Im Museum sollen die hergebrachten Formen der Waldbewirtschaftung aufgezeigt werden. Im Niederwald werden die Bäume zur Brennholzgewinnung in 15- bis 25-jährigem Turnus auf den Stock gesetzt. Vor allem Hainbuche, Ahorn und Linde treiben rasch wieder aus, während Nadelbäume durch häufigen Hieb verdrängt werden. Im Mittelwald bleiben zur Bauholzgewinnung einige Bäume als Überhälter stehen, während der Rest niederwaldartig genutzt wird. Im heute üblichen Hochwald kann die Umtriebszeit mehr als hundert Jahre betragen. Außer zur Holznutzung diente der Wald früher als Viehweide, zur Streuentnahme, zur Harz-, Pottaschen- (Glasherstellung) und Rindengewinnung (Gerberei) sowie als Bienenweide (Zeidlerei).
Nadelhölzer sind gegenüber Laubhölzern vielfach schwerer zu bestimmen, da ihr Zellgefüge insgesamt sehr einheitlich aufgebaut ist, und somit relativ wenig differenzierende mikroanatomische Merkmale zur Verfügung stehen. Nach wie vor basiert die Standardliteratur im Wesentlichen auf den frühen Arbeiten von PHILLIPS aus den Jahren 1941 und 1948. Selbst die zur Zeit von einem Komitee der International Association of Wood Anatomists (IAWA) erstellte Annotated List of Features for Softwood Identifikacion basiert ebenfalls weitgehend auf dem bisherigen Kenntnisstand von PHILLIPS. Grund hierfür ist, dass eine systematische Untersuchung der Hölzer der Klasse der Pinatae (Echte Koniferen) bislang fehlt. Entsprechend sind die Möglichkeiten der Differenzierung der Nadelhölzer bei weitem nicht ausgeschöpft. Erstens sind verschiedene Familien entweder überhaupt nicht systematisch untersucht worden oder aber nur unzureichend in ihren holzanatomischen Merkmalen bekannt. Zweitens ist eine Reihe der PHILLIPS'schen Merkmale nur beschränkt anwendbar, da ihre Variabilität teilