API src

Found 999 results.

Related terms

Limnologische Untersuchungen der Baggerseen Haltern Ost und Haltern West

Veranlassung: Die Förderung von Kiesen und Sanden in Kiesgruben oder Baggerseen hat eine drastische Veränderung des Landschaftsbildes zur Folge. Die Ausbildung neuer Seen- und Freizeitgebiete wird hierbei im allgemeinen eher als positiver Effekt gewertet. Aufgrund des Förderbetriebs kann es jedoch zu Veränderungen der Wassergüte der betroffenen Oberflächengewässer und zu einer Beeinträchtigung des abstromigen Grundwassers kommen. Um mögliche zeitliche Veränderungen der Gewässergüte - etwa durch Freisetzung von Pflanzennährstoffen (Eutrophierung) - erfassen zu können, findet eine regelmäßige limnologische Überwachung der Baggerseen Haltern Ost und West statt, die von der Quarzwerke Haltern GmbH für die Förderung von Sand genutzt werden. Parallel werden das zu- und abfließende Grundwasser an den beiden Seen untersucht, um eine Beeinflussung des unterirdischen Wassers durch die bis zu 30 m tiefen Seen erkennen und bewerten zu können. Diese Untersuchungen finden seit 1982 im zweijährigen Abstand statt. Vorgehen: Die Probenahmen erfolgen jeweils am Ende der Sommerperiode, wenn die Herbstzirkulation, die eine Vermischung des Wassers bis in tiefe Schichten bedingt, noch nicht eingesetzt hat. Zu diesem Zeitpunkt muss die Belastung der Seen mit Nährstoffen saisonal bedingt als am höchsten eingeschätzt werden. Für die Beurteilung des limnologischen Zustandes der beiden Baggerseen und der Grundwasserbeschaffenheit in dem jeweils zu- und abfließenden Grundwasserstrom werden die in einer Tabelle aufgeführten Parameter bestimmt. Ergebnisse: Beide Baggerseen können aufgrund ihrer Nitrat- und Phosphatgehalte sowie der Planktondichte und -zusammensetzung als mesotrophe, wenig belastete Gewässer klassifiziert werden. Die Sprungschicht liegt etwa in 6-10 m Tiefe. Auch die tieferen Schichten im Hypolimnion der Seen weisen noch eine gute Versorgung mit Sauerstoff auf. Im See West ist es seit 1982 durch den Förderbetrieb sogar eher zu einer Erhöhung des Sauerstoffgehaltes im Hypolimnion gekommen. Das zulaufende Grundwasser für diesen See zeichnet sich durch einen niedrigen pH-Wert, hohe Nitratwerte und einen hohen Gehalt biologisch schwer abbaubarer Kohlenstoffverbindungen aus. Nach dem Durchtritt durch den See West liegen im ablaufenden Grundwasser dagegen verbesserte Bedingungen mit niedrigen DOC- und Nitratwerten vor. Hier treten jedoch zum Teil sehr niedrige Sauerstoffgehalte auf, was auf biologische Abbauprozesse während der Passage durch den See schließen lässt. Die Situation sowohl in den Baggerseen als auch im Grundwasserbereich kann trotz leichter Schwankungen im Nährstoff- und Sauerstoffgehalt seit Beginn der Messungen in den letzten Jahren als stabil angesehen werden. Teilweise hat sogar eine Verbesserung, insbesondere der Sauerstoffsituation in den Seen stattgefunden.

