Bei der Herstellung von Gruenflaechen wird nach DIN 18 915 zwischen belastbaren und nicht belastbaren Vegetationsschichten unterschieden. Belastbare Vegetationsschichten und Rasentragschichten fuer Sportplaetze nach DIN 18 035 Bl. 4 werden nach dem Prinzip der Wasserdurchlaessigkeit zusammengestellt. Zur Wasserversorgung der Vegetation ist jedoch eine genuegende Wasserspeicherungsfaehigkeit erforderlich. Es werden verwertbare Maximalmengen an Trockenbeet-Klaerschlamm fuer belastbare und nicht belastbare Vegetationsschichten im Gruenflaechenbau sowie fuer Tragschichten im Sportplatzbau nach den Kriterien der Norm erarbeitet sowie Untersuchungen ueber Belastbarkeit, Abbau der organischen Substanz, Naehrstoffwirkung und Naehrstoffauswaschung durchgefuehrt.
Im Feldversuch wird ein Artenvergleich geeignet erscheinender Biogaspflanzen durchgeführt. Der Versuch untergliedert sich in ein Sommerungen- und ein Winterungen-Sortiment. Der Versuchsteil Sommerungen wird an vier Standorten durchgeführt, das Winterungen-Sortiment an fünf Standorten. Der Versuch umfasst u.a. Mais, Sorghum, Getreidearten und Raps. Am Versuchsstandort Forchheim werden darüber hinaus ein breites Sortenspektrum sowie einige zusätzliche Arten geprüft. Ziel ist die Erarbeitung von Empfehlungen für Landwirte und Berater hinsichtlich der Arten- und Sortenwahl von Pflanzen zur Biogaserzeugung sowie die Bereitstellung von Informationen für den verwaltungsinternen Bedarf, z.B. zur Nährstoffbilanzierung, für Wirtschaftlichkeitsberechnungen oder zur Beurteilung von Ertragsannahmen bei Bauvorhaben.
Kenntnisse über S-Bindungsformen und deren Flüsse in terrestrischen Ackerböden können nicht auf Sumpfreisböden übertragen werden, da nach deren Überflutung anaerobe Verhältnisse vorherrschen. Ergebnisse über die Bedeutung der einzelnen S-Fraktionen für die S-Nachlieferung in Sumpfreisböden und somit der S-Versorgung von Reis liegen kaum vor bzw. sind aufgrund des Trocknens der Bodenproben vor der Analyse nicht aussagefähig. Weiterhin wurde seither nicht berücksichtigt, dass in unmittelbarer Wurzelnähe von Reispflanzen im Gegensatz zum Restboden aerobe Verhältnisse vorherrschen. Aus diesem Grund soll in zwei typischen chinesischen Sumpfreisböden nach Dotierung mit 35S der Einbau des zugeführten Schwefels in definierte S-Fraktionen (SO42- in der Bodenlösung, adsorbiertes SO42-, FeS, FeS2, Sulfatester, Kohlenstoff gebundener S, Biomasse S) erfasst und in einer Zeitreihenuntersuchung Flüsse zwischen ihnen abgebildet werden. Dabei gilt es, zwischen der oberflächennahen aeroben Zone und der darunter liegenden anaeroben Zone bzw. dem wurzelnahen und wurzelfernen Boden zu differenzieren. Da Reisstroh häufig nach der Ernte in den Boden eingearbeitet wird, soll dessen Mineralisierungsverhalten mittels Einsatz von 35S markiertem Reisstroh untersucht werden. Des weiteren soll in speziellen Versuchsgefäßen, die das Gewinnen von Bodenproben in definierten Abständen von der Wurzeloberfläche erlauben, die Dynamik anorganischer und organischer S-Fraktionen in der Rhizosphäre erfasst werden.
Die Wechselwirkungen von solaren Strahlungsflüssen und biologischen Prozessen haben fundamentale Auswirkungen auf physikalische Prozesse, Verfügbarkeit von Nährstoffen und Primärproduktion in den oberen Ozeanschichten, sowie den Austausch von Gasen mit der atmosphärischen Grenzschicht. Durch die Absorption solarer Strahlung tragen optisch aktive Wasserinhaltsstoffe zur Erwärmung der oberflächennahen Ozeanschichten bei und beeinflussen so über die Temperaturabhängigkeit der Stoffwechselraten von marinem Phytoplankton Primärproduktion und Export von Biomasse. Aufgrund der im Vergleich mit dem offenen Ozean stärker variablen Konzentrationen von anorganischen Schwebstoffen und CDOM (coloured dissolved organic matter, im Folgenden als Gelbstoff bezeichnet) ist die Zusammensetzung der Wasserinhaltsstoffe in Küstengewässern und Schelfmeeren oftmals durch eine hohe Heterogenität gekennzeichnet. Die Bildung von Gelbstoff und Änderungen in dessen Zusammensetzung aufgrund nicht-konservativer Prozesse hängen dabei in hohem Maße von der Lichtverfügbarkeit, weiterer Umweltbedingungen sowie der Zusammensetzung des Phytoplanktons ab. Darüber hinaus haben heterogene Verteilungen von Phytoplanktonpigmenten und anderen Wasserinhaltsstoffen Auswirkungen auf sub-mesoskalige vertikale Mischungsprozesse und advektive Flüsse, und damit auch auf Wassertemperatur und dichte, sowie das oberflächennahe Nährstoffangebot. Ein gutes Verständnis der Energieflüsse an der Ozeanoberfläche und in den oberen Ozeanschichten sowie deren Auswirkungen auf den Wärmehaushalt in Küstengewässern und Schelfmeeren ist von großer Bedeutung für die Modellierung des regionalen ozeanischen Klimas. Das vorgeschlagene Projekt hat zum Ziel, den Beitrag von optisch aktiven Wasserinhaltsstoffen (einschließlich Phytoplankton, Gelbstoff und anorganischen Schwebstoffen) zu den Energieflüssen in den oberen Ozeanschichten und durch die Ozeanoberfläche hindurch zu quantifizieren. Es soll untersucht werden, inwieweit die heterogene Verteilung von Wasserinhaltsstoffen die sub-mesoskaligen vertikalen turbulenten Austauschvorgänge und advektiven Flüsse beeinflusst, und inwieweit die Lichtattenuation durch Gelbstoff Auswirkungen auf die Zusammensetzung des Phytoplanktons hat. Zu diesem Zweck soll ein gekoppeltes Atmosphäre Ozean Zirkulationsmodell mit integriertem bio-optischem Modul synchron mit einem Atmosphäre Ozean Strahlungstransportmodell betrieben werden, so dass Erwärmungsraten aufgrund hochvariabler Konzentrationen von optisch aktiven Inhaltsstoffen mit hoher Genauigkeit berechnet, und so deren Auswirkungen auf die biophysikalischen Prozesse im Ozean analysiert werden können.
Herbivore Insekten stellen eine wesentliche Komponente des Artenreichtums terrestrischer Ökosysteme und spielen zugleich als Bindeglied verschiedener Trophie-Ebenen eine wichtige Rolle in Stoffflüssen. Insbesondere für artenreiche Herbivorengemeinschaften ist bis heute unklar, ob Pflanzenartenreichtum oder eher Strukturparameter der Vegetation (neben abiotischen Faktoren wie Klima und Nährstoffangebot) die Diversität der Pflanzenfresser entscheidend determinieren. Am Beispiel mehrerer artenreicher Schmetterlings-Taxozönosen soll in einem südecuadorianischen Bergwaldgebiet diese Frage beantwortet werden, wobei Datensätze aus botanischer, bodenkundlicher und klimatologischer Forschung mit quantitativen Erhebungen zur Struktur und Vielfalt der Insekten-Artengemeinschaften zusammengeführt werden. Dabei stehen zunächst Taxozönosen in einem ausgeprägten Höhengradienten zur Analyse an, während in einem zweiten Schritt auch Muster und Mechanismen der Besiedlung anthropogen degradierter Landschaften (Weiden, Brache- und Sukzessionsflächen unterschiedlichen Alters, Aufforstungen) durch diese Herbivorentaxa bearbeitet werden.
Ces travaux sont une contribution a l'etablissement du bilan global des elements fertilisants au niveau d'une parcelle, d'un domaine ou d'un bassin versant. Les mesures portent essentiellement sur les bilans de N, P, K, Ca et Mg, dans differents types de sols. Les eaux du drainage de terres legeres, moyennes, lourdes et humiferes sont recoltees dans nos lysimetres sous 1 metre de terre, pour des surfaces de 1 et 4 m2. Dans les serres des Rives de Prangins nous recoltons les eaux de drainages pour des surfaces de 150 m2, recevant respectivement des doses simples et doubles d'engrais sur lesquelles se succedent des cultures maraicheres. (FRA)
Frage nach den Haupt- und Wechselwirkungen der einzelnen Naehrstoffe bei der Ertrags- und Qualitaetsbildung der Pflanze. Ableitung langfristig optimaler Versorgungsgrade und Naehrstoffverhaeltnisse unter Beruecksichtigung der Reaktionsbesonderheiten von Standort und Kulturart.
Bodenerosionsprozessforschung wird als landschaftsoekologisch komplexer und integraler Prozess verstanden. Das methodische und theoretische Grundgeruest des landschaftsoekologischen Ansatzes bildet der Standortregelkreis. Die Realisierung erfolgt ueber eine dreistufige Messmethodik (punktuell, quasiflaechenhaft, flaechenhaft), die in verschiedenen Testlandschaften angewandt wird. Die Methodik vereint Feld- und Laborarbeit. Neben dem geooekologisch-stoffhaushaltlichen Aspekt stehen die Erosionsverminderung und -vermeidung, der Schutz der Bodenfunktionen und Gewaesser, die Landnutzungs- und Landschaftsplanung im Vordergrund.
<p>Die wichtigsten Fakten</p><p><ul><li>Seit 2015 sollen alle Badegewässer der EU in einem mindestens ausreichenden Zustand sein.</li><li>Im Jahr 2024 erfüllten 97,8 % aller Badegewässer in Deutschland die EU-Vorgabe. Damit wurde das Ziel nur knapp verfehlt.</li><li>Schließt man die nicht beurteilten Badegewässer aus, erfüllten 2024 sogar 99,6 % der Badegewässer die EU-Vorgaben.</li><li>Rund 91 % der Binnengewässer und gut 88 % der Küstengewässer hatten 2024 eine ausgezeichnete Qualität.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Baden in natürlichen Gewässern kann mit Risiken für die Gesundheit verbunden sein. Badegewässer werden wie alle Gewässer vielfältig genutzt und sie sind unterschiedlichen Veränderungen ausgesetzt, die das Auftreten von Krankheitserregern beeinflussen können.</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> basiert auf der Feststellung der hygienischen Qualität der Badegewässer: Gemessen wird die Wasserbelastung mit Fäkalbakterien. Wenn diese Bakterien in hoher Konzentration im Badegewässer vorkommen, besteht das Risiko, dass auch Krankheitserreger vorhanden sind. Diese können beispielsweise Infektionskrankheiten mit Fieber, Durchfall und Erbrechen auslösen. Eine solche Gefahr entsteht u.a. nach <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Starkregen#alphabar">Starkregen</a> durch Mischwasserüberläufe aus Kläranlagen oder durch Abschwemmungen aus landwirtschaftlich genutzten Flächen. Hohe Temperaturen und ein hohes Nährstoffangebot (Stickstoffe, Phosphate) können die hygienische Qualität eines Badegewässers verändern und es kann zu einer Massenentwicklung von <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Cyanobakterien#alphabar">Cyanobakterien</a> kommen. Treten diese Bakterien in Massen auf, müssen Maßnahmen ergriffen werden. Das Vorkommen von Cyanobakterien fließt jedoch nicht in die Qualitätseinstufung ein.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Die Badegewässer Deutschlands sind in einem guten Zustand. Im Jahr 2024 erfüllten 97,8 % aller Badegewässer die Qualitätsanforderungen der EU (Binnengewässer 97,8 %, Küstengewässer 98,8 %). Berücksichtigt man, dass nicht alle Badegewässer beurteilt werden können (z.B. weil sie neu angemeldet wurden und noch nicht bewertet werden konnten), erfüllten sogar 99,6 % der beurteilten Badegewässer die Vorgaben. Rund 91 % der Binnengewässer und gut 88 % der Küstengewässer erreichten sogar eine ausgezeichnete Badegewässerqualität. Zwischen 1992 und 2001 stieg der Anteil der richt- und grenzwerteeinhaltenden Badegewässer beständig an. Seitdem ist die Qualität der Badegewässer auf konstant hohem Niveau mit nur leichten Schwankungen. In der europäischen <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1534167377521&uri=CELEX:02006L0007-20140101">Richtlinie über die Qualität der Badegewässer</a> (2006/7/EG) ist festgelegt, welche Werte Badegewässer für die verschiedenen Stufen der hygienischen Qualität einhalten müssen. Seit 2015 sollten alle Badegewässer mindestens eine ausreichende Qualität haben. Dieses Ziel wurde 2024 knapp verfehlt. Im europäischen Vergleich belegt <a href="https://www.eea.europa.eu/en/topics/in-depth/bathing-water/state-of-bathing-water/bathing-water-country-factsheets-2024/germany_bathing_water_2024.pdf">Deutschland</a> dennoch weiterhin einen der vorderen Plätze.</p><p>Wie wird der Indikator berechnet?</p><p>In allen europäischen Badegewässern müssen vor und während der Badesaison nach einem festgelegten Überwachungszeitplan Wasserproben entnommen werden. Das Vorkommen und die Häufigkeit von Fäkalbakterien der Art <em>„Escherichia coli“</em> (<em>E. coli</em>) sowie der Gruppe der „Intestinalen Enterokokken“ werden bestimmt. Für die verschiedenen Qualitätsstufen sind bestimmte Kriterien einzuhalten, die im Anhang I der EU-Badegewässerrichtlinie festgehalten sind. Eine ausführliche Beschreibung der Vorgehensweise findet sich in der EU-Badegewässerrichtlinie sowie im <a href="https://www.eea.europa.eu/en/analysis/publications/european-bathing-water-quality-in-2024">Badegewässerbericht</a> der Europäischen Umweltagentur.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/qualitaet-von-badegewaessern">"Qualität von Badegewässern“</a>.</strong></p>
| Origin | Count |
|---|---|
| Bund | 475 |
| Land | 37 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Förderprogramm | 461 |
| Text | 30 |
| unbekannt | 15 |
| License | Count |
|---|---|
| geschlossen | 32 |
| offen | 470 |
| unbekannt | 6 |
| Language | Count |
|---|---|
| Deutsch | 489 |
| Englisch | 70 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Datei | 5 |
| Dokument | 20 |
| Keine | 406 |
| Unbekannt | 2 |
| Webdienst | 1 |
| Webseite | 87 |
| Topic | Count |
|---|---|
| Boden | 422 |
| Lebewesen und Lebensräume | 481 |
| Luft | 302 |
| Mensch und Umwelt | 508 |
| Wasser | 360 |
| Weitere | 508 |