API src

Found 10 results.

Detrital age spectra and petrological analysis of gravel-size clasts of the Oligocene-early Miocene glaciomarine sediments of the DSDP drilling Site 270, Central Ross Sea, Antarctica

This data-set contains provenance detrital data from the glacimarine sequence of Deep Sea Drilling Project Site 270. The 270 site was cored on a flank of the Central High in the central Ross Sea and recovered a thick Oligocene to lower Miocene glacimarine sequence, overlain by ~20 m of Pliocene to Recent strata. This site provides important temporal constraints on regional stratigraphy and insights into late Oligocene to early Miocene ice sheet dynamics. We analyzed eight detrital samples of glaciomarine sediments distributed along the core and two from the basement rocks recovered during coring, by using an integrated single-grain provenance approach. This multi-proxy provenance study employs conventional U-Pb detrital zircon dating integrated with apatite U-Pb and fission-track dating and trace element analysis of detrital apatite and clast petrology. The data-set suggests a general evolution from local erosion due to small ice caps to far-travelled glacial detritus responding to the continuous sea floor subsidence. The detrital age spectra of a late Oligocene diamicitite is consistent with far travelled grains from southern West Antarctica (WA), suggesting an expansion of the WA ice sheet that should be the oldest and first evidence of ice sheet growth on the WA.

A database of analogue models testing the interaction between magmatic intrusion-related doming and caldera collapse

This dataset presents the raw data from one experimental series (named CCEX, i.e., Caldera Collapse under regional Extension) of analogue models performed to investigate the process of caldera collapse followed by regional extension. Our experimental series tested the case of perfectly circular collapsed calderas afterward stretched under regional extensional conditions, that resulted in elongated calderas. The models are primarily intended to quantify the role of regional extension on the elongation of collapsed calderas observed in extensional settings, such as the East African Rift System. An overview of the performed analogue models is provided in Table 1. Analogue models have been analysed quantitatively by means of photogrammetric reconstruction of Digital Elevation Model (DEM) used for 3D quantification of the deformation, and top-view photo analysis for qualitative descriptions. The analogue materials used in the setup of these models are described in Montanari et al. (2017), Del Ventisette et al. (2019), Bonini et al., 2021 and Maestrelli et al. (2021a,b).

A database of physical experiments, fieldwork information, and a seismic line applied on the eastern Domeyko Cordillera, northern Chile

This dataset contains a series of analog models for comparing and testing positive tectonic inversion mechanisms and wedge structure formation. Furthermore, it includes a 2-D seismic reflection profile that can be compared with the models presented here. Finally, several photos of some structural features that cab be associated with wedge structure are shown. Both seismic lines and photos are located on a segment of Andean forearc, specifically, in the eastern Domeyko Cordillera and the Salar de Atacama Basin in northern Chile. Specifically, the models were deformed under extensional and compressional conditions, inducing a positive tectonic inversion, using a pure/simple-shear deformational apparatus. Our models intended to simulate the tectonic conditions presented in López et al. (2022), which illustrated the structural setting of the Domeyko Cordillera as resulting from the interplay between positive inversion tectonics and pure shortening faulting. Moreover, our models simulated three geological environments that developed sequentially through time: (a) syn-rift sedimentation, (b) post-rift and pre-shortening sedimentation, and (c) syn-shortening sedimentation. Post-rift and syn-shortening sedimentation incorporated a ductile layer (PDMS) during the shortening phase, simulating the presence of evaporitic deposits (i.e., gypsum) to test the conditions that could have controlled the formation of pure-shortening-related structures in the case study under consideration.

Detrital age spectra of the middle Miocene to Present day glaciomarine sediments of the DSDP Leg 28 drilling sites 271, 272 Central Ross Sea, Antarctica

This dataset contains provenance detrital data from the glacimarine sequence of Deep Sea Drilling Project Leg 28, Site 271 e 272. The two boreholes are located in the middle of the Ross Sea, in a key site close at 180° longitude that is considered the present confluence between ice flows fed by West Antarctica and East Antarctica. These two sites, together, provide insights to Middle Miocene to Present ice sheet dynamics. We analyzed eight detrital samples of glaciomarine sediments, four from 272 drill core and 4 from 271. We used an integrated single-grain provenance approach (Olivetti et al., 2023). This multi-proxy provenance study employs conventional U-Pb detrital zircon dating integrated with apatite U-Pb and fission-track dating and trace element analysis of detrital apatite. The dataset suggests a recurrent E - W oscillations of the ice flow divide between ice fed by West and East Antarctica ice sheets, respectively.