Planktondynamik im oligotrophen Ozean: Verbindungen zwischen dem mikrobiellen Nahrungsgewebe und höheren trophischen Ebenen im ultraoligotrophen Golf von Aqaba

Nährstoffarme Bereiche bilden die große Mehrheit des Ozeans, aber das Schicksal der dominierenden kleinen Autotrophen in diesen Bereichen ist wenig erforscht und noch weniger verstanden. Formen kleiner als 5 mym machen die große Mehrheit der Autotrophen in nährstoffarmen Systemen aus, und Protisten sind vermutlich die Haupträuber dieser Fraktion, aber besonders im Meer ist diese Verbindung wenig erforscht. Offene, grundlegende Fragen sind: Wie viel, und mit welcher Effizienz fließt Primärproduktion der kleinen Autotrophen in höhere trophische Ebenen? Sind kleine Ciliaten im Meer genauso wichtige Konsumenten kleiner Autotropher wie im Süßwasser oder sind heterotrophe Nanoflagellaten (HNF) die Haupträuber? Sind Synechococcus und Prochlorococcus, die beiden wichtigsten Vertreter der kleinen Autotrophen, in gleichem Masse frassempfindlich? Wie wichtig ist Nährstoff-Recycling durch Protisten, um Primärproduktion zu erhalten? Das vorgeschlagene Projekt wird im Golf von Aqaba stattfinden, einem oligroptrophen Tiefseesystem nicht weit vom Labor entfernt und deshalb logistisch für experimentelle Arbeit optimal geeignet. Das Projekt ist als Zusammenarbeit mit Prof. Anton Post, Eilat, Israel geplant. Experimente werden in Jahreszeiten durchgeführt, in denen unterschiedliche Autotrophe dominieren. Dabei werden Interaktionen zwischen gesamten trophischen Ebenen innerhalb der Planktongemeinschaft aber auch zwischen Arbeiten berücksichtigt, um allgemeine Vorhersagen für oligotrophe Systeme zu machen.

Auswirkungen chemischer Belastungen auf mikrobielle Gemeinschaften

Veranlassung Gewässerökologie im Fokus der Öffentlichkeit Die durch den Klimawandel mit zunehmender Häufigkeit auftretenden extremen Bedingungen in und an Flüssen und Bundeswasserstraßen führten in der jüngeren Vergangenheit zum Teil zu verheerenden ökologischen Folgen. Mikroorganismen nahmen dabei oft eine zentrale Rolle ein und rückten das Thema Wasserqualität verstärkt in den Fokus der Öffentlichkeit. Ein Beispiel dafür ist das Fischsterben in der Oder im August 2022, welches im Rahmen der Ursachenforschung die Sensibilität, aber auch die Komplexität der Ökosysteme in Politik und Öffentlichkeit allgegenwärtig machte. Aber auch die seit 2017 in der Mosel auftretenden Cyanobakterienblüten erregen zumindest regional öffentliches Interesse, da sie oftmals eine eingeschränkte Nutzung des Gewässers nach sich ziehen. Interdisziplinäre wissenschaftliche Herausforderung: Komplexe Zusammenhänge zwischen chemischer Belastung und Biodiversität Die Entschlüsselung komplexer Wirkbeziehungen stellt eine große wissenschaftliche Herausforderung dar - einerseits aufgrund multipler Stressoren, die auf Flussysteme einwirken, wie die Auswirkungen des Klimawandels oder die Ausbreitung von Neobiota; andererseits aufgrund zahlreicher Umweltfaktoren wie Wassertemperatur, Nährstoffkonzentrationen und Abflussbedingungen. Ein größtenteils unbekanntes Ausmaß an chemischen Stressoren, insbesondere organische Spurenstoffe, belasten das aquatische Ökosystem zusätzlich. Obwohl internationale Gremien und Verbände (IPBES, EU) sowie die wissenschaftliche Gemeinschaft chemische Belastungen als einen der Haupttreiber für Biodiversitätsverlust anerkannt haben, ist der Einfluss von Chemikalien auf die Biodiversität und damit auf Ökosysteme bisher unzureichend verstanden. Erste Studien geben Hinweise auf die potentiellen Auswirkungen chemischer Belastungen auf die mikrobielle Gemeinschaft: Beispielsweise belegen sie einen statistischen Zusammenhang zwischen der Spurenstoffbelastung und dem ökologischen Zustand von Fließgewässern. Es ist daher notwendig, die komplexen Zusammenhänge zwischen solchen chemischen Stressoren und der mikrobiellen Artengemeinschaften integrativ und systematisch zu bearbeiten, um die ökologischen Entwicklungen in Bundeswasserstraßen besser zu verstehen und zu prognostizieren sowie um nachteiligen Veränderungen proaktiv entgegensteuern zu können. Die Mosel als Untersuchungsgebiet Über Einträge kommunaler Kläranlagen sowie aus industriellen und intensiven landwirtschaftlichen Aktivitäten im Einzugsgebiet gelangen komplexe Mischungen organischer Spurenstoffe in die Mosel. Darüber hinaus zeigt das Gewässer als Ausdruck eines "nicht gesunden" Ökosystems seit einigen Jahren ausgeprägte, Toxin-bildende Cyanobakterienblüten, die in der breiten Öffentlichkeit sowie bei den verantwortlichen Behörden große Aufmerksamkeit und Besorgnis erregen. Ziele - Umfassende Charakterisierung der mikrobiellen Artengemeinschaft und chemischen Belastung im Untersuchungsgebiet (Mosel) - Etablierung von experimentellen Ansätzen zur systematischen Untersuchung der Zusammenhänge zwischen chemischen Belastungen und dem Wachstum mikrobieller Populationen - (Weiter-)Entwicklung von mechanistischen Effekt-Modellen, welche den Einfluss der chemischen Belastung im Kontext multipler Stressoren auf ausgewählte Phytoplankton-Arten beschreiben.

Naehrstoffhaushalt landwirtschaftlicher Wassereinzugsgebiete in Abhaengigkeit von Standort und Nutzungsintensitaet

Das Ziel des SFB 179 'Wasser- und Stoffdynamik in Agrar-Oekosystemen' ist die Modellierung der Energie-, Wasser- und Stofffluesse, um Prognosen ueber die Langzeitstabilitaet von Agrar-Oekosystemen bei unterschiedlicher Nutzungsintensitaet erstellen zu koennen. Das Teilprojekt 'Naehrstoffhaushalt landwirtschaftlicher Wassereinzugsgebiete' erstellt in zwei Wassereinzugsgebieten Standort- und Gebietsnaehrstoffbilanzen. Hierzu werden der Naehrstoffeintrag durch Duengung (Befragung der Landwirte), Ertraege und Naehrstoffentzuege durch die Kulturpflanzen, Naehrstoffgehalte in Sickerwaessern, Kenndaten zur Durchwurzelbarkeit verschiedener Ackerflaechen sowie teils regelmaessig, teils ereignisabhaengig, Naehrstoffkonzentrationen in Draen- und Vorfluterwaessern ermittelt. Die Messung der N2-Denitrifikationsverluste sowie 15N-Versuche zur Frage der Ausnutzung und des Verbleibs von Duengerstickstoff vervollstaendigen die Datenbasis zur Weiterentwicklung eines bereits erarbeiteten Modell

Native plants and mycorrhizal fungi in wind erosion control in the Kailash-Manasarovar region (Tibet, China)

We study the effects of plants and root-associated fungi on wind erosion within the alpine environment of Tibet. China is one of the countries most affected by desertification processes and Tibet, in particular, a key region in desertification combat. The presented project focuses on the Barkha Plain surrounded by Mount Kailash and the Lake of Manasarovar (Ngari Prefecture). This Western Tibet region experienced little scientific attention but, nowadays, faces rapidly increasing touristic activities and expanding local settlements associated with socio-economic changes that are serious threats to the delicate ecological balance and potential triggers of desertification. It exists almost unanimous agreement that revegetation is the most efficient and promising strategy to combat wind erosion and desertification in the long term. However, re-colonising success is often poor, mainly under extreme environmental conditions. Compared to conventional practices, the approach of the presented project attains better accordance with natural succession processes and promises acceleration of both plant and soil development and, conclusively, more efficient desertification control. The project assesses the potential of native plants and symbiotic fungi to control wind erosion and desertification processes. It aims to identify key plants and fungi that increase soil aggregate stability and efficiently drive succession into a natural and self-maintaining cycle of the ecosystem. Furthermore, it provides crucial information for implementing environmentally compatible and cost-effective measures to protect high-elevation ecosystems against desertification. Within three successional stages (early, intermediate, late), field investigations are performed on the basis of Modified-Whittaker plots. Classic methods of vegetation analysis and myco-sociology are combined with analysis of distribution patterns at different scales (patchiness, connectivity). Comprehensive soil analysis is performed comprising grain size distribution, aggregate stability, pH as well as water and nutrient contents. Additionally, important parameters of wind erosion are measured concurrently and continuously to assess their magnitude and variability with respect to vegetation and soil at different levels of development. The parameters addressed, include sediment transport, air temperature, radiation, precipitation, relative humidity as well as speed and direction of wind. Surface moisture is recorded periodically and roughness described. Species and environmental parameters are checked for spatial correlation. Cutting edge technologies are applied in laboratory work, comprising molecular methods for fungal species identification and micro-tomography to analyse soil structure. Furthermore, successfully cultivated fungi and plants are subject of synthesis experiments and industrial propagation in view of practical implementation in restoration measures.

