Seit dem neuen Jahrtausend wächst der globale Hydroenergieausbau schneller als jemals zuvor. Die südwestchinesische Provinz Yunnan, mittlerweile einer der weltgrößten Erzeuger von Wasserkraft (HP), spielt hierbei eine herausragende Rolle. Allein zwischen 2000 und 2016 stieg hier die installierte Hydrokapazität von 2,5 auf 59GW. Während die Großprojekte an Yunnans drei Hauptflüssen (Mekong, Nu und Yangtse) relativ bekannt sind, ergeben Yunnans fünf grenzüberschreitende Einzugsgebiete (EG) eine große 'terra incognita'. Doch hier gibt es fast Tausend unbekannter HP-Projekte (grösser als 1MW; 2016: 22,4GW). Der diesbezüglich gravierende Informations- und Datenmangel hat massive Auswirkungen auf unser Verständnis der komplexen ökologischen, geopolitischen und sozio-ökonomischen Implikationen der oft als 'grüne Energie' bezeichneten Kleinwasserkraft (SHP). Das ist umso gravierender, da Yunnan einen der globalen Biodiversitäts-Hotspots darstellt. In einem Vorgängerprojekt habe ich die beiden transnationalen EG des Nu und Ayeyarwady untersucht. Beide gehören global zu den wenigen Flüssen die am Hauptlauf noch unverbaut sind. Obwohl über beide EG fast nichts bekannt ist, konnten über 370 größere HP-Projekte identifiziert werden. Auf Grundlage des Powershed-Ansatzes wurden die vielfältigen Wechselwirkungen zwischen dem massiven HP-ausbau und dem Wasser-Energie-Umwelt (WEU) Nexus untersucht sowie Ursachen und Auswirkungen einer Überentwicklung identifiziert und beschrieben. Auf Grundlage dieser Arbeiten, v.a. des WEU-Nexus, plane ich eine vergleichende Analyse von Yunnans fünf transnationalen EG. Das Projekt wird Yunnans Datengrundlage massiv verbessern (inkl. der Erstellung interaktiver Karten), es wird aber auch das Verständnis von Überentwicklung, Umweltauswirkungen und nachhaltigen Entwicklungspfaden im HP-ausbau verbessern. Um dieses Ziel zu erreichen, sollen drei Teilgebiete vertiefend analysiert und bewertet werden (1) Vergleich der lokalen SHP-Implementierung sowie Aufnahme einer umfassenden Datenbank aller HP-projekte, inkl. Geovisualisierung; (2) Untersuchung der raum-zeitlichen Wechselwirkungen innerhalb des Wasser-Energie Nexus bzw. des Paradigmas von Erzeugung-Verbrauch-Imp/Exp; sowie (3) Untersuchung und Quantifizierung des Wasser-Umwelt Nexus. Das betrifft sowohl die Analyse kumulativer biophysikalischer Implikationen (z.B. Fisch-Sampling, DOC-Analysen) als auch indirekte ökologische Auswirkungen des rapiden parallelen Ausbaus energieintensiver Industrien. In einem ergänzenden Modul soll der Ansatz auf Xinjiangs (NW-China) drei transnationale EG übertragen werden, die ebenfalls ein massiver HP-ausbau kennzeichnet. Außerdem ist Xinjiang Chinas schnellst wachsender Stromerzeuger, weist aber einen völlig anderen geographischen Kontext auf. Deshalb sollen v.a. Gemeinsamkeiten und Unterschiede der Nexus-Interaktionen herausgearbeitet werden. Außerdem soll die HP-Datenbasis auf dem gesamte tibet. Plateau erfasst und interaktiv geovisualisiert
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Die zunehmende Verwendung von Gleichstrom, für die Verteilung der elektrischen Energie, stellt einen wesentlichen Beitrag zur Erreichung der Ziele der Energiewende im Stromsektor dar. Eine Schlüsseltechnologie zur Realisierung dieser zukünftigen effizienten Gleichstromnetze stellen geeignete Schaltgeräte dar, welche die neuen hohen Anforderungen erfüllen können. In diesem Projekt sollen daher zwei Varianten von hybriden DC-Schaltgeräten (kurz: Hybridschaltgeräte) für Spannungen bis zu 1500V entwickelt werden. Der Schwerpunkt liegt auf einem Hybridschaltgerät, bei welchem die Stromunterbrechung durch eine Kombination aus mechanischen und elektronischen Schaltern geschieht. In einer zweiten Variante soll untersucht werden, ob auch ein rein elektronischer Schalter in diesem Spannungsbereich die Anforderungen an die Stromunterbrechung erfüllen kann. In beiden Fällen sorgt ein nachgelagertes mechanisches Schaltelement für die Herstellung der sicheren elektrischen Trennung. Im Detail sollen geeignete Leistungshalbleiter, mechanische Schalter und Steckverbinder sowie unterschiedliche Topologien von Hybridschaltgeräten auf diese Anforderung hin überprüft werden. Mit den Favoriten werden Demonstratoren zunächst für 800 V und anschließend in modularem Aufbau bis 1500 V erstellt, die jeweils unter realen Bedingungen charakterisiert und bewertet werden sollen. Flankiert werden diese experimentbasierten Untersuchungen durch entsprechende Modellbildung und Simulation. Projektziel ist die Entwicklung und anwendungsnahe Prüfung zweier Varianten von Demonstratoren zum Einsatz in zukünftigen Gleichstromnetzen bis 1500 V. Die genaue Spezifikation wird zu Projektbeginn definiert; angestrebt sind Nennströme bis 500 A.
