Schnelle Reaktor? Der Reaktor ist ähnlich wie ein klassischer Druckwasserreaktor ( Leichtwasserreaktor ) aufgebaut. Anstelle von Wasser wird jedoch Helium (denkbar sind auch andere Gase) als Kühlmittel verwendet. Als Brennstoff kommen Uran , Thorium, Plutonium oder Mischungen davon zum Einsatz. Anders als beim Hochtemperaturreaktor, welcher wie herkömmliche Leichtwasserreaktoren mit moderierten thermischen Neutronen arbeitet, wird der Brennstoff in schnellen Reaktoren mithilfe schneller Neutronen gespalten. Daher ist die Verwendung eines Moderator s nicht notwendig. Die hohe Arbeitstemperatur von etwa 850 °C ermöglicht hohe Wirkungsgrade oder kann als Prozesswärme für Industrieprozesse genutzt werden. Was sind die Vor- und Nachteile von Gasgekühlten Schnellen Reaktoren? Der vorgesehene Aufbau des Reaktors ist relativ einfach und auf einen Moderator kann gänzlich verzichtet werden. Durch die Verwendung von unmoderierten Neutronen kommt es zu Transmutation en, wodurch weniger langlebiger Atommüll entsteht. Außerdem kann Helium als Kühlmittel auf sehr hohe Temperaturen erhitzt werden und wird selbst nicht radioaktiv. Hier liegt auch der Nachteil der schnellen gasgekühlten Reaktoren, denn Helium ist nicht sehr wärmeleitfähig, wodurch sich erhöhte Anforderungen an die Kühlung des Reaktorkerns während des Betriebs, aber auch direkt nach Abschaltung ergeben. Aufgrund der hohen Temperaturen könnten zudem nur besonders hitzebeständige Werkstoffe zum Einsatz kommen. Eine zusätzliche Belastung entsteht durch den hohen Neutronenfluss. Die unmoderierten schnellen Neutronen sind schwieriger abzuschirmen und dringen weiter in Materialien ein als moderierte Neutronen . Dies beeinträchtigt die Lebensdauer dieser Materialien. Entwicklungsstand von Gasgekühlten Schnellen Reaktoren Arbeiten am Konzept des schnellen gasgekühlten Reaktors liefen seit den 1960er Jahren in den USA und Deutschland, später auch in Großbritannien und Japan. Seit den 2000er Jahren wird die Forschung vor allem von Frankreich vorangetrieben. Bis heute wurde allerdings noch kein heliumgekühlter Schneller Reaktor gebaut und betrieben. Insbesondere für geeignete Brennstoffe sowie Hüllrohr- und Strukturmaterialien für die Hochtemperaturauslegung muss noch umfangreiche Forschungs- und Entwicklungsarbeit geleistet werden. Auch hinsichtlich notwendiger Sicherheitssysteme sowie allgemein Sicherstellung eines zuverlässigen und sicheren Betriebs sind viele Fragen ungeklärt. Insgesamt befindet sich die Entwicklung noch im Bereich der angewandten Forschung ohne existierende Prototypdesigns. Eine kommerzielle Nutzung zur Stromerzeugung oder für industrielle Anwendungen ist nicht absehbar. Wie funktioniert der Natriumgekühlte Schnelle Reaktor? Der Reaktorkern mit dem Brennstoff befindet sich in einem beckenförmigen Behälter, welcher mit flüssigem Natrium gefüllt ist. Natrium wird wegen seiner hohen Wärmekapazität und guten Leitfähigkeit verwendet. Es siedet im Betrieb nicht, sodass kein erhöhter Druck im Reaktorbehälter herrscht. Über einen Wärmetauscher innerhalb des Reaktorbehälters wird die Wärme vom primärseitigen Natrium auf einen Sekundärkreis übertragen, in welchem ebenfalls flüssiges Natrium zirkuliert. Aus diesem Sekundärkreis wird die Wärme auf einen wasserführenden Tertiärkreis ausgekoppelt, in welchem eine Turbine zur Stromerzeugung angetrieben wird. Im