A database of centrifuge analogue models testing the influence of inherited brittle fabrics on continental rifting

This dataset presents the raw data of an experimental series of analogue models performed to investigate the influence of inherited brittle fabrics on narrow continental rifting. This model series was performed to test the influence of brittle pre-existing fabrics on the rifting deformation by cutting the brittle layer at different orientations with respect to the extension direction. An overview of the experimental series is shown in Table 1. In this dataset we provide four different types of data, that can serve as supporting material and for further analysis: 1) The top-view photos, taken at different steps and showing the deformation process of each model; they can be used to interpret the geometrical characteristics of rift-related faults; 2) Digital Elevation Models (DEMs) used to reconstruct the 3D deformation of the performed analogue models, allowing for quantitative analysis of the fault pattern. 3) Short movies built from top-view photos which help to visualize the evolution of model deformation; 4) line-drawing of fault and fracture patters to be used for fault statistical quantification. Further details on the modelling strategy and setup can be found in Corti (2012), Maestrelli et al. (2020), Molnar et al. (2020), Philippon et al. (2015), Zwaan et al. (2021) and in the publication associated with this dataset. Materials used for these analogue models were described in Montanari et al. (2017) Del Ventisette et al. (2019) and Zwaan et al. (2020).

A database of enhanced-gravity analogue models examining the influence of pre-existing fabrics on the evolution of oblique rift

This dataset shows the original data of a series of enhanced-gravity (centrifuge) analogue models, which were performed to test the influence of the pre-existing fabrics in the brittle upper crust on the evolution of structures resulting from oblique rifting. The obliquity of the rift (i.e., the angle between the rift axis and the direction of extension) was kept constant at 30° in all the models. The main variable of this experimental series was the orientation of the pre-existing fabrics (indicated as the angle between the trend of the fabric and the orthogonal to extension), which varied from 0° to 90° (i.e., from orthogonal to parallel to the extension direction). The inherited discontinuities were reproduced by cutting with a knife through the top brittle layer of models. An overview of the experimental series is shown in Table 1. In this dataset, four different data types are provided for further analysis: 1) Top-view photos of model deformation, taken at different time intervals and showing the deformation process of each model; they can be used to interpret the geometrical characteristics of rift-related faults; 2) Digital Elevation Models (DEMs) used to reconstruct the 3D deformation of the analogue models, allowing for quantitative analysis of the fault pattern. 3) Movies of model deformation, built from top-view photos, which help to visualize the evolution of model deformation; 4) Faults line-drawings to be used for statistical quantification of rift-related structures. Further information on the modelling strategy and setup can be found in the publication associated to this dataset and in Corti (2012), Philippon et al. (2015), Maestrelli et al. (2020), Molnar et al. (2020), Zwaan et al. (2021), Zou et al. (2023). Materials used to perform these enhanced-gravity analogue models were described in Montanari et al. (2017), Del Ventisette et al. (2019) and Zwaan et al. (2020).

A database of caldera collapse analogue models stretched under extensional conditions

This dataset presents the raw data from one experimental series (named CCEX, i.e., Caldera Collapse under regional Extension) of analogue models performed to investigate the process of caldera collapse followed by regional extension. Our experimental series tested the case of perfectly circular collapsed calderas afterward stretched under regional extensional conditions, that resulted in elongated calderas. The models are primarily intended to quantify the role of regional extension on the elongation of collapsed calderas observed in extensional settings, such as the East African Rift System. An overview of the performed analogue models is provided in Table 1. Analogue models have been analysed quantitatively by means of photogrammetric reconstruction of Digital Elevation Model (DEM) used for 3D quantification of the deformation, and top-view photo analysis for qualitative descriptions. The analogue materials used in the setup of these models are described in Montanari et al. (2017), Del Ventisette et al. (2019), Bonini et al., 2021 and Maestrelli et al. (2021a,b).

