API src

Found 19386 results.

Related terms

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

Klimaemissionen sinken 2023 um 10,1 Prozent – größter Rückgang seit 1990

UBA-Projektion: Nationales Klimaziel bis 2030 erreichbar Im Jahr 2023 emittierte Deutschland 10,1 Prozent weniger Treibhausgase (THG) als 2022. Das zeigen neue Zahlen des Umweltbundesamtes (UBA). Gründe sind der gestiegene Anteil erneuerbarer Energien, ein Rückgang der fossilen Energieerzeugung und eine gesunkene Energienachfrage bei Wirtschaft und Verbrauchern. Insgesamt wurden 2023 in Deutschland rund 674 Millionen Tonnen THG freigesetzt – 76 Millionen Tonnen oder 10,1 Prozent weniger als 2022. Dies ist der stärkste Rückgang seit 1990. Insbesondere der Verkehrssektor muss beim Klimaschutz aber nachsteuern. Er verfehlt seine Klimaziele erneut deutlich und liegt 13 Millionen Tonnen über dem zulässigen Sektor-Budget. ⁠ UBA ⁠-Präsident Dirk Messner ordnet die Zahlen so ein: „Mit Ausbruch des Kriegs gegen die Ukraine hatten viele die Sorge, dass wir eine Renaissance der Kohle und anderer fossiler Energieträger sehen werden. Wir wissen heute, dass das nicht passiert ist. Das liegt vor allem am sehr erfolgreichen Ausbau der erneuerbaren Energien. Das ist ein großer Schritt, der uns in den kommenden Jahren beim ⁠ Klimaschutz ⁠ helfen wird. Aber nicht in allen Sektoren stehen wir glänzend da. Vor allem der Verkehrssektor bleibt weiter ein großes Sorgenkind. Hier muss dringend mehr passieren – etwa durch den Ausbau der Elektromobilität und den Abbau des Dienstwagenprivilegs und anderer klimaschädlicher Subventionen. Mit Blick auf das Jahr 2030 bin ich zuversichtlich, dass wir die nationalen Klimaziele einhalten können. Wir sind bereits ein großes Stück beim Klimaschutz vorangekommen. Zu Beginn der Legislaturperiode gingen wir für 2030 noch von 1.100 Millionen Tonnen THG zu viel aus. Jetzt sehen wir in unseren Projektionen für 2030, dass diese Lücke geschlossen werden wird, wenn wir weiter so ambitioniert am Klimaschutz arbeiten.“ Im Sektor Energiewirtschaft sind die THG-Emissionen 2023 gegenüber dem Vorjahr um rund 51,8 Mio. Tonnen CO₂-Äquivalente bzw. 20,1 Prozent gesunken, was auf einen geringeren Einsatz fossiler Brennstoffe zur Erzeugung von Strom und Wärme zurückzuführen ist. Besonders stark war dieser Rückgang beim Einsatz von Braun- und Steinkohle sowie bei Erdgas. Gründe hierfür sind unter anderem die deutlich gesunkene Kohleverstromung, der konsequente Ausbau der erneuerbaren Energien und ein Stromimportüberschuss bei gleichzeitig gesunkener Energienachfrage. Weitere Treiber waren Energieeinsparungen in Folge von höheren Verbraucherpreisen sowie die milden Witterungsverhältnisse in den Wintermonaten. In der Industrie sanken die Emissionen im zweiten Jahr in Folge auf rund 155 Mio. Tonnen CO 2 -Äquivalente im Jahr 2023. Dies entspricht einem Rückgang von fast 13 Mio. Tonnen oder 7,7 Prozent im Vergleich zum