API src

Found 1777 results.

Similar terms

s/nao/N2O/gi

Naphthalin im Meerwasser 2023

Im Rahmen des gemeinsames Bund/Länder-Messprogramm für die Nord- und Ostsee + weitere Überwachungsprogramme wurde der Parameter "Naphthalin im Meerwasser" im Meerwasser bestimmt.

Urease- und Nitrifikationsinhibitoren: Chance ohne Risiko?

Urease- und Nitrifikationsinhibitoren sind Chemikalien, die in der Landwirtschaft eingesetzt werden, um die pflanzliche Stickstoffausnutzung von Düngern zu steigern und dabei Ammoniak-, Nitrat- und Lachgasemissionen zu mindern. Da hierbei eine Gefährdung der Umwelt und der menschlichen Gesundheit nicht ausgeschlossen werden kann, empfiehlt das Umweltbundesamt eine bessere Regulierung der Stoffe. Berechnungen des Umweltbundesamtes (⁠ UBA ⁠) zeigen, dass ein umfassender Einsatz von Inhibitoren landwirtschaftliche Ammoniakemissionen um bis zu neun und Lachgasemissionen um bis zu fünf Prozent reduzieren könnten. Diese Wirkung kann aber nur erreicht werden, wenn die Stoffe großflächig mit den Düngemitteln in der offenen Umwelt ausgebracht werden. Ein großer Teil der Wirkstoffe kann jedoch die Umwelt oder die menschliche Gesundheit gefährden. So sind einige der Stoffe potenziell giftig für Wasserorganismen oder beeinträchtigen die Fortpflanzungsfunktion von Säugetieren. Diese Risiken werden aktuell in der Genehmigungspraxis weder auf nationaler noch auf europäischer Ebene systematisch berücksichtigt. Dies zeigt sich zum Beispiel daran, dass fünf der elf auf dem deutschen Markt erhältlichen Inhibitoren mit hoher Wahrscheinlichkeit nach den Anforderungen der EU-Pflanzenschutzmittelverordnung nicht zulassungsfähig wären. Darüber hinaus bestehen auch noch Unsicherheiten bei der Effektivität und Dauer der Wirkungen von Inhibitoren, insbesondere bei wiederholter Anwendung. Ein großflächiger Einsatz der derzeit auf dem Markt erhältlichen Inhibitoren kann deshalb vom UBA zum jetzigen Zeitpunkt pauschal nicht empfohlen werden. Stattdessen empfiehlt die Behörde eine einheitliche europäische Regelung, die sicherstellt, dass jeder genehmigte Wirkstoff ohne Risiko für Umwelt und menschliche Gesundheit angewendet werden kann. Diese Regelung sollte über die Schaffung einer EU-Verordnung mit einem Genehmigungs- und Zulassungsverfahren ähnlich dem der EU-Pflanzenschutzverordnung oder über die Integration in diese Verordnung umgesetzt werden. Unter diesen Voraussetzungen können Inhibitoren einen Beitrag zum Erreichen von Umwelt- und Klimazielen leisten. Wichtig ist, schnell die entsprechenden Schritte zu einer Neuregulierung insbesondere von Nitrifikationsinhibitoren zu ergreifen. Der Landwirtschaftssektor war im Jahr 2024 für rund 13 Prozent der Treibhausgasemissionen in der EU verantwortlich. Ab 2030 wird auch der Landwirtschaftssektor einen signifikanten Beitrag zu den ambitionierten europäischen und nationalen Klimazielen leisten müssen. Dann werden kostengünstige und einfache Minderungstechniken, wie der Einsatz von treibhausgasmindernden Inhibitoren, deutlich an Attraktivität gewinnen.

