Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025
Der deutschlandweite Datensatz enthält Informationen zum mittleren (2016-2018) Phosphoreintrag über Mischwasserentlastungen in Gewässer (in kg/a). In Siedlungsgebieten wird das von versiegelten Flächen abfließende Niederschlagswasser entweder in Misch- oder Trennkanalisationen gesammelt. Dieser Datensatz umfasst die Phosphoreinträge in Gewässer über die Mischwasserentlastungen des Mischsystems. Der Datensatz liegt vor: Auflösung: MoRE-Modellgebiete (Analysegebiete) Eine grundsätzliche Beschreibung des methodischen Vorgehens und der genutzten Modelleingangsdaten findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnis-se von MoRE-DE. UBA Texte | 142/2022 (Link siehe INFO-LINKS)). Die simulierten Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext erforderlicher methodischer Annahmen bei der Erstellung und Verarbeitung. Sie sind u.a. von im angewandten Modell geltenden Annahmen, der Modellstruktur, der Parameterschätzung, der Kalibrierungsstrategie und der Qualität der Antriebsdaten abhängig.
Das Gewässernetz der trockenfallenden Fließgewässer dient der Erfassung und Führung des Verzeichnisses der Gewässer in Niedersachsen gem. § 58 Abs. 1 des Niedersächsischen Wassergesetzes (NWG) vom 11.11.2020 (Nds. GVBl Nr. 43/2020), die regelmäßig weniger als sechs Monate im Jahr wasserführend sind. Über dieses Verzeichnis sollen die Ausnahmeregelungen zum Gewässerrandstreifen im Rahmen des Aktionsprogramms "Niedersächsischer Weg" vollzogen werden.Das Gewässernetz basiert auf dem Digitalen Geländemodell (Basis-DLM) des Landesamtes für Geoinformation und Landesvermessung Niedersachsen (LGLN) mit dem jeweils an den Gewässerabschnitten angegeben Aktualitätsdatum. Für die Modellierung des Gewässernetzes wurden die Datenabgabeprodukte "GEW01" und "GEW03" kombiniert und attributiv ergänzt, um ein linienförmiges Gewässernetz auch für Modellierungszwecke zur Verfügung zu haben. Es wurden zusätzliche Felder ergänzt, um Fortschreibungshinweise zufügen zu können.GEW01 - Die Objektartengruppe mit der Bezeichnung "Gewässer" und der Kennung "44000" umfasst die mit Wasser bedeckten Flächen. Die Attribute der Zusammengesetzten Objekte (ZUSO) der Objektarten AX_Wasserlauf (44002) oder AX_Kanal (44003) werden direkt an die zugehörigen Raumbezogenen Elementarobjekte (REO) der Objektarten AX_Gewaesserachse (44004) oder AX_Fliessgewaesser (44001) angehängt.GEW03 - Dieses Abgabeprodukt beinhaltet die Objektart AX_Gewässerstationierungsachse (57003). Eine Gewässerstationierungsachse ist eine von einer Wasserfachstelle festgelegte Linie in Gewässern. Sie umfasst folgende Arten:- Gewässerachse der Wasser- und Schifffahrtsverwaltung (WSV) ist eine Geometrie, die unverändert aus den Unterlagen der WSV übernommen wurde.- Genäherte Mittellinie in Gewässern entsprechen den Spezifikationen der Richtlinie der Gebiets- und Gewässerverschlüsselung der Länderarbeitsgemeinschaft Wasser (LAWA).- Fiktive Verbindung in Fließgewässern verbinden ein einmündendes Gewässer mit der Gewässerachse des aufnehmenden Fließgewässers.- Fiktive Verbindung in Seen und Teichen ist eine hydrologisch sinnvolle Verbindungslinie in stehenden Gewässern, die für den Aufbau eines geschlossenen topologischen Gewässernetzes benötigt wird.Als zusätzliche Kriterien werden für die Feststellung eines trockenfallenden Gewässers Datenauszüge zu Karstgebieten, bodenkundlicher Feuchtestufe und Grundwasserstufe des Landesamtes für Bergbau, Energie und Geologie (LBEG), die Angaben des Grünlandzentrums Niedersachsen/Bremen e.V. zu Gemeinden mit hoher Gewässerdichte sowie Angaben darüber ob ein Gewässerabschnitt Teil des WRRL-Gewässernetzes (Anlage 1 Nr. 2 der OGewV) ist, verwendet. Diese Angaben sind attributiv in den Datenbestand eingearbeitet worden.