Vorjahr. Damit liegt der Industriesektor mit rund 18 Mio. Tonnen ⁠ CO2 ⁠-Äquivalente unter seiner Jahresemissionsmenge für 2023. Auch hier wird der Emissionsrückgang durch den gesunkenen Einsatz fossiler Brennstoffe, insbesondere von Erdgas und Steinkohle, bestimmt. Wichtige Treiber dieses Trends sind die negative konjunkturelle Entwicklung und gestiegene Herstellungskosten, die zu Produktionsrückgängen führten. Auch im Gebäudesektor konnte eine Emissionsminderung von 8,3 Mio. Tonnen CO₂-Äquivalenten auf rund 102 Mio. Tonnen CO₂-Äquivalente (minus 7,5 Prozent) erreicht werden. Trotz dieser Minderung überschreitet der Gebäudesektor erneut die gemäß BUndes-Klimaschutzgesetz (KSG) erlaubte Jahresemissionsmenge, diesmal um rund 1,2 Mio. Tonnen CO₂-Äquivalente. Wesentliche Treiber für den Rückgang der Emissionen sind wiederum Energieeinsparungen aufgrund der milden Witterungsbedingungen in den Wintermonaten 2023 und höhere Verbraucherpreise. Auch der Zubau an Wärmepumpen wirkte sich positiv auf die Emissionsentwicklung im Gebäudebereich aus, da beispielsweise weniger Erdgas und Heizöl eingesetzt wurden. Im Verkehr wurden 2023 rund 146 Mio. Tonnen CO₂-Äquivalente ausgestoßen. Damit liegen die THG-Emissionen im Verkehrssektor rund 1,8 Mio. Tonnen (1,2 Prozent) unter dem Wert von 2022 und rund 13 Mio. Tonnen über der nach KSG für 2023 zulässigen Jahresemissionsmenge von 133 Mio. Tonnen CO₂-Äquivalente. Im Vorjahr waren die Emissionen noch leicht angestiegen. Angesichts der nur geringen Überschreitung im Gebäudesektor ist der Verkehr damit der einzige Sektor, der sein Ziel deutlich verfehlt und sich weiter vom gesetzlichen Zielpfad entfernt. Haupttreiber des geringen Emissionsrückgangs sind dabei aber nicht etwa effektive Klimaschutzmaßnahmen, sondern die abnehmende ⁠ Fahrleistung ⁠ im Straßengüterverkehr. Verglichen mit 2022 hat der Pkw-Verkehr 2023 dagegen leicht zugenommen. Die im vergangenen Jahr neu zugelassenen Elektrofahrzeuge im Pkw-Bestand wirken hier leicht emissionsmindernd. Projektionsdaten für das Jahr 2030: Aus den heute veröffentlichten aktuellen UBA-Projektionsdaten 2024 wird im Vergleich zum UBA-Projektionsbericht 2023 deutlich, dass die neuen Klimaschutzmaßnahmen auf nationaler und europäischer Ebene ihre Wirkung entfalten können. Mit einem ambitionierten Ausbau der erneuerbaren Energien bleiben die nationalen Klimaziele bis 2030 sektorübergreifend erreichbar. Die sogenannte kumulierte Jahresemissionsgesamtmenge zeigt sektorübergreifend bis 2030 sogar eine Übererfüllung von 47 Mio. Tonnen CO₂-Äquivalenten. Dem Ziel, im Jahr 2030 die THG-Emissionen um 65 Prozent gegenüber 1990 zu mindern, kommt Deutschland mit den aktuell vorgesehenen Maßnahmen demnach sehr nahe. Wie die Emissionsdaten zeigen auch die aktuellen Projektionsdaten, dass die Klimaschutzanstrengungen in den einzelnen Sektoren unterschiedlich erfolgreich sind. So weist der Verkehrssektor bis 2030 eine kumulierte