Einfluss der Durchmischungstiefe auf Zooplankton-Phytoplankton Interaktionen im Pelagial

Der Großteil der Primärproduktion in Seen erfolgt in der durchmischten Oberflächenschicht, deren Tiefe saisonal und geographisch stark variiert. Eine Verringerung der Tiefe dieser Schicht (=Durchmischungstiefe) erhöht die durchschnittliche Lichtversorgung des Phytoplanktons, und somit meist auch die spezifische Primärproduktion. Laborarbeiten zeigen, dass derart erhöhte Primärproduktion nicht immer in der Nahrungskette nach oben weitergegeben wird. Verbesserte Lichtversorgung verschiebt oft die elementare Zusammensetzung der Algenbiomasse in Richtung hoher C:P-Quoten, was die Futterqualität der Algen für das herbivore Zooplankton herabsetzt. Unter Laborbedingungen kann eine Erhöhung der Lichtversorgung sogar die paradoxal anmutende Verringerung der Zooplanktonproduktion bewirken. Unter welchen Umständen dieses Phänomen im Freiland auftreten kann ist gänzlich unerforscht. Wir beabsichtigen, die Einflüsse der Durchmischungstiefe auf die Dynamik von Zooplankton, Phytoplankton, Nährstoffen und Licht in kontrollierten Freilandexperimenten zu untersuchen. Besonders berücksichtigt werden dabei die modulierenden Einflüsse des Nährstoffgehaltes des Wassers. und von tagesperiodischen Wanderungen des Zooplanktons zwischen Oberflächen- und Tiefenwasser. Die Experimente orientieren sich an Voraussagen eines dynamischen Modells, welches im Laufe des Projektes weiterentwickelt werden soll. Da die Durchmischungstiefe klimatisch beeinflusst ist, können die gewonnenen Erkenntnisse zur Abschätzung der Folgen globaler Klimaveränderungen für den Stoff- und Energiehaushalt von Seen beitragen.

Sklerochronologie und Isotopie von Korallen in Belize, Zentralamerika

Vom größten Riffkomplex des Atlantischen Ozeans vor der Küste von Belize (Zentralamerika) liegen bislang keine historischen Klimadaten aus Korallen vor. In dem hier beantragten Projekt sollen 18 bereits vorliegende Bohrkerne aus massiven Korallen von Belize sklerochronologisch und geochemisch untersucht werden. Variationen der Wachstumsraten und Schwankungen in der isotopischen Zusammensetzung von Kohlenstoff und Sauerstoff in den Korallenskeletten sollen ermittelt werden, um eine Klimageschichte der letzten 150-200 Jahre für die Region aufzustellen. Da die Kerne in unterschiedlichen Rahmenbedingungen (offenmarine, lagunäre und landnahe Position; unterschiedliche Wassertiefen) genommen wurden, sollte es weiterhin möglich sein, Einflüsse lokaler Variationen von Umweltparametern wie Temperatur, Salinität, Nährstoffgehalten und Licht zu entziffern. Die Ergebnisse dieser Studie sollen mit publizierten historischen Klimadaten des COADS (comprehensive ocean-atmosphere data set) Datensatzes verglichen werden. Weiterhin ist geplant, die Daten mit anderen im Atlantik im Bereich der Sklerochronologie tätigen Arbeitsgruppen auszutauschen, um einen Beitrag zur Rekonstruktion der Veränderlichkeiten von Meeresströmungen und Klima im karibisch-atlantischen Raum zu leisten.