A database of R-R-R triple junction analogue and numerical models

This dataset presents the raw data from two experimental series of analogue models and four numerical models performed to investigate Rift-Rift-Rift triple junction dynamics, supporting the modelling results described in the submitted paper. Numerical models were run in order to support the outcomes obtained from the analogue models. Our experimental series tested the case of a totally symmetric RRR junction (with rift branch angles trending at 120° and direction of stretching similarly trending at 120°; SY Series) or a less symmetric triple junction (with rift branches trending at 120° but with one of these experiencing orthogonal extension; OR Series), and testing the role of a single or two phases of extension coupled with effect of differential velocities between the three moving plates. An overview of the performed analogue and numerical models is provided in Table 1. Analogue models have been analysed quantitatively by means of photogrammetric reconstruction of Digital Elevation Model (DEM) used for 3D quantification of the deformation, and top-view photo analysis for qualitative descriptions. The analogue materials used in the setup of these models are described in Montanari et al. (2017), Del Ventisette et al. (2019) and Maestrelli et al. (2020). Numerical models were run with the finite element software ASPECT (e.g., Kronbichler et al., 2012; Heister et al., 2017; Rose et al., 2017).

Water demand of bioenergy

This dataset contains the results of a literature analysis on the potential future water demand of bioenergy plantations and for contextualization that of other water use sectors. For the bioenergy scenarios, it also contains the following parameters/assumptions of the studies included: type of study, modeling framework, bioenergy feedstock, land-type converted to biocrops, whether global maps for bioenergy locations are included, whether withdrawal or consumption is reported, type of water (blue/green/gray), simulation year for which data is extracted, carbon conversion efficiency (c_eff), plantation area, provided bioenergy and/or NEs (depending on study type) and the associated freshwater requirements

Monthly complex amplitudes of global M2 ocean tide induced electromagnetic field signals from 1990 to 2016

An electric current is induced by the motion of electrical conducting seawater through the ambient geomagnetic field. The periodic oceanic tidal flow induces an electric current that emits periodical time-variable electromagnetic field signals. The radial component of the ocean tide induced magnetic field signals has successfully been extracted from magnetic field observations of the satellite missions CHAMP and Swarm. It is known that the amplitudes of these electromagnetic signals are modulated by, among other influences, variations of the electrical seawater conductivity distribution of the ocean. The electrical seawater conductivity in return depends on seawater temperature and salinity. In order to analyse the influence of variations in oceanic temperature and salinity, we modelled a complete set of monthly time slices of three dimensional global complex amplitudes of these electromagnetic field signals for the years 1990 to 2016. In order to analyse solely the influence of variations in the climate sensitive seawater temperature and salinity on the ocean tide induced magnetic field signals, the influences of the secular variation of the geomagnetic field and temporal variations in ocean tide transports have been neglected.The data set is a supplement to the article of Petereit et al. (2019). The detailed method used to create this data set can be found in the data and methods section of the article and the associated data description file.Several datasets and models have been combined in order to compute the necessary models for the electrical conductivity of the Earth's surface and the ocean tide induced electric currents. These are the two main components needed for the modelling of the electromagnetic field signals that are emitted by the ocean tide induced electric currents.The model for the electrical conductivity of the Earth is composed of three components: a 1-D mantle conductivity distribution (Grayver et al., 2017), the time constant sediment conductivity (Laske & Masters, 1997) and the time-varying ocean conductivity. Ocean conductivity values were derived from a dataset of monthly global seawater temperature and salinity distributions that were derived from in-situ observations (Cabanes et al., 2013) using the TEOS-10 Toolbox (IOC, SCOR & APSO, 2010) to solve the Gibbs-seawater equation.The ocean-tide induced electric current density was computed as the vector product of the oceanic seawater conductivity, the tidal transports of the TPXO8-atlas (Egbert & Erofeeva, 2002) and ambient geomagnetic field of the IGRF-12 (Thébault et al., 2015). While, the oceanic seawater conductivity was variable in time, the tidal transports and the field strength of the ambient geomagnetic field have been kept constant.

1