Minderungslücke von 180 Mio. Tonnen CO₂-Äquivalenten auf. Im Sektor Gebäude werden bis 2030 wiederum 32 Mio. Tonnen CO₂-Äquivalente mehr emittiert als vorgesehen. Dahingegen übertrifft der Sektor Energiewirtschaft sein Emissionsziel um 175 Mio. Tonnen CO₂-Äquivalente, was maßgeblich auf einen gelungenen Ausbau der erneuerbaren Energien bis 2030 basiert. Auch der Sektor Industrie übertrifft laut Projektionsdaten seine gesetzlichen Vorgaben um 37 Mio. Tonnen CO₂-Äquivalente, dabei geht in den kommenden Jahren die Erholung der Industrie einher mit ihrer Dekarbonisierung. Die Sektoren Landwirtschaft sowie Abfallwirtschaft und Sonstiges übererfüllen ihre Ziele um 29 Mio. Tonnen, bzw. um 17 Mio. Tonnen CO₂-Äquivalente. Weitere Informationen: Die vorliegenden Emissionsdaten für das Jahr 2023 stellen die gegenwärtig bestmögliche Berechnung dar. Sie sind insbesondere aufgrund der zu diesem Zeitpunkt nur begrenzt vorliegenden statistischen Berechnungsgrundlagen mit entsprechenden Unsicherheiten verbunden. Die Berechnungen leiten sich aus einem System von Modellrechnungen und Trendfortschreibungen der im Januar 2024 veröffentlichten detaillierten Inventare der THG-Emissionen des Jahres 2022 ab. Die vollständigen, offiziellen und detaillierten Inventardaten zu den THG-Emissionen in Deutschland für das Jahr 2023 veröffentlicht das UBA im Januar 2025 mit der Übermittlung an die Europäische Kommission. Für die Erstellung der Projektionsdaten und des Projektionsberichts der Bundesregierung beauftragt das UBA regelmäßig ein unabhängiges Forschungskonsortium, das mit einem integrierten Modellierungsansatz abschätzt, wie sich die aktuelle Klimaschutzpolitik auf die klimaschädlichen Treibhausgasemissionen Deutschlands auswirkt. Der Fokus liegt auf den Ergebnissen in den Sektoren bis zum Jahr 2030 und auf dem Jahr 2045. Das UBA koordiniert die Arbeiten in enger Abstimmung mit den zuständigen Ressorts aller Sektoren auf Bundesebene (Energiewirtschaft, Verkehr, Industrie, Gebäude, Abfallwirtschaft, Landwirtschaft sowie ⁠ Landnutzung ⁠, Landnutzungsänderungen und Forstwirtschaft). Diese Projektionen sollten nicht als ⁠ Prognose ⁠ für kommende Jahre missverstanden werden. Für Projektionen werden Modelle eingesetzt, die eine langjährige, plausible Treibhausgasemissionsentwicklung unter den Bedingungen und Annahmen zum Zeitpunkt des Modellierungsstarts projizieren. Auftretenden Sondereffekten und unvorhergesehenen, kurzfristigen Ereignissen, wie z. B. die Energiekrise im vergangenen Jahr, sind methodisch nicht oder nur begrenzt integrierbar. Zusätzlich zu dem heute veröffentlichten Kurzpapier „Treibhausgas-Projektionen 2024 – Ergebnisse kompakt“ zu den Projektionsdaten 2024 hat das UBA bereits Anfang März 2024 die Annahmen für die Berechnung der Treibhausgasprojektionen veröffentlicht: Treibhausgas-Projektionen 2024 für Deutschland - Instrumente Treibhausgas-Projektionen 2024 für Deutschland - Rahmendaten