Gegensatz zu vielen anderen Reaktorkonzepten kommen bei schnellen Reaktoren unmoderierte, schnelle Neutronen zum Einsatz. Sie können in Brutreaktion en zusätzliches Spaltmaterial aus nicht spaltbaren Isotopen wie Uran -238 oder Thorium-232 produzieren. Nach einer Aufarbeitung kann das so entstehende Spaltmaterial als Kernbrennstoff verwendet werden. Auch eine Reduktion der entstehenden langlebigen nuklearen Abfälle durch Transmutation wird bei entsprechender Auslegung des Reaktors und der Brennstofffertigung versprochen. Was sind die Vor- und Nachteile von Natriumgekühlten Schnellen Reaktoren? Dank seiner hohen Wärmekapazität kann das Natrium die Nachzerfallswärme der Brennelemente auch ohne Umwälzung vollständig aufnehmen. Fällt beispielsweise durch einen Stromausfall die Kühlung aus, wird somit eine Kernschmelze passiv verhindert. Im Fall eines Lecks tritt weniger Kühlmittel aus, da Primär- und Sekundärkreislauf drucklos arbeiten. Daher sollen sich hier Vorteile im Bereich Sicherheit ergeben. Allerdings müssen spezifische Störfallrisiken wie Natrium-Leckagen und -brände berücksichtigt werden. Im Fall eines Kühlmittelaustritts muss ein Kontakt des sehr reaktionsfreudigen Natriums mit Wasser und Sauerstoff unterbunden werden, dafür sind zusätzliche Sicherheitsbarrieren notwendig. Das System ist komplex und vergleichsweise teuer, nicht zuletzt da es drei Kühlkreisläufe erfordert. In früheren Jahrzehnten wurde die Möglichkeit, zusätzlichen Brennstoff in Reaktoren erbrüten zu können ( Brutreaktion ), teilweise als Vorteil gesehen. Allerdings ergaben sich aufgrund der Menge der weltweiten Uranvorkommen keine wirtschaftlichen Vorteile einer solchen Anwendung in größerem Maßstab. Außerdem wird je nach Konfiguration waffentaugliches Plutonium im Reaktor erbrütet. Dies erhöht Risiken bzgl. der Verbreitung von atomwaffenfähigem Material (Proliferation). Hinsichtlich der Transmutation langlebiger Abfallstoffe muss festgestellt werden, dass so eine Anwendung bisher nicht zur Einsatzreife entwickelt werden konnte. Nach derzeitigem Forschungsstand wäre es nicht möglich, sämtliche radioaktiven Abfälle umzuwandeln. Zudem würden neue Spaltprodukte entstehen. Ein Vorteil für die z.B. in Deutschland verfolgte Endlagerstrategie ergäbe sich daher nicht. Entwicklungsstand von Natriumgekühlten Schnellen Reaktoren Der schnelle natriumgekühlte Reaktor war eines der ersten Reaktorkonzepte aus den Anfangszeiten der zivilen Atomenergienutzung. Natriumgekühlte Brutreaktoren waren und sind in mehreren Ländern im Einsatz. Auch im deutschen Forschungszentrum Karlsruhe lief von 1977 bis 1991 mit dem KNK -II eine derartige Versuchsanlage. Das auf derselben Technologie basierende Atomkraftwerk Kalkar ging aufgrund von Sicherheitsbedenken nie in Betrieb. In Russland und China laufen derzeit drei schnelle natriumgekühlte Reaktoren im kommerziellen Betrieb, weitere befinden sich dort sowie in Indien im Bau. Forschung und Entwicklung von Reaktorkonzepten der Technologielinie finden weltweit in einer Vielzahl von Ländern statt. Das „Generation IV International Forum“ hat dem Entwicklungsprojekt höchste zeitliche Priorität eingeräumt. Geplant ist die Entwicklung eines fortgeschrittenen schnellen natriumgekühlten Reaktors mit der Möglichkeit zur Transmutation besonders langlebiger Abfallstoffe voranzutreiben und in den 2020er Jahren in eine