Waterbase serves as the EEA’s central database for managing and disseminating data regarding the status and quality of Europe's rivers, lakes, groundwater bodies, transitional, coastal, and marine waters. It also includes information on the quantity of Europe’s water resources and the emissions from point and diffuse sources of pollution into surface waters. Specifically, Waterbase - Biology focuses on biology data from rivers, lakes, transitional and coastal waters collected annually through the Water Information System for Europe (WISE) – State of Environment (SoE) reporting framework. The data are expected to be collected within monitoring programs defined under the Water Framework Directive (WFD) and used in the classification of the ecological status or potential of rivers, lakes, transitional and coastal water bodies. These datasets provide harmonised, quality-assured biological monitoring data reported by EEA member and cooperating countries, as Ecological Quality Ratios (EQRs) from all surface water categories (rivers, lakes, transitional and coastal waters).
Um eine eventuelle Aenderung des Klimas durch den Wasserdampf- und Waermeausstoss von Kuehltuermen grosser Kraftwerke abschaetzen zu koennen, ist es erforderlich, das Verhalten der Kuehlturmschwaden in der atmosphaerischen Grenzschicht zu untersuchen. Die Aufstiegshoehe, Laenge und Breite des (durch kondensierten Wasserdampf) sichtbaren Schwadens werden mit Hilfe eines numerischen meteorologischen Modelles berechnet und mit Beobachtungsdaten von Kuehltuermen verglichen. Mit diesem Modell koennen dann fuer gegebene Standorte mit den dortigen meteorologischen Daten Haeufigkeitsstatistiken der obigen Groessen berechnet und damit die Abschaetzung der Ermittlungen vorgenommen werden. Ferner kann der Unterschied der Ermittlungen bei verschiedenen Kuehlturmtypen (nass, hybrid, trocken) untersucht werden.
<p>Dieser Datensatz beinhaltet historische Wetterdaten der Station des DWD (Station-Nummer: 02712) im Konstanzer Silvanerweg 6 über einen längeren Zeitraum.</p> <p>Am 25.07.2017 ist eine Änderung des Gesetzes über den Deutschen Wetterdienst ("DWD-Gesetz") in Kraft getreten. Der DWD wird gesetzlich beauftragt, seine Wetter- und Klimainformationen weitgehend entgeltfrei zur Verfügung zu stellen. Zurzeit stehen viele Geodaten wie Modellvorhersagen, Radardaten, aktuelle Mess- und Beobachtungsdaten sowie eine große Zahl von Klimadaten auf dem Open Data Server <a href="https://opendata.dwd.de/"><strong>https://opendata.dwd.de</strong> </a>zur Verfügung. Die Klimadaten werden unter <strong><a href="https://opendata.dwd.de/climate_environment/">https://opendata.dwd.de/climate_environment/CDC</a></strong> bereitgestellt.</p> <p>Die frei zugänglichen Daten dürfen entsprechend der "Verordnung zur Festlegung der Nutzungsbestimmungen für die Bereitstellung von Geodaten des Bundes (GeoNutzV)" unter Beigabe eines Quellenvermerks ohne Einschränkungen weiterverwendet werden (<a href="https://gdz.bkg.bund.de">https://gdz.bkg.bund.de</a>). Im Hinblick auf die Gestaltung der Quellenvermerke fordert der Deutsche Wetterdienst (DWD) (gemäß § 7 DWD-Gesetz, § 3 GeoNutzV) zur Beachtung nachfolgender Hinweise auf:</p> <ul> <li>Die Pflicht zur Einbindung beigegebener Quellenvermerke gilt für die unveränderte Verwendung von Geodaten und anderer Leistungen des DWD. Auch bei Bildung von Auszügen oder Änderung des Datenformats sind Quellenvermerke einzubinden. Eine Abbildung des DWD-Logos ist als Quellenvermerk im Sinne der GeoNutzV ausreichend.</li> <li>Bei weitergehenden Veränderungen, Bearbeitungen, neuen Gestaltungen oder sonstigen Abwandlungen erwartet der DWD mindestens eine Nennung des DWD in zentralen Quellenverzeichnissen oder im Impressum.</li> <li>Veränderungshinweise gemäß GeoNutzV können z.B. lauten: "Datenbasis: Deutscher Wetterdienst, Rasterdaten bildlich wiedergegeben", "Datenbasis: Deutscher Wetterdienst, Einzelwerte gemittelt" oder "Datenbasis:Deutscher Wetterdienst, eigene Elemente ergänzt".</li> </ul> <p>Bei einer Verwendung, die nicht der Zweckbestimmung der Leistung des DWD gerecht wird, sind beigegebene Quellenvermerke zu löschen. Das gilt insbesondere für Wetterwarnungen, wenn nicht sichergestellt ist, dass diese jederzeit vollständig und unverzüglich allen Nutzern zur Verfügung gestellt werden.</p> <p><strong>Quelle: </strong>Deutscher Wetterdienst (DWD)</p>
Abschätzung des Gesundheitsrisikos durch ionisierende Strahlung Erkrankungen ( z.B. Krebs) und Schäden, die von ionisierender Strahlung ausgelöst wurden, lassen sich vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant häufiger auftreten als bei nicht exponierten Kontrollgruppen. Zur Bestimmung des strahlenbedingten Krebsrisikos wurden epidemiologische Studien bei strahlenexponierten Personengruppen durchgeführt. Die Abschätzungen des genetischen Strahlenrisikos für den Menschen stammen aus tierexperimentellen Untersuchungen, da es für genetische Strahlenschäden keine gesicherten, am Menschen gewonnenen Erkenntnisse gibt. Wenn ionisierende Strahlung auf den menschlichen Körper trifft, können Schäden in einzelnen Zellen oder Geweben entstehen. Bei den Strahlenschäden unterscheidet man grundsätzlich zwischen deterministischen und stochastischen Schäden. Deterministische Strahlenschäden ( z. B. Hautrötungen oder Haarausfall) treten auf, wenn jemand eine Strahlendosis von mehr als ca. 500 Millisievert ( mSv ) erhalten hat. Bereits unterhalb dieses Schwellenwertes können stochastische Strahlenschäden auftreten. Dabei handelt es sich um Erkrankungen (z.B Krebs) und Schäden, die nur mit einer bestimmten Wahrscheinlichkeit entstehen. Im Folgenden wird beschrieben, wie man solche Wahrscheinlichkeiten – in der Epidemiologie auch "Risiken" genannt – schätzen kann. Eine große Herausforderung besteht darin, dass sich solche strahlenbedingten Erkrankungen ( z.B. Krebs) vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant und über verschiedene Personengruppen hinweg konsistent häufiger auftreten als bei nicht exponierten Kontrollgruppen und sich ein Zusammenhang zwischen der Dosis und der Höhe des Erkrankungsrisikos ( Dosis -Wirkungs-Beziehung) nachweisen lässt. Abschätzung des Krebsrisikos Zur Bestimmung des strahlenbedingten Krebsrisikos wurden wichtige epidemiologische Studien vor allem bei folgenden Personengruppen durchgeführt: Überlebende der Atombombenexplosionen von Hiroshima und Nagasaki , Patienten, die zur Diagnostik und Therapie bestrahlt wurden ( z.B. die kanadische Fluoroskopie- Kohorte ), beruflich strahlenexponierte Personen ( z.B. die Wismut Uranbergarbeiter- Kohorte ), Bewohner in der Umgebung kerntechnischer Anlagen ( z.B. Hanford ( USA ), Mayak (Russland)), Bewohner aus der Umgebung havarierter Kernkraftwerke (Tschornobyl ( russ. : Tschernobyl) und Fukushima) und Personen, die bei den Aufräumarbeiten eingesetzt wurden oder werden, Personen, die von oberirdischen Atombombentests betroffen waren ( z.B. Bewohner in der Nähe des ehem. Atomwaffentestgeländes Semipalatinsk (Kasachstan)). Die wichtigsten Daten für die Abschätzungen des strahlenbedingten Krebsrisikos sind die Daten der japanischen Atombombenüberlebenden. Diese Gruppe war mit einer hohen Dosisrate exponiert (die gesamte Dosis im Bruchteil einer Sekunde), die Dosis war aber nur bei einem kleinen Prozentsatz der Betroffenen hoch. Das Krebsrisiko lässt sich anhand der oben genannten Studienpopulationen schätzen. Es setzt sich aus zwei Komponenten zusammen: dem "spontanen" Krebsrisiko in einer Population, also dem allgemeinen Risiko ohne Strahlenexposition an Krebs zu erkranken, und dem strahleninduzierten Krebsrisiko. Letzteres beschreibt Krebsfälle, die ohne Strahlenexposition nicht entstanden wären. Für beide Komponenten werden Modelle angenommen und geschätzt. Für die Schätzung der Dosis-Wirkungs-Beziehung wird typischerweise ein lineares Modell ohne Schwellenwert angenommen. D. h. man nimmt an, dass mit einer Erhöhung der Strahlendosis sich auch das Krebsrisiko proportional erhöht und dass es keinen Schwellenwert gibt, unterhalb dessen Strahlung nicht schädlich ist. Oft will man Aussagen zum Strahlenrisiko nicht nur für eine Studienpopulation ( z.B. die Atombombenüberlebenden), sondern auch für andere Populationen ( z.B. die deutsche Bevölkerung) treffen. Dann muss das in einer Studienpopulation ermittelte Strahlenrisiko auf das Strahlenrisiko der Zielpopulation übertragen werden. Für die relativ niedrigen Strahlenbelastungen, wie sie heute in der Umwelt und am Arbeitsplatz auftreten, ist eine weitere Extrapolation von den Befunden bei den japanischen Atombombenüberlebenden notwendig: Die epidemiologischen Befunde, die hauptsächlich für hohe Dosisraten vorliegen, werden auf die Expositionssituationen bei niedrigen Dosen und chronischer Exposition übertragen. Hierzu gibt es verschiedene Ansätze: Die ICRP empfiehlt im Bereich niedriger Dosen und chronischer Belastungen die Risikokoeffizienten durch den Faktor 2 zu teilen. Die ICRP geht nämlich davon aus, dass eine über einen längeren Zeitraum verteilte Dosis weniger wirksam ist als eine gleich hohe Dosis , die aus kurzzeitiger Belastung resultiert. Damit soll insbesondere die Reparatur- und Erholungskapazität von bestrahlten Zellen bei niedrigen Werten der Dosis und der Dosisleistung berücksichtigt werden. Die Reduktion ergibt sich nicht unmittelbar aus den Beobachtungsdaten für Krebserkrankungen bei Menschen und beruht auf Modellannahmen, aufbauend auf laborexperimentellen Erkenntnissen. Das BfS sieht die wissenschaftliche Begründung für diese Reduktion der Risikokoeffizienten für niedrige Dosen und chronische Expositionen als nicht ausreichend an. Risikoschätzungen sind grundsätzlich mit Unsicherheiten behaftet. Dies hat mehrere Gründe: Zum einen handelt es sich bei einer Studienpopulation nur um einen begrenzten Personenkreis, der nicht zwangsläufig repräsentativ für die interessierende Zielpopulation sein muss. Zum anderen werden für die Modelle und die Risikoübertragungen viele Annahmen getroffen. Des Weiteren ist die Erfassung der Strahlendosis häufig mit großen Unsicherheiten verbunden. Mehr Informationen zu strahleninduzierten Krebserkrankungen und deren Risiken finden Sie im Artikel " Krebserkrankungen ". Abschätzung des Risikos für andere Krankheiten als Krebs Eine Abschätzung des Risikos, nach Strahlenbelastung an anderen Krankheiten als Krebs zu erkranken, ist zurzeit nicht zuverlässig möglich. Auswertungen bei den Überlebenden der Atombombenabwürfe in Japan , bei exponierten Bevölkerungsgruppen in der ehemaligen Sowjetunion und bei Strahlentherapie-Patienten weisen darauf hin, dass auch Herz-Kreislauf-Erkrankungen nicht wie lange angenommen erst ab 0,5 Gray als späte deterministische Strahlenschäden auftreten können, sondern bereits bei niedrigeren Dosen. Die Annahme, dass Katarakte (Linsentrübungen des Auges) zu den deterministischen Strahlenschäden zählen, wird zurzeit ebenfalls in Frage gestellt. Auch hier gibt es neue Erkenntnisse, die darauf hinweisen, dass Katarakte bereits bei zehnfach niedrigerer Dosis auftreten als bis vor kurzem noch angenommen (0,5 Gray gegenüber fünf Gray ). Es wird diskutiert, dass für diese Erkrankungen möglicherweise keine Schwellendosis existiert, sie also wie bösartige Neubildungen als stochastische Strahlenschäden anzusehen sind. Abschätzung des Risikos für genetische Schäden Für genetische Strahlenschäden gibt es keine gesicherten, am Menschen gewonnenen Erkenntnisse. In Hiroshima und Nagasaki konnte bisher bei Nachkommen der bestrahlten Atombomben-Überlebenden keine erhöhte Rate von vererbbaren Strahlenschäden im Vergleich zur übrigen japanischen Bevölkerung festgestellt werden. Aus experimentellen Untersuchungen an Tieren ist aber bekannt, dass Strahlung genetische Veränderungen, sogenannte Mutationen, in Keimzellen auslösen kann. Daher stammen die Abschätzungen des genetischen Strahlenrisikos für den Menschen aus diesen tierexperimentellen Untersuchungen. Mehr Informationen zu strahleninduzierten genetischen Schäden und deren Risiken können Sie im Artikel " Vererbbare Strahlenschäden " nachlesen. Risikobewertung Die obigen Ausführungen zeigen, wie für einzelne Erkrankungen auf Basis einzelner Studien Strahlenrisiken ermittelt werden können. Eine fundierte Risikobewertung auf Basis eines einzigen Tierexperiments oder einer einzelnen epidemiologischen Studie am Menschen ist allerdings kaum möglich. Für die Bewertung gesundheitsbezogener Risiken durch Strahlung ist es erforderlich, die Ergebnisse aus mehreren Studien heranzuziehen und in einer zusammenfassenden Gesamtschau zu bewerten. Ein StrahlenschutzStandpunkt des Bundesamtes für Strahlenschutz thematisiert die Bewertung gesundheitsbezogener Risiken im Detail. Stand: 20.05.2025
Seit dem Jahr 2000 ist das Online-Portal „FloraWeb“ die wesentliche Quelle von Fachinformationen zur Flora der Farn- und Blütenpflanzen von Deutschland. Im Zuge des vom Bundesamt für Naturschutz (BfN) geförderten Projekts „FloraWebPlus“ wurden neue Softwarestrukturen geschaffen, die bestehenden Funktionalitäten erweitert und neue wissenschaftlich kuratierte Datenquellen staatlicher und privater Partner erschlossen. Basis für die Anbindung dieser Quellen ist eine gemeinsame Taxonliste, die verschiedene taxonomische Konzepte zueinander hierarchisch in Beziehung setzt. Die Softwarestruktur von FloraWeb wurde modernisiert, die der externen Quellen vereinheitlicht und durch Schnittstellen angebunden. Im Ergebnis sind für mehr als 4.000 in Deutschland vorkommende Taxa umfassende Fachinformationen über FloraWeb recherchierbar. Für jedes Taxon werden überarbeitete Karten zur nationalen Verbreitung, inkl. optionaler Einbindung von Beobachtungsdaten aus Citizen-Science-Portalen, aber auch zur weltweiten Verbreitung dargestellt. Außerdem wurden die Informationen zu biologischen Merkmalen erweitert, z. B. zur Wuchsform, Bestäubung, Ausbreitung und zu Chromosomenzahlen. Angebunden ist nun auch ein umfassendes virtuelles Herbarium der in Deutschland vorkommenden Taxa mit hochauflösenden Scans aussagekräftiger Herbarbelege, das bei bestimmungskritischen Sippen zusätzlich Detailfotos relevanter Merkmale bereithält.