Gesundheitsrisiken durch Hitze

<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten.</p><p>Informationen zur interaktiven Karte</p><p>Quellen: ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ 2000-2024 – ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠/Climate Data Center, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2000-2024 – DWD/Climate Data Center; Daten für 2024 – Persönliche Mitteilung des DWD vom 15.05.2025.</p><p>Bearbeitung: Umweltbundesamt, FG I 1.6/FG I 1.7</p><p>Gesundheitsrisiko Hitze</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a>⁠ in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>⁠) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a>⁠ 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren&nbsp;(vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug &amp; Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a>⁠ 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich.</p><p><em>Tipps zum Weiterlesen:</em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. &amp; Mücke, H.-G. (2017): ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>

Bodenkennwerte (bundesweit) aus der Bodenübersichtskarte 1:200.000 - Schluffgehalt im Oberboden (Datensatz)

Der Datensatz enthält Informationen zum Schluffgehalt im Oberboden (in %) der Böden in Deutschland. Grundlage für die Erstellung des Datensatzes ist die deutschlandweit harmonisiert verfügbare Bodenübersichtskarte im Maßstab 1:200.000 (BÜK 200), bereitgestellt von der BGR (2021). Es handelt sich um Mittelwerte, die landnutzungsspezifisch aus den in der BÜK200 vorliegenden Profilen eines BÜK-Polygons abgeleitet wurden. Die Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext der methodischen Annahmen bei der Erstellung und Verarbeitung der Ausgangsdaten. Die Ableitung des Bodenkennwertes erfolgte auf Grundlage der Bodenkundlichen Kartieranleitung (KA5; Ad-hoc-AG Boden (2005): Bodenkundliche Kartieranleitung (KA 5). Ad-hoc-Arbeitsgruppe Boden der geologischen Landesämter und der Bundesanstalt für Geowissenschaften und Rohstoffe der BRD, Hannover.). Eine grundsätzliche Beschreibung des methodischen Vorgehens findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE. UBA Texte | 142/2022 (Link siehe INFO-LINKS)). Diese Kenngröße wird aktuell für die bundesweite Bodenabtragsmodellierung mit der Allgemeinen Bodenabtragsgleichung (ABAG) und die bundesweite Ableitung der Erheblichkeit erosivem Bodenabtrags verwendet.

Gefährdungspotenzial Überschwemmung durch Starkregen

Gefährdungspotenzial durch Starkregen Für die Landeshauptstadt Dresden wurde ein Klimaanpassungskonzept erarbeitet, dass die Klimaveränderungen und dessen Folgen in Dresden aufzeigt. In diesem Rahmen wurden Gefährdungsanalysen für die Dresdner Stadtteile erstellt. Das Gefährdungspotenzial ergibt sich aus der Sensitivität eines Systems bezüglich der Klimaveränderung und der Exposition (Lage im Stadtraum). Für die Analyse standen die menschliche Gesundheit, Gebäude und Infrastruktur im Fokus. Gefährdungspotenziale wurden für die Themen Wärmebelastung sowie die Überschwemmungsgefahr durch Starkregen und Flusshochwasser untersucht - hier Starkregen. In die Analyse flossen die mithilfe einer hydrodynamischen Modellierung ausgewiesenen potenziell überfluteten Flächen bei Starkregen ein. Außerdem wurden die Flächen kritischer und nicht-kritischer Flächennutzung einbezogen. Ausschlaggebend für das Gefährdungspotenzial ist der absolute Flächenanteil der überschwemmten Gebiete sowie deren relativer Anteil an der Gesamtfläche des Stadtteils. Damit wird vermieden, dass flächengroße Stadtteile überrepräsentiert werden. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung bewerten und die Maßnahmenentwicklung und -umsetzung priorisieren zu können. Weitere Informationen zur Gefährdungsanalyse und möglichen Anpassungsoptionen sind dem Klimaanpassungskonzept zu entnehmen. Die Gefährdungsanalyse wurde im Rahmen der Erstellung des Klimaanpassungskonzeptes vom Thüringer Institut für Nachhaltigkeit und Klimaschutz (ThINK) durchgeführt. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung in den verschiedenen Bereichen bewerten zu können. Mit Hilfe der Analyse kann die Maßnahmenentwicklung und -umsetzung priorisiert werden.

Modellentwicklung zur regionalen Vorhersage der N2O-Emissionen aus bodenchemischen und bodenphysikalischen Parametern unter spezieller Berücksichtigung des oberflächennahen N2O-Gehaltes in Böden

Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.