Die zunehmende Verwendung von Gleichstrom, für die Verteilung der elektrischen Energie, stellt einen wesentlichen Beitrag zur Erreichung der Ziele der Energiewende im Stromsektor dar. Eine Schlüsseltechnologie zur Realisierung dieser zukünftigen effizienten Gleichstromnetze stellen geeignete Schaltgeräte dar, welche die neuen hohen Anforderungen erfüllen können. In diesem Projekt sollen daher zwei Varianten von hybriden DC-Schaltgeräten (kurz: Hybridschaltgeräte) für Spannungen bis zu 1500V entwickelt werden. Der Schwerpunkt liegt auf einem Hybridschaltgerät, bei welchem die Stromunterbrechung durch eine Kombination aus mechanischen und elektronischen Schaltern geschieht. In einer zweiten Variante soll untersucht werden, ob auch ein rein elektronischer Schalter in diesem Spannungsbereich die Anforderungen an die Stromunterbrechung erfüllen kann. In beiden Fällen sorgt ein nachgelagertes mechanisches Schaltelement für die Herstellung der sicheren elektrischen Trennung. Im Detail sollen geeignete Leistungshalbleiter, mechanische Schalter und Steckverbinder sowie unterschiedliche Topologien von Hybridschaltgeräten auf diese Anforderung hin überprüft werden. Mit den Favoriten werden Demonstratoren zunächst für 800 V und anschließend in modularem Aufbau bis 1500 V erstellt, die jeweils unter realen Bedingungen charakterisiert und bewertet werden sollen. Flankiert werden diese experimentbasierten Untersuchungen durch entsprechende Modellbildung und Simulation. Projektziel ist die Entwicklung und anwendungsnahe Prüfung zweier Varianten von Demonstratoren zum Einsatz in zukünftigen Gleichstromnetzen bis 1500 V. Die genaue Spezifikation wird zu Projektbeginn definiert; angestrebt sind Nennströme bis 500 A.
Ziel des Vorhabens ist die Entwicklung, Errichtung und Erprobung eines modularen Biogasanlagenkonzeptes, welches den Aufbau von robusten, funktionssicheren und einfach zu betreibenden Kleinst-Biogasanlagen bis zu einer Leistung von kleiner als 30kWel für die energetische Nutzung von Wirtschaftsdünger ermöglicht. Eine Herausforderung und wesentlicher Grund dafür, dass bei den Kleinst- Biogasanlagen bisher die energetischen Potentiale bei der Substratverwendung von Wirtschaftsdünger nur unzureichend genutzt werden konnten, ist die Wirtschaftlichkeit; mit sinkender Anlagenleistung steigen die spezifischen Anlagenkosten. Hier setzt das Anlagenkonzept des angedachten Vorhabens an, in dem es eine konsequente Umsetzung einer seriellen Fertigung von Anlagenmodulen im Containerraster verfolgt. Die damit verbundenen Möglichkeiten, wie: - Reduzierung der Installationskosten beim Anlagenbetreiber durch einen hohen Vorferti-gungsgrad - Reduzierung der Anlagenkosten durch die Entwicklung von standardisierten Modulen und den Möglichkeiten der Serienfertigung - Kalkulierbare Logistikkosten durch den Bau der Module im standardisierten Containerraster bieten die Chance, die Kostennachteile kleiner Anlagen zum Teil zu kompensieren. Die Modularisie-rung und die damit verbundene Möglichkeit der Entwicklung von Produktvarianten in kurzer Zeit erlaubt es, auch in diesem Leistungssegment auf unterschiedliche Standortanforderungen (z.B. Substratmenge und - zusammensetzung) zu reagieren. Bei erfolgreicher Entwicklung der Module sind hier gegenüber der traditionellen projektorientierten Entwicklung Kostenvorteile möglich. Die zusätzliche Orientierung der kleinen Anlagen auf die Eigennutzung der erzeugten Energie ermöglichen bei derzeit steigenden Strompreisen bis zu 30 Cent/KWh und möglicher Nutzung der Abwärme für den Betreiber wirtschaftlich tragfähige Lösungen.