Demonstrationsphase überzugehen. Die Forschungs- und Entwicklungsarbeiten hierfür werden von China, EURATOM , Frankreich, Japan, Korea, Russland und den USA getragen. Wie funktioniert der Bleigekühlte Schnelle Reaktor? Der Reaktor ist in Pool-Bauweise konstruiert, das heißt, dass sich der Reaktorkern in einem beckenförmigen Behälter befindet. Das Becken ist mit dem Kühlmittel befüllt, hierfür kommt flüssiges Blei oder eine Blei-Bismut-Legierung zum Einsatz. Das metallische Kühlmittel siedet im Betrieb nicht, sodass im Reaktorbehälter Normaldruck herrscht. Aufgrund der Aufheiz- und Abkühlvorgänge in den verschiedenen Zonen des Reaktorbehälters zirkuliert das Kühlmittel auf natürliche Weise, ohne dass eine Umwälzung durch Pumpen stattfinden muss. Die Wärme wird über einen Wärmetauscher auf einen Sekundärkreis übertragen, in welchem eine Turbine zur Stromerzeugung angetrieben wird. Die im Reaktor zum Einsatz kommenden schnellen Neutronen können je nach Auslegung zusätzlichen Brennstoff erbrüten ( Brutreaktion ) oder potentiell eine Verringerung der langlebigen Abfallstoffe durch Transmutation bewirken. Was sind die Vor- und Nachteile von Bleigekühlten Schnellen Reaktoren? Wie andere schnelle Reaktoren bietet der schnelle bleigekühlte Reaktor die Möglichkeiten, zusätzlichen Brennstoff zu erbrüten oder auch langlebige Abfallstoffe durch Transmutation in kurzlebigere oder stabile Stoffe umzuwandeln. Der Reaktorkern kann so dimensioniert werden, dass die pro Volumen entstehende Wärmemenge relativ gering ist. Die Blei-Legierung kann die gesamte Wärme in einer sich automatisch einstellenden Zirkulation abführen, es werden keine Primärkreispumpen benötigt. Der Primärkreis arbeitet außerdem drucklos. Zusätzlich hat Blei sehr gute Abschirmeigenschaften gegen die vom Brennstoff ausgehende ionisierende Strahlung . Ein Nachteil des Systems ist, dass die Blei-Bismut-Legierung stets bei Temperaturen oberhalb ihres Schmelzpunktes (min. 123 °C) gehalten werden muss. Andernfalls verfestigt sie sich und der gesamte Reaktor wird unbrauchbar. Das Kühlmittel muss außerdem aufwändig filtriert werden. Blei und Bismut haben sehr hohe Dichten, sodass die Anlage aufgrund des enormen Gewichts stärkere Strukturen erfordert. Bismut ist zudem sehr selten und teuer. Entwicklungsstand von Bleigekühlten Schnellen Reaktoren Bereits in den 1940er bestand ein Forschungsprojekt zum schnellen bleigekühlten Reaktor in den USA , das 1950 eingestellt wurde. In der Sowjetunion wurden Reaktoren dieser Bauart zum Antrieb von U-Booten entwickelt, diese fanden bis 1996 Verwendung. Seit den 1990er/2000er Jahren wird wieder vermehrt an dem Konzept geforscht. Unter anderem laufen in den USA , China, Russland, Südkorea und der EU diesbezügliche Forschungs- und Entwicklungsprojekte. Besonders die Minimierung von Korrosions- und Erosionsrisiken durch das im Primärkreislauf zirkulierende Flüssigmetall sowie die Filtrierung des Kühlmittels stellen aktuell noch zu lösende Probleme bei der Entwicklung dar. Wie funktioniert der beschleunigergetriebene unterkritische Reaktor? Wesentlich für die Funktion des Reaktors ist die räumliche Integration einer Neutronenquelle in den Reaktorkern. Hierfür wird eine sogenannte Spallation squelle vorgesehen. Mithilfe eines externen Teilchenbeschleunigers (Protonen-Beschleuniger) werden Protonen auf ein Stück Schwermetall im Reaktorkern