Die aus der Emission von Schadstoffen aus Schweineställen resultierende Umweltbelastung ist vor allem auf Geruch, Staub, Methan, Kohlendioxid, Ammoniak, Schwefelwasserstoff und über 100 weitere Spurengase zurückzuführen. Zur Minderung dieser Emissionen dient eine Abgasreinigungsanlage, die modular aus einer chemischen Wäsche und einer Biofiltration im Pilotanlagen-Maßstab zusammengesetzt ist. In dem beantragten Projekt werden durch experimentelle und theoretische Untersuchungen die Erlangung von Kenntnissen über grundlegende Zusammenhänge dabei und die weiterführende Minimierung der Schad- und Geruchsstoffkonzentrationen im Abgas angestrebt. Die experimentellen Untersuchungen zur genaueren Charakterisierung des Anlagenverhaltens und der ablaufenden Prozesse gliedern sich in zwei Schwerpunktbereiche: Der erste umfasst die Prozesse im chemischen Wäscher, insbesondere Staubeintrag, -beschaffenheit, -Abscheidegrad und Adsorptionsvermögen des Staubes - dabei steht der Zusammenhang zwischen Staubeintrag und Geruchsminderungsgrad im Mittelpunkt - sowie die Parameterbestimmung für eine Modellierung und Simulation. Der zweite Schwerpunkt liegt auf dem Bereich Langzeitmonitoring der Abgasreinigungsanlage - insbesondere hinsichtlich der Wirkungsgradabhängigkeiten und der Einflussgrößen auf die Verfahrensstabilität. Die Modellierung und Simulation der gesamten Reinigungsanlage durch Adaption verfahrensspezifischer Zusammenhänge soll Vorhersagen für verschiedene apparative Ausgangssituationen und verfahrenstechnische Einstellungen liefern.
Der deutschlandweite Datensatz enthält Informationen zum mittleren (2016-2018) Phosphoreintrag insgesamt über punktuellen und diffusen Eintragspfade in Gewässer (in kg/a). Die Berücksichtigten Eintragspfade sind Kleinkläranlagen, kommunale Kläranlagen ab > 50 Einwohnerwerten (EW), Regenwassereinleitungen (Trennsystem), Mischwasserentlastungen (Mischsystem), industrielle Direkteinleiter, erosiver Sedimenteintrag (Erosion), Deposition auf Gewässerflächen, Grundwasser, Oberflächenabfluss und Dränagen. Der Datensatz liegt vor: Auflösung: MoRE-Modellgebiete (Analysegebiete) Eine grundsätzliche Beschreibung des methodischen Vorgehens und der genutzten Modelleingangsdaten findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE. UBA Texte | 142/2022 (Link siehe INFO-LINKS)). Die simulierten Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext erforderlicher methodischer Annahmen bei der Erstellung und Verarbeitung. Sie sind u.a. von im angewandten Modell geltenden Annahmen, der Modellstruktur, der Parameterschätzung, der Kalibrierungsstrategie und der Qualität der Antriebsdaten abhängig.
European air quality information reported by EEA member countries, including all EU Member States, as well as EEA cooperating and other reporting countries. The EEA’s air quality database consists of a multi-annual time series of air quality measurement data and calculated statistics for a number of air pollutants. It also contains meta-information on the monitoring networks involved, their stations and measurements, air quality modelling techniques, as well as air quality zones, assessment regimes, compliance attainments and air quality plans and programmes reported by the EU Member States and European Economic Area countries.
Die ZUS LLGS in Hildesheim ist zuständig für die Beurteilung der Luftqualität nach der 39. BImSchV. Dazu können neben Messungen auch Modellrechnungen angewandt werden. Für die dargestellten Städte hat die ZUS LLGS die Immissionsbelastung anhand von Modellrechnungen für verschiedene Schadstoffe und Zeithorizonte bestimmt.
Gefährdungspotenzial durch Starkregen Für die Landeshauptstadt Dresden wurde ein Klimaanpassungskonzept erarbeitet, dass die Klimaveränderungen und dessen Folgen in Dresden aufzeigt. In diesem Rahmen wurden Gefährdungsanalysen für die Dresdner Stadtteile erstellt. Das Gefährdungspotenzial ergibt sich aus der Sensitivität eines Systems bezüglich der Klimaveränderung und der Exposition (Lage im Stadtraum). Für die Analyse standen die menschliche Gesundheit, Gebäude und Infrastruktur im Fokus. Gefährdungspotenziale wurden für die Themen Wärmebelastung sowie die Überschwemmungsgefahr durch Starkregen und Flusshochwasser untersucht - hier Starkregen. In die Analyse flossen die mithilfe einer hydrodynamischen Modellierung ausgewiesenen potenziell überfluteten Flächen bei Starkregen ein. Außerdem wurden die Flächen kritischer und nicht-kritischer Flächennutzung einbezogen. Ausschlaggebend für das Gefährdungspotenzial ist der absolute Flächenanteil der überschwemmten Gebiete sowie deren relativer Anteil an der Gesamtfläche des Stadtteils. Damit wird vermieden, dass flächengroße Stadtteile überrepräsentiert werden. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung bewerten und die Maßnahmenentwicklung und -umsetzung priorisieren zu können. Weitere Informationen zur Gefährdungsanalyse und möglichen Anpassungsoptionen sind dem Klimaanpassungskonzept zu entnehmen. Die Gefährdungsanalyse wurde im Rahmen der Erstellung des Klimaanpassungskonzeptes vom Thüringer Institut für Nachhaltigkeit und Klimaschutz (ThINK) durchgeführt. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung in den verschiedenen Bereichen bewerten zu können. Mit Hilfe der Analyse kann die Maßnahmenentwicklung und -umsetzung priorisiert werden.