Spurenelement - Organisches Material Wechselwirkungen im Meerwasser: Erforschung der Auswirkungen der Meerwasserchemie auf die Speziation von Spurenmetallen in einem sich erwärmenden und versauernden Ozean

Spurenmetalle (TMs), definiert als weniger als 1 mg kg-1, sind entweder wichtige essentielle Nährstoffe (Fe, Mn, Co, Cu, Ni, Zn) für das mikrobielle Wachstum oder toxisch (Cu, Pb, Cd) bei erhöhten Konzentrationen im Meerwasser. Der Ozean ist derzeit von Sauerstoffmangel, Versauerung, Schichtung und Erwärmung betroffen, was zu Veränderungen in der chemischen Speziation von TMs führt, die von den physikalisch-chemischen Bedingungen (z. B. pH-Wert, Temperatur und Salzgehalt) abhängig sind. Während die Kenntnis der gelösten und partikulären Metalle Informationen über die Gesamtbestände liefert und die Identifizierung wichtiger Quellen von TM in der Meeresumwelt ermöglicht, ist die Kenntnis der chemischen Speziation für das Verständnis der Biogeochemie und der Bioverfügbarkeit oder Toxizität von TM von wesentlicher Bedeutung. So haben frühere Arbeiten gezeigt, dass anorganisches Fe in sauerstoffhaltigem Meerwasser schlecht löslich ist, die Konzentrationen von gelöstem Fe jedoch aufgrund der Komplexbildung durch organische Stoffe höher sind als erwartet. Das derzeitige Wissen über die Speziation von TMs wird jedoch für eine bestimmte Probe unter Laborbedingungen beobachtet (z. B. pH=8,0 auf der NBS-Skala), und daher fehlt eine mechanistische Verbindung zu den intrinsischen physikalisch-chemischen Eigenschaften des Meerwassers und deren Einfluss auf die Metallbindung an organisches Material. Hier entwickle ich neuartige Analyse- und Modellierungswerkzeuge und nutze die Wechselwirkungen zwischen Metallen, Resinen und organischen Stoffen, um die Speziation von TM mittels ICP-MS über einen weiten Bereich von pH-Werten genau zu bestimmen. Ich kombiniere diese Messungen mit einem Modell für Ionenpaarung und organische Stoffe (NICA-Donnan), um eine mechanistische Beschreibung der Wechselwirkungen zu entwickeln und dadurch unser Verständnis der Rolle von z. B. pH-Wert, Temperatur und Ionenstärke für den TM-Zyklus im Meer zu verbessern. Sobald diese Methodik erreicht ist, wird sie es uns ermöglichen, zum ersten Mal die TM-Speziation für mehrere Metalle gleichzeitig zu bestimmen, einschließlich der bisher häufig untersuchten Metalle und der TMs, bei denen neuere Hinweise aus der Isotopenhäufigkeit auf eine wichtige Rolle der Bindung an organisches Material hinweisen. Die abgeleiteten thermodynamischen Konstanten werden auch in regionale biogeochemische Modelle einfließen, um Vorhersagen über den biogeochemischen Kreislauf der TM auf mechanistischer Ebene unter zukünftigen Ozeanszenarien zu erhalten.

Kombination aus Abwassernachbehandlung und Wasserwiederverwendung zum Faserpflanzenanbau, Teilprojekt 2

Kombination aus Abwassernachbehandlung und Wasserwiederverwendung zum Faserpflanzenanbau, Teilprojekt 1

1 2 3 4 598 99 100