Entwicklung von Messverfahren zur Bestimmung von CO, H2, H2CO, Hg und N2O in Luft und Wasser

Zielsetzung: Erforschung der Kreislaeufe der o.g. Gase in der Atmosphaere. Dazu gehoert u.a. die Bestimmung der Verteilung dieser Gase in der Atmosphaere, die Erfassung moeglicher Quellen und Senken sowie Bestimmung der Abbau- bzw. Produktionsraten. Da kommerziell verfuegbare Geraete, die zu diesen Untersuchungen benoetigt werden, nicht ueber die ausreichende Empfindlichkeit verfuegen, muessen Nachweismethoden und Messgeraete selbst entwickelt werden.

Ueber die Herkunft von Ammonium im Wasser

In einigen Veroeffentlichungen der letzten Jahre wird die Bildung von Ammonium aus Nitrat in Frage gestellt. Wir haben aus je einer Erd- und Talsperrensedimentprobe 60 verschiedene Staemme von nitratammonifizierenden Bakterien erhalten. Von den Bakterien, die unter anaeroben Bedingungen aus Nitrat Ammonium bilden, sind diejenigen zu trennen, die Nitrat unter Bildung von N2 oder N2O denitrifizieren. Verschieden von beiden Prozessen ist die Ammoniumbildung aus organischen, stickstoffhaltigen Verbindungen (Ammonifikation). Nitratammonifizierende Bakterien koennen auch Nitrit und teilweise Hydroxylamin unter anaeroben Bedingungen reduzieren. Sowohl bei der Denitrifikation als auch bei der Nitratammonifikation kann aus organischer Substanz Ammonium gebildet werden.

Energie- und Kohlenstoff-Roadmap für die europäische Chemieindustrie

Ecofys unterstützte den CEFI, bei der Entwicklung und Ausarbeitung der Energie- und Kohlenstoff-Roadmap 2050 . Die Roadmap untersucht, welche Rolle die Chemieindustrie langfristig betrachtet in einem energieeffizienten und emissionsarmen Europa der Zukunft spielen kann. In vier versch. Szenarien werden die zukünftige Nachfrage nach und damit die Produktion von Produkten der chemischen Industrie bis 2050 sowie die Entwicklung und der Einsatz von Energieeffizienz- und kohlenstoffarmen Technologien bewertet. Die Szenarien unterscheiden sich dabei hinsichtlich ihrer Annahmen zum energie- und klimapol. Umfeld in Europa und dem Rest der Welt, zur Entwicklung von Energie- und Rohstoffpreisen sowie der Geschwindigkeit, mit welcher relevante Innovationen voranschreiten. Die Studie untersucht ebenfalls, welche Rolle der europäischen Chemieindustrie in der Bereitstellung von Energieeffizienz- und kohlenstoffarmen Lösungen für andere Wirtschaftsbranchen zukommen kann. Die Studie kommt zu dem Schluss, dass Produkte der chemischen Industrie in allen Wirtschaftsbereichen Verbesserungen in der Energieeffizienz und der Minderung von Treibhausgasemissionen ermöglichen, wobei sich diese Rolle der Chemieindustrie künftig noch verstärken dürfte. Weiterhin wird in der Studie deutlich, dass die Preisdifferenzen, welche für Energie und Rohstoffe im Vergleich zu den wichtigsten Wettbewerbsregionen bestehen, die globale Wettbewerbsfähigkeit der europäischen Chemieindustrie gefährden. Eine auf Europa beschränkte und nicht global abgestimmte Energie- und Klimapolitik, welche zu höheren Kosten der europäischen Produktion führt, würde die Wettbewerbsfähigkeit weiter schwächen und zu einer geringeren Produktion in Europa und damit zu vermehrten Importen von chemischen Produkten nach Europa führen. Die Verbesserung der Energieeffizienz wird den größten Beitrag leisten, die zukünftigen Treibhausgasemissionen der europäischen Chemieindustrie zu reduzieren. Des Weiteren können alternative Brennstoffe zur Erzeugung von Prozesswärme sowie die Vermeidung von Lachgasemissionen sich positiv auf die Emissionsminderung auswirken. Darüber hinaus bergen die Dekarbonisierung des Stromsektors und nach 2030 auch die CCS-Technologie zusätzliche Emissionsminderungspotentiale. Wachstum und Innovation wird dabei in den kommenden Jahren bei der Erzielung realer Emissionsminderungen eine entscheidende Rolle zukommen. Angesichts dieser Ergebnisse appelliert die Studie an die politischen Entscheidungsträger, die energie- und klimapolitische Rahmenbedingungen derart zu gestalten, dass Anreize für ein nachhaltiges und effizientes Wachstum der chemischen Industrie geschaffen werden, um die Attraktivität für Investitionen zu steigern und weitere Innovationen zu fördern. Die Studie liefert wertvollen Input für die Diskussion zur europäischen Energieversorgung sowie der post 2020 Klima und Industriepolitik. Ecofys kam die Rolle der Projektkoordination zu und lieferte zudem unabhängige analyt. Beiträge.