Daten und Karten zu Lebensräumen von Pflanzen und Tieren unter besonderer Berücksichtigung der gesetzlich geschützten Biotope. Grundlage für die Datenerfassung der Biotope/Lebensräume von Hamburg sind die "Kartieranleitung und Biotoptypenschlüssel für die Biotopkartierung Hamburg" sowie die "Biotopbewertung für die Biotopkartierung Hamburg". Beide sind als Downloaddatei im PDF-Format unter https://www.hamburg.de/biotopkartierung zu finden. Auf dieser Seite wird die Biotopkartierung auch kurz erläutert. Trotz Plausibilitätsprüfungen kann keine Gewähr auf Vollständigkeit oder Richtigkeit der Daten gegeben werden. Für den Vollzug des gesetzlichen Biotopschutz ist immer der Ist-Zustand eines Biotops in der Natur entscheidend. WMS-Kartendienste: Die diesen Daten zugrundeliegenden Datensätze sind abgeleitet aus einer Modellierung, die zu einer flächendeckenden Abbildung als überlagerungsfreie Ebene führt. Dazu wurden die Daten der Gesamtdatenbank des Biotopkatasters Hamburg verwendet, die die Jahrgänge 2010 bis 12/2019 vollständig wiedergeben. Hierbei kann es zu Abweichungen der Größenangaben gegenüber derjenigen im Erhebungsbogen kommen. Maßgeblich sind die Größenangaben in den Erhebungsbögen. Zu dem WMS-Kartendienst gibt es eine GML-Datei entsprechend dem WMS-Kartendienst. Downloadbereich: Außerdem wird eine GML-Dateien mit erweiterter Attributtabelle und aller Jahrgänge zur Verfügung gestellt (gezipt, im Downloadbereich, Link siehe oben), die die geografischen Daten der Biotope sowie deren wesentlichen beschreibenden Daten mit Ausnahme der Pflanzenartenlisten zu den einzelnen Biotopen beinhalten. Die GML-Dateien können in geografische Infosysteme (GIS) eingebunden werden. Die Anleitung hierzu befindet sich im Downloadbereich des Transparenzportals zum Biotopkataster Hamburg (Link: Trefferliste | Transparenzportal Hamburg). Alle Informationen zu einem Biotop können dem dazugehörigen Erhebungsbogen entnommen werden, der ebenfalls im Downloadbereich des Transparenzportals als Zipdatei bereitgestellt ist. Die Bögen sind über die DK5, Biotop-Nr. und das Kartierdatum (z.B. 6620_317_080716.pdf) den Biotopen zugeordnet.
| Origin | Count |
|---|---|
| Bund | 18484 |
| Europa | 18 |
| Global | 8 |
| Kommune | 44 |
| Land | 2267 |
| Wirtschaft | 34 |
| Wissenschaft | 1094 |
| Zivilgesellschaft | 13 |
| Type | Count |
|---|---|
| Daten und Messstellen | 81 |
| Ereignis | 12 |
| Förderprogramm | 15735 |
| Sammlung | 5 |
| Taxon | 3 |
| Text | 822 |
| Umweltprüfung | 20 |
| WRRL-Maßnahme | 1 |
| unbekannt | 2706 |
| License | Count |
|---|---|
| geschlossen | 1008 |
| offen | 18146 |
| unbekannt | 230 |
| Language | Count |
|---|---|
| Deutsch | 16754 |
| Englisch | 4480 |
| Resource type | Count |
|---|---|
| Archiv | 257 |
| Bild | 33 |
| Datei | 872 |
| Dokument | 717 |
| Keine | 10311 |
| Multimedia | 3 |
| Unbekannt | 10 |
| Webdienst | 62 |
| Webseite | 7766 |
| Topic | Count |
|---|---|
| Boden | 12577 |
| Lebewesen und Lebensräume | 13510 |
| Luft | 11359 |
| Mensch und Umwelt | 19383 |
| Wasser | 11103 |
| Weitere | 18863 |