Ziel des Projekts 'Weiterentwicklung des Online-Portals für die Gewässerbeobachtung der Zukunft - Bewertung von NTS Daten für Umwelt- und Chemikaliengesetze (GdZ II)' ist es, Bewertungsoptionen für NTS Daten zu entwickeln und die fachlichen und technischen Voraussetzungen für den dauerhaften Austausch qualitätsgesicherter Daten zwischen dem Umweltbundesamt (UBA) und der Bundesanstalt für Gewässerkunde (BfG) für eine umfassende Unterstützung der Umwelt- und Stoffgesetze sowie des Spurenstoffzentrums und weiterer Institutionen zu schaffen. Bisher fehlen die notwendigen Ansätze zum Datenaustausch, sodass grundlegende Erkenntnisse zwischen den beiden Bundesoberbehörden UBA und BfG gesammelt werden sollen. Die Verknüpfung von relevanten Stoff- und Monitoringdaten bietet die Möglichkeit, eine Bewertung zu erstellen, die das Umweltverhalten von priorisierten Stoffen und Stoffgemischen abdeckt und Lösungsansätze zur Verbesserung des Chemikalienmanagements aufzeigen kann. Zentrales Element der GdZ II ist das NTS Portal, das die BfG im Auftrag des UBA im REFOPLAN FKZ 3720 222 010 entwickelt hat. Es enthält NTS Messungen des Bundes und der Länder aus der Gewässerbeobachtung. Im Laufe des Projektes werden Möglichkeiten geschaffen, das Portal interessierten Anwender*innen innerhalb des UBAs leicht verständlich zugänglich zu machen.
Die EU-Meeresstrategie-Rahmenrichtlinie (MSRL) und die EU-Wasserrahmenrichtlinie (WRRL) erfordern die Erreichung bzw. Erhaltung des guten Umweltzustands von Nord- und Ostsee. Grundsätzlich wird davon ausgegangen, dass ein effektiver Meeresschutz einen wichtigen Beitrag zum Klimaschutz leistet. Dahinter steckt die Annahme, dass gesunde Küsten- und Meeresökosysteme mehr Kohlendioxid und Nährstoffe speichern können als anthropogen beeinträchtige Systeme. So führt z.B. die Eutrophierung zu vermehrtem Algenwachstum und einer Trübung des Wassers, die die Ausbreitung von Seegraswiesen beeinträchtigt, die größere Mengen an Kohlenstoff speichern. Andere Zusammenhänge sind weniger gut erforscht. So könnte es z.B. durch die Reduktion der Nährstoffeinträge und des in Folge abnehmenden Algenwachstums zu einer Reduktion des Transports von Kohlenstoff in die Meeressedimente kommen. Der gute Umweltzustand gemäß MSRL und der gute ökologische/ chemische Zustand gemäß WRRL sind anhand ausgewählter Indikatoren und ihrer Schwellenwerte klar definiert. Ziel des Vorhabens ist es, das Kohlenstoffs- und Nährstoffspeicherpotential im gegenwärtigen Zustand und im guten Umweltzustand auf der Basis von Monitoringdaten und Literaturstudien zu quantifizieren und zu vergleichen. Dies soll an ausgewählten, gut untersuchten Modellgebieten jeweils in den Küsten- und Meeresgewässern und in Nord- und Ostsee erfolgen. Der Fokus liegt zunächst auf der Eutrophierung, es sollen aber soweit auf der Basis der Datenlage möglich auch andere relevante Belastungen wie Schadstoffe und Baggergutentnahme untersucht werden. Auf der Basis der Untersuchungen der Modellgebiete soll eine Prognose des Kohlenstoffs- und des Nährstoffspeicherpotenzials für die gesamte Nord- und Ostsee im aktuellen und im guten Umweltzustand erarbeitet werden. Das Vorhaben soll darüber hinaus Empfehlungen erarbeiten, durch welche Maßnahmen sich das Kohlenstoffspeicherpotential von Nord- und Ostsee weiter stärken lässt.