Ziel des Vorhabens ist die Entwicklung, Errichtung und Erprobung eines modularen Biogasanlagenkonzeptes, welches den Aufbau von robusten, funktionssicheren und einfach zu betreibenden Kleinst-Biogasanlagen bis zu einer Leistung von kleiner als 30kWel für die energetische Nutzung von Wirtschaftsdünger ermöglicht. Eine Herausforderung und wesentlicher Grund dafür, dass bei den Kleinst-Biogasanlagen bisher die energetischen Potentiale bei der Substratverwendung von Wirtschaftsdünger nur unzureichend genutzt werden konnten, ist die Wirtschaftlichkeit; mit sinkender Anlagenleistung steigen die spezifischen Anlagenkosten. Hier setzt das Anlagenkonzept des angedachten Vorhabens an, in dem es eine konsequente Umsetzung einer seriellen Fertigung von Anlagenmodulen im Containerraster verfolgt. Die damit verbundenen Möglichkeiten, wie: - Reduzierung der Installationskosten beim Anlagenbetreiber durch einen hohen Vorferti-gungsgrad - Reduzierung der Anlagenkosten durch die Entwicklung von standardisierten Modulen und den Möglichkeiten der Serienfertigung - Kalkulierbare Logistikkosten durch den Bau der Module im standardisierten Containerraster bieten die Chance, die Kostennachteile kleiner Anlagen zum Teil zu kompensieren. Die Modularisie-rung und die damit verbundene Möglichkeit der Entwicklung von Produktvarianten in kurzer Zeit erlaubt es, auch in diesem Leistungssegment auf unterschiedliche Standortanforderungen (z.B. Substratmenge und -zusammensetzung) zu reagieren. Bei erfolgreicher Entwicklung der Module sind hier gegenüber der traditionellen projektorientierten Entwicklung Kostenvorteile möglich. Die zusätzliche Orientierung der kleinen Anlagen auf die Eigennutzung der erzeugten Energie ermöglichen bei derzeit steigenden Strompreisen bis zu 30 Cent/KWh und möglicher Nutzung der Abwärme für den Betreiber wirtschaftlich tragfähige Lösungen.
Im Rahmen des Forschungsprojekts VARele wird ein virtuelles Energiesystem auf Basis von Virtual Reality (VR) entwickelt, in dem elementare Anlagen und Handlungsabläufe innerhalb des Verteilungsnetzes auf Hoch- und Mittelspannungsebene abgebildet und interaktiv erlebbar gemacht werden. Der Fokus liegt dabei auf einer detaillierten Abbildung von Umspannanlagen, intelligenten Ortsnetzstationen in Smart-Grid-Systemen und Übertragungssystemen, wie z.B. Hochspannungs- und Mittelspannungs-Freileitungs- und Kabelsystemen. Durch einen modularen Aufbau der VR-Szenarien werden Erweiterungen, wie z.B. eine Integration von Power-to-X-Technologien oder dezentralen Erzeugungsanlagen ermöglicht, die in zukünftigen Energiesystemen eine zentrale Rolle spielen werden. Mithilfe des virtuellen Energiesystems sollen relevante kooperative Lernsituationen geschaffen werden, die im Aus- und Weiterbildungsbereich dazu beitragen, Fach- und Führungskräfte der Energiewirtschaft optimal und effizient zu schulen.
| Origin | Count |
|---|---|
| Bund | 4024 |
| Land | 3 |
| Type | Count |
|---|---|
| Förderprogramm | 4023 |
| unbekannt | 4 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 4026 |
| Language | Count |
|---|---|
| Deutsch | 3859 |
| Englisch | 429 |
| Resource type | Count |
|---|---|
| Keine | 2235 |
| Webdienst | 3 |
| Webseite | 1790 |
| Topic | Count |
|---|---|
| Boden | 2028 |
| Lebewesen und Lebensräume | 1953 |
| Luft | 1882 |
| Mensch und Umwelt | 4013 |
| Wasser | 1324 |
| Weitere | 4027 |