Wuchsleistung und Trockenstoffproduktion von Waeldern im Kurzumtrieb

Zur Volumenbestimmung stehender Baeume und zur Ermittlung des Hektarvorrates von Bestaenden werden in der Forstwirtschaft i.d.R. Berechnungsverfahren verwendet, die mit den Eingangsgroessen Brusthoehendurchmesser, Baumhoehe und Formzahl arbeiten. Bei diesen Ansaetzen steht die Ermittlung des Holzvolumens in Raummassen und nicht in Gewichtseinheiten im Vordergrund. Bei schnellwachsenden Baumarten wie Pappeln und Weiden, die im Kurzumtrieb bewirtschaftet werden, ist aufgrund des Verwendungszweckes neben den traditionellen Leistungsgroessen vor allem die Bestimmung der (Trocken-)Biomasse von zentraler Bedeutung. - Die Untersuchungen werden auf Versuchsaralen in Mecklenburg-Vorpommern und in Sachsen durchgefuehrt. Die Wuchsleistung wie auch die Trockenbiomasse werden fuer Weiden- und Pappelklone einzelbaum- und bestandesweise hergeleitet. Die Einzelbaumbiomassen werden in Abhaengigkeit von Baumdimensionen und Standraum modelliert.

Erosion von Bentonit unter In-situ Bedingungen durch Einwirkung natürlicher Wässer in geologischen Tiefenlagern, Teilprojekt C

Intelligentes Hafenlogbuch zur effizienten und nachhaltigen Nutzung der Hafeninfrastruktur, Teilvorhaben: Datenanalyse und Modellierung

Identifizierung von genetischen und phänotypischen Merkmalen in dem Wurzelsystem trockentoleranter Sommergerste (Hordeum vulgare)

Ziel des Projektes ist es, die Gene für die Wurzelentwicklung von Gerste zu identifizieren und deren Effekte zu quantifizieren. Zusätzlich wird die genetische Reaktion der Wurzel auf ein reduziertes Wasserangebot im Substrat untersucht und für die Modelbildung parametrisiert. Es wird ein Assoziationsansatz zur QTL bzw. QTL x Behandlungsinteraktion Detektion verwendet. Hierzu steht eine Kartierungspopulation mit ca. 192 Linien zur Verfügung, die mit den genbasierten SNP - Markern (GKI Select Chip) genotypisiert werden. Darüber hinaus wurde die Population schon mit DArT und SSR-Marker genotypisiert. Für diese Population mit hoher Markerdichte (geschätzt 5000 kartierbare Marker) wird eine Assoziationskartierung von Wurzelmerkmalen zur Schätzung der Merkmals-Marker- Assoziation im Mixed-Model-Verfahren durchgeführt. Die QTL dienen als Parameter für die QTL basierte Modellierung. Die Wurzelentwicklung wird für die Population unter Kontrolle und Stressbedingungen an zahlreichen Terminen festgestellt. Hierbei werden Wurzelparameter wie Wurzellänge, Wurzellängenentwicklung, Wurzelverteilung und mit Abschluss der Test Wurzeltrockenmasse und Sprosstrockenmasse erhoben. Parallel zu den Untersuchungen werden an einem reduzierten Genotypenset (bestehend aus Klassen Trockenstressanfällige und -tolerante) die natürliche allelische Variabilität bei Kandidatengenen-Loci der Wurzelentstehung, -entwicklung und -differenzierung aus Arabidopsis bzw. Mais geprüft. Darüber hinaus wird mit einem Metabolomics Ansatz geprüft, ob diagnostische Signaturen für Trockenstress existieren. Hierzu werden vergleichende Analysen der Metaboliten zwischen den Mitgliedern des reduzieren Genotypensets durchgeführt, um spezifische Metaboliten für Trockenstress resistente Genotypen zu identifizieren

1 2 3 4 51937 1938 1939