geschossen. Die Protonen zerschmettern die Atome des Schwermetalls in kleinere Bruchstücke. Bei diesem als Spallation bezeichneten Vorgang werden hochenergetische (schnelle) Neutronen frei, die im Kernbrennstoff Spaltungsreaktionen verursachen und dabei weitere Neutronen erzeugen, die wiederum für Spaltprozesse zur Verfügung stehen. Die Konstruktion des Reaktors soll sich an anderen Schnellen Reaktoren orientieren und wird als Pool-System vorgesehen, bei dem der Reaktorkern sich in einem beckenförmigen Behälter befindet. Das Becken ist mit Blei oder einer Blei-Bismut-Legierung als Kühlmittel gefüllt. Die Spallations-Neutronenquelle ist zentral im Reaktorkern angeordnet. Von ihr ausgehende Neutronen bewirken Spaltungsreaktionen im Brennstoff, wobei weitere Neutronen frei werden. Die in Form von Wärme frei werdende Energie wird auf das Kühlmittel übertragen. Über einen Wärmetauscher geht die Wärme auf einen Sekundärkreis über und steht zur Stromerzeugung zur Verfügung. Was sind die Vor- und Nachteile des beschleunigergetriebenen unterkritischen Reaktors? Neben den sich aus der Bleikühlung ergebenden Vorteilen (siehe hierzu Bleigekühlter Schneller Reaktor) soll die beschleunigergetriebene unterkritische Anordnung zusätzliche Sicherheitsvorteile mit sich bringen. Insbesondere ist die Leistung des Reaktors direkt von der Leistung des Beschleunigers abhängig – wird dieser abgeschaltet, kommt die Kettenreaktion sofort zum Erliegen. Danach muss wie bei herkömmlichen Reaktoren die Nachzerfallswärme abgeführt werden, sodass reguläre und Notkühlsysteme ebenfalls erforderlich sind. Hinsichtlich der Brennstoffzusammensetzung sollen beschleunigergetriebene Systeme aufgrund der externen Kritikalität ssteuerung besonders flexibel sein, sodass ihnen eine besondere Eignung zur Transmutation langlebiger Abfallstoffe zugesprochen wird. Zu den Nachteilen der Bleikühlung kommen große Herausforderungen bei der Entwicklung geeigneter Systeme, insbesondere der Spallation squellen und den dafür notwendigen Beschleunigern. Die Protonen-Beschleuniger sind kostspielig und groß. Für beschleunigergetriebene unterkritische Systeme wären zudem besonders zuverlässige und langlebige Beschleuniger vonnöten. Darüber hinaus muss die Wärmeabfuhr aus dem mit Protonen beschossenen Schwermetallstück sichergestellt werden. Außerdem ist permanent ein Teil des erzeugten Stroms für den Betrieb des Beschleunigers aufzuwenden. Entwicklungsstand von beschleunigergetriebenen unterkritischen Reaktoren In den 1950er Jahren entstand die Idee, Kernbrennstoff mithilfe von Spallations-Neutronenquellen zu erbrüten. Konzepte und erste Experimente wurden in den USA , später u. a. auch in Kanada und Russland erarbeitet. Aufgrund des Fortschritts der Beschleuniger-Technologie erhielt das Konzept ab den 1990er Jahren neue Aufmerksamkeit. Auch wenn sich seither in mehreren Ländern Reaktorsysteme in der Entwicklung befinden, wurden bisher nur Spallationsquellen für Forschungszwecke verwirklicht. Eine Demonstration der Kombination von Spallationsquelle und unterkritischem Reaktor sieht derzeit beispielsweise das europäische MYRRHA-Pilotprojekt in Belgien vor, das nach derzeitigem Planungsstand voraussichtlich in den 2030er Jahren in den Betrieb gehen soll. Weitere Informationen zu Transmutation und alternativen Entsorgungsoptionen Transmutation hochradioaktiver Abfälle Faktencheck: Transmutation Sicherheitstechnische Analyse und Risikobewertung von Konzepten zu Partitionierungs- und Transmutationsanlagen für hochradioaktive Abfälle (P&T) Verfolgung und Aufbereitung des Standes von Wissenschaft und Technik bei alternativen Entsorgungsoptionen für hochradioaktive Abfälle (altEr)

Hot gas-cleaning

Das Projekt "Hot gas-cleaning" wird vom Umweltbundesamt gefördert und von DMT-Gesellschaft für Forschung und Prüfung mbH durchgeführt. General Information: Descriptions of the individual parts of the project are given below. Removal of trace elements in hot gas cleaning systems (CSIC). Study of the capture of trace elements by a range of different sorbents - mainly metal mixed oxides, clay materials and alkaline-earth carbonates but also some alumina and siliceous materials - in two laboratory scale reactors (a fixed bed and a fluidised bed) at temperatures between 550 and 750 degree C. Different compositions of the simulated coal gas stream will also be tested. Different sorbents, temperatures and stream gas composition will be studied during each of three periods of six months in each of the three years of the programme. Hot H2S Removal by using waste products as solvents (TGI). Testing of red mud (a residue from aluminium manufacture) and electric arc furnace dust (a residue from steel making) as sorbents for hot dry desulphurisation of coat derived fuel gas. These materials have been chosen as containing potential sorbents including calcium, iron, zinc and manganese oxides. Tests will be carried out in a laboratory-scale pressurised reactor. Use of carbon materials and membranes for hot gas clean up (DMT). Study of the potential use of carbon materials for removing trace metals and sulphur compounds from hot gasification gases (also potentially the separation of light gases such as hydrogen), taking advantage of the stability of carbon at high temperature and in corrosive atmospheres. A bed of carbon (or, where appropriate, another material) alone or in combination with a carbon filtering membrane installed in a laboratory gas circuit will be used: - to study the effect on composition of passing gas from a gasifier through a bed of activated carbon or a carbon molecular sieve at various temperatures, pressures and flow rates. - to repeat the studies as above with a filtering membrane made from carbon added. - to study the combination of sorption/filtration and catalytically active materials (i.e. using catalysts for the CO shift and for hydrogenation). The use of other compounds such as zeolitic membranes or granular beds will also be considered and the advantages of using combined gas clean up systems will be reviewed in the light of the data obtained. Development of improved stable catalysts and trace elements capture for hot gas cleaning in advanced power generation (CRE Group). Studies will be carried out on existing equipment to improve and assess catalysts based on iron oxide on silica and titania with mixed metal oxides to remove ammonia, hydrogen cyanide, hydrogen chloride, arsine, hydrogen sulphide and carbonyl sulphide. Selected catalysts will be tested at pressures up to 20 bar and temperatures in the range 500 - 800 degree C using simulated atmospheres. ... Prime Contractor: Deutsche Montan Technologie, Gesellschaft für Forschung und Prüfung mbH (DMT); Essen; Germany.

Development of ceramic oxide fuel cell (SOFC) for power

Das Projekt "Development of ceramic oxide fuel cell (SOFC) for power" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Objective: Design concept and development of a large surfaced sofc consisting of a yttria stabilized zirconia electrolyte with electrodes on both sides and a corrugated structured bipolar plate. Because of using a metallic bipolar plate (which has to ensure besides the cells connection also the transport and distribution of gases) the cell operating temperature should be 900-950 celsius degree. The electrode material will also be suited to this temperature range. General information: within the contract en3e-0180-uk managed by imperial college and entitled 'fabrication and evaluation of small (100w) sofc reactors', sofc stocks will be built up and tested. The main differences (cell construction operating temperature, material of bipolar plate, test conditions) between the Siemens and the IC. Contracts are well defined. This work programme includes the development of a new corrugated structured sofc from the concept up to the test of one single or several cells. Main points are the preparation of thin, solid and mechanic stable electrolyte foils, the optimization of electrodes with respect to conductivity and pore structure (adaptation to the relative low temperature range of 900 - 950 celsius degrees) and the development of a bipolar plate, which ensures the mechanical stability of the electrolyte and the gas distribution. A wide-spread technical knowledge in the field of electro ceramics, bonding technique and electrochemics is available at Siemens. In addition all essential equipment and tools for preparation of defined porous structures etc. And for the analysis and characterization of materials are existing. Achievements: Siemens is proposing a new planar concept with metal separator plate for the ceramic oxide fuel cell (SOFC) reactor. Main goal of the preparation phase was the development of single SOFC cells with internationally comparable power data. The development of the ceramic compounds and the metal separator plate for the planar Siemens SOFC concept can be summarized as follows: manufacture of electrolyte bulk material by the mixed oxide process as well as from chemically prepared YSZ materials (FSZ and PSZ); physicochemical characterization of these electrolyte specimens; sintering studies with various tape casted electrolyte materials; development of a sintering process for a flat plate electrolyte with dimensions 100 x 100 x 0.15 mm(3); manufacture of cathode bulk material in the system La(1-u)Sr(u)Mn(1-x)Co(x)Mn03 by the mixed oxide process; physicochemical characterization of these cathode specimens; manufacture of anode bulk material of 10 to 100 per cent nickel content by the mixed oxide process; physicochemical characterization of these anode specimens; development of a screen printing technique for electrodes; manufacture of ceramic trilayers by tape casting screen printing; design and construction of a bench cell testing facility; bench cell testing of ceramic trilayers with various anode compositions; selection of ...

New components to achieve higher quality and cost reduction of PV-modules

Das Projekt "New components to achieve higher quality and cost reduction of PV-modules" wird vom Umweltbundesamt gefördert und von Fabrimex GmbH durchgeführt. General Information: State of the art PV-module lamination has some disadvantages: - Six different layers to handle, to cut, to lay up in staple - Protective laminates including aluminium foil have the advantage of full moisture barrier but the disadvantage of causing electrical problems (short circuits, break down) - Low moisture barrier of standard protective laminates - Long cycle time of the laminating process. To overcome these advantages the objectives of this project are: - New moisture barrier layers by coating of dielectrics (SiO, mixed oxides with MgO etc) on suitable substrates. - Incorporation of these barrier layers to integrated encapsulating composites, which include fast curing encapsulating EVA by direct extrusion of EVA onto the protective laminate. - Further new materials and systems for a low cost encapsulation process without glass will be investigated. The new products will be at lower cost and the new lamination process will need only 50 per cent of time. This will lower cost of module lamination up to 30 per cent and increase productivity. A realization time interval of 2 to 3 years into industrial scale is expected after successful completion of the project. Prime Contractor: Isolvolta Österreichische Isolierstoffwerke AG, Werk Werndorf; Austria.

Teilvorhaben: DLR

Das Projekt "Teilvorhaben: DLR" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Solarforschung (SF), Standort Köln durchgeführt. Das Projekt PERFECTION basiert auf der Nutzung spezieller Materialeigenschaften zur Anwendung in mit konzentrierter Solarenergie (CSP) betriebenen Energiewandlungs- und Speicherprozessen. In CSP-Systemen werden Spiegel verwendet, um die Sonnenstrahlung zu konzentrieren, so dass sie als Wärmeenergie nutzbar wird. Die so gewonnene Wärmeenergie kann dann bei hoher Temperatur in chemische Energie umgewandelt werden. Dadurch werden 'solaren Brennstoffe' erzeugt: Wasserstoff und/oder Synthesegas. Das Ziel des Vorhabens ist es, Mischoxide mit der Perowskitstruktur und der allgemeinen Zusammensetzung ABO3 für solarthermische Brennstofferzeugungs- und Speicherprozessen zu entwickeln und zu verwenden und dabei Gemeinsamkeiten zwischen den Materialanforderungen dieser verschiedenen Prozesse auszunutzen.

1 2 3 4