Marine pelagische Habitate haben eine Schlüsselfunktion im globalen Kohlenstoffkreislauf. Sie bilden die Grundlage des Nahrungsnetzes und unterstützen damit alle höheren trophischen Ebenen bei der Bindung von Kohlenstoff. Um den Zustand pelagischer Habitate zu bewerten und deren Rolle im Natürlichen Klimaschutz einzuschätzen, sind Monitoringdaten sowie adäquate Indikatoren essentiell. Nach Deskriptor 1 der Meeresstrategie-Rahmenrichtlinie (MSRL) ist der Zustand des Pelagials einschließlich seiner biotischen und abiotischen Struktur und seiner Funktionen (z.B. typische Zusammensetzung und relative Häufigkeit der Arten; Abwesenheit besonders anfälliger oder fragiler Arten oder von Arten, die eine Schlüsselfunktion wahrnehmen; Größenstruktur der Arten) als verpflichtendes Kriterium zu bewerten. Aufgrund der hohen Variabilität im Vorkommen der planktischen Organismen und des starken Salzgehaltsgradienten der Ostsee, ist es schwierig, einen geeigneten Indikator zur einheitlichen Anwendung für die gesamte Ostsee zu identifizieren und entwickeln. Der Indikator Diatomeen-Dinoflagellaten-Index basiert auf der Bewertung des rechnerischen Verhältnisses von Diatomeen zu Dinoflagellaten, wobei bisher ein überwiegender Anteil der Diatomeen gegenüber dem der Dinoflagellaten als positiv bewertet wird. Gleichzeitig bietet dieser Indikator auch eine Alternativ-Berechnung des Indexes über die Berechnung des Silikatverbrauches während der Frühjahresblüte an, mit der zu geringe Probenahmefrequenzen oder gemessene, aber zu geringe Biomassewerte, ausgeglichen werden können, um dennoch die Anwendung des Indikators zu ermöglichen. Da insgesamt für die Bewertung der pelagischen Habitate der Ostsee momentan nur wenige Indikatoren zur Verfügung stehen und es bei OSPAR auch einen Indikator gibt, der das Verhältnis von Diatomeen zu Dinoflagellaten bewertet, ist es erstrebenswert, [...]
| Origin | Count |
|---|---|
| Bund | 2030 |
| Europa | 6 |
| Kommune | 2 |
| Land | 1419 |
| Wissenschaft | 337 |
| Zivilgesellschaft | 280 |
| Type | Count |
|---|---|
| Bildmaterial | 4 |
| Chemische Verbindung | 1168 |
| Daten und Messstellen | 315 |
| Ereignis | 6 |
| Förderprogramm | 711 |
| Software | 1 |
| Taxon | 291 |
| Text | 100 |
| unbekannt | 1431 |
| License | Count |
|---|---|
| geschlossen | 1607 |
| offen | 2114 |
| unbekannt | 19 |
| Language | Count |
|---|---|
| Deutsch | 3563 |
| Englisch | 300 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 10 |
| Datei | 38 |
| Dokument | 72 |
| Keine | 2982 |
| Unbekannt | 19 |
| Webdienst | 10 |
| Webseite | 664 |
| Topic | Count |
|---|---|
| Boden | 1955 |
| Lebewesen und Lebensräume | 2078 |
| Luft | 1928 |
| Mensch und Umwelt | 3740 |
| Wasser | 1931 |
| Weitere | 2649 |