Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM62/2 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 23.03.2017 and 27.03.2017 in the Baltic Sea. The cruise aimed to investigate the impact of the Littorina transgression on the inflow of saline waters into the western Baltic and assessed the potential for future diminution of ventilation in the central and northern deeper basins due to isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM62/2 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. The echosounder has a curved transducer in which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM62/2 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM62/2 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.
Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM52 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.03.2016 and 28.03.2016 in the Baltic Sea. The cruise aimed gapless imagining of the major pre-alpine tectonic lineaments due to the fact that the Glückstadt Graben and the Avalonia-Baltica suture zone run across the southern Baltic [DOI: 10.2312/cr_msm52]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM52 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. It has a curved transducer of which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Generally, the system was acquiring data throughout the entire cruise. Responsible person during this cruise / PI: Laura Frahm. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM52 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM52 has a resolution of 35 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.
Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM51/1 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.02.2016 and 27.02.2016 in the Baltic Sea. The cruise aimed to perform seismo- and hydroacoustic surveys, sampling of Holocene sediments and to investigate the water column wintertime mixing close to sea-ice limits. These surveys improved the understanding of variations in the ventilation of the deeper Baltic, considering not only external climate forcing but also the effects of postglacial sealevel rise and isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM51-1 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM51-1 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM51-1 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.
Multibeam data were collected with RV Polarstern along the route of cruise PS142 and data acquisition was continuously monitored during the survey. Multibeam sonar system was Teledyne/Atlas Hydrosweep DS3. SVPs were retrieved from CTD data and synthetic profiles from World Ocean Atlas 18. SVPs were processed with HydrOffice SoundSpeedManager (https://www.hydroffice.org/soundspeed/main) and extended with World Ocean Atlas 18 (https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18). SVP data were applied during acquisition. Multibeam data are unprocessed and may contain outliers and blunders and should not be used for grid calculations and charting projects without further editing. The raw multibeam sonar data in Teledyne Reson multibeam processing format (.s7k) were recorded with Teledyne PDS software. Raw data files can be processed using software packages like CARIS HIPS/SIPS. For updated vessel configuration files check further details.
Raw multibeam bathymetry data were collected aboard RV MARIA S. MERIAN during the cruise MSM128 (TRAPA) using a 40-100kHz Kongsberg EM 712 multibeam echosounder. The expedition took place during 02.05.2024 – 20.05.2024 from Emden to Rostock (Germany) in the North Sea. The main aim of MSM128 (TRAPA) was to reconstruct the Late Pleistocene and Early Holocene landscape in the present day North Sea area north of Helgoland that was once extensively exploited by Late Palaeolithic hunter-gatherer groups. Data were recorded inside the German EEZ. Sound velocity profiles (SVP) were applied on the data for calibration. Please see environmental data and the cruise report for details. The data are unprocessed and can therefore contain incorrect depth measurements (artifacts) if not further processed. Note that refraction errors may occur when no proper SVP is applied. Data acquisition was done by CAU Kiel. Data provision is supported by the DAM Underway Project and is according to the FAIR principles.
Raw water column data were collected aboard RV MARIA S. MERIAN during the cruise MSM128 (TRAPA) using a 40-100kHz Kongsberg EM 712 multibeam echosounder. The expedition took place during 02.05.2024 – 20.05.2024 from Emden to Rostock (Germany) in the North Sea. The main aim of MSM128 (TRAPA) was to reconstruct the Late Pleistocene and Early Holocene landscape in the present day North Sea area north of Helgoland that was once extensively exploited by Late Palaeolithic hunter-gatherer groups. Data were recorded inside the German EEZ. Sound velocity profiles (SVP) were applied on the data for calibration. Please see environmental data and the cruise report for details. The data are unprocessed and can therefore contain incorrect depth measurements (artifacts) if not further processed. Note that refraction errors may occur when no proper SVP is applied. Data acquisition was done by CAU Kiel. Data provision is supported by the DAM Underway Project and is according to the FAIR principles.
Multibeam bathymetry processed data (KONGSBERG EM712 multibeam echosounder) was collected onboard RV HEINCKE on two different days during cruise HE622 in the German North Sea (2023-06-06 - 2023-06-20). The raw data (.all format) were processed using QPS Qimera software (v 1.7), based on the following workflow: 0.Raw data > 1.Apply correct Sound Velocity Profiles -> 2.Create dynamic surface (shallow Mode) -> 3.Apply Spline Filter (Medium/Weak) > 4. Finalize with manual 2D and 3D editing, -> 5.Export in GeoTIFF format and projected in the UTM32N coordinate system (EPSG:32632). The bathymetry dataset here is gridded at 0.50 m resolution. The data products were created in the context of the DAM (German Marine Research Alliance), CONMAR research project.
Multibeam bathymetry processed data (KONGSBERG EM712 multibeam echosounder) was collected onboard RV HEINCKE during cruise HE622 in the German North Sea (2023-06-06 - 2023-06-20). The raw data (.all format) were processed using QPS Qimera software (v 1.7), based on the following workflow: 0.Raw data > 1.Apply correct Sound Velocity Profiles -> 2.Create dynamic surface (shallow Mode) -> 3.Apply Spline Filter (Medium/Weak) > 4. Finalize with manual 2D and 3D editing, -> 5.Export in GeoTIFF format and projected in the UTM32N coordinate system (EPSG:32632). The bathymetry dataset here is gridded at 0.50 m resolution. The data products were created in the context of the DAM (German Marine Research Alliance), CONMAR research project.
Multibeam bathymetry processed data (KONGSBERG EM712 multibeam echosounder) was collected onboard RV HEINCKE during cruise HE622 in the German North Sea (2023-06-06 - 2023-06-20). The raw data (.all format) were processed using QPS Qimera software (v 1.7), based on the following workflow: 0.Raw data > 1.Apply correct Sound Velocity Profiles -> 2.Create dynamic surface (shallow Mode) -> 3.Apply Spline Filter (Medium/Weak) > 4. Finalize with manual 2D and 3D editing, -> 5.Export in GeoTIFF format and projected in the UTM32N coordinate system (EPSG:32632). The bathymetry dataset here is gridded at 0.50 m resolution. The data products were created in the context of the DAM (German Marine Research Alliance), CONMAR research project.
Multibeam bathymetry processed data (KONGSBERG EM712 multibeam echosounder) was collected onboard RV HEINCKE during cruise HE622 in the German North Sea (2023-06-06 - 2023-06-20) at 'Tiefe Rinne' at Helgoland. The raw data (.all format) were processed using QPS Qimera software (v 1.7), based on the following workflow: 0.Raw data > 1.Apply correct Sound Velocity Profiles -> 2.Create dynamic surface (shallow Mode) -> 3.Apply Spline Filter (Medium/Weak) > 4. Finalize with manual 2D and 3D editing, -> 5.Export in GeoTIFF format and projected in the UTM32N coordinate system (EPSG:32632). The bathymetry dataset here is gridded at 2 m resolution. The data products were created in the context of the DAM (German Marine Research Alliance), CONMAR research project.
Origin | Count |
---|---|
Bund | 1 |
Wissenschaft | 36 |
Type | Count |
---|---|
Förderprogramm | 1 |
Messwerte | 34 |
Strukturierter Datensatz | 36 |
License | Count |
---|---|
offen | 37 |
Language | Count |
---|---|
Deutsch | 1 |
Englisch | 37 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 34 |
Webseite | 1 |
Topic | Count |
---|---|
Boden | 33 |
Lebewesen & Lebensräume | 11 |
Luft | 17 |
Mensch & Umwelt | 33 |
Wasser | 33 |
Weitere | 37 |