Emission von Spurengasen bei Biomasseverbrennung

Offene Verbrennung von Pflanzenmaterial verschiedener Herkunft. Dabei Messung von Temperatur, Flussrate, Gewichtsverlust und Spurengaskonzentrationen im Abgas. Gemessene Spurengase: CO, CO2, CH4, C2-C10-Kohlenwasserstoffe, NO, N2O, NH3, HCN, CH3CN, SO2, H2S, CS2, COS.

Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch

Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.

The waste dilemma: the attempt of Germany and Italy to deal with the waste management regulation in two European countries

Maßnahmen zur Minderung direkt und indirekt klimawirksamer Emissionen, die durch Denitrifikation in landwirtschaftlich genutzten Böden verursacht werden, Maßnahmen zur Minderung direkt und indirekt klimawirksamer Emissionen, die durch Denitrifikation in landwirtschaftlich genutzten Böden verursacht werden

Das Verbundvorhaben adressiert die Themen der Minderung der Lachgasemission und Verbesserung der Stickstoffeffizienz durch Modellierung, der Bewertung möglicher Minderungsmaßnahmen und der standortdifferenzierenden Bewertung der Denitrifikation. Gasförmige Emissionen aus der Denitrifikation verursachen pflanzenbaulich relevante N-Verluste und verursachen direkte N2O-Emissionen des Pflanzenbaus. Pflanzenbauliche Klimaschutzmaßnahmen im Bereich der Düngung, Bodenbearbeitung, Fruchtfolge sind im Hinblick auf die Rolle der Denitrifikation kaum erforscht. Ein pflanzenbauliches Management welches N-Effizienz optimiert und gleichzeitig N-Emissionen minimiert ist daher bisher nicht verlässlich definiert. Übergeordnetes Ziel des vorliegenden Antrags ist es, pflanzenbaulich praktikable Minderungsmaßnahmen im Hinblick auf N2 und N2O-Emissionen der Denitrifikation für Ackerbausysteme in Deutschland zu identifizieren, indem der Kenntnisstand zu denitrifikativen N-Verlusten durch Feld- und Laborstudien verbessert und zur Parametrisierung, Validierung und Anwendung von Simulationsmodellen eingesetzt wird. Unsere Teilziele sind wie folgt: 1. Regionalisierung der N-Verluste durch Denitrifikation in Deutschland auf Basis vorhandener Modelle 2. Bestimmung der Wirkung von pflanzenbaulichen Klimaschutzmaßnahmen auf N2- und N2O-Verluste 3. Prüfung von Minderungsoptionen auf der Modell-, Labor- und Feldskala unter Berücksichtigung des Oberbodens und des durchwurzelten Unterbodens für verschiedene Böden 4. Weiterentwicklung von Denitrifikationsmodellen, um die Abbildung von Minderungsmaßnahmen zu verbessern anhand vorhandener und neuer Messdaten 5. Prüfung der Minderungsoptionen für Deutschland anhand der verbesserten Modelle unter Berücksichtigung von Ertrag, Wirtschaftlichkeit, Technologiebedarf, N2O-Emission, N-Effizienz, Düngerbedarf, NH3-Emisissionen und Nitratauswaschung.

KI: Künstliche Intelligenz für klimaneutrale Kläranlagen

1 2 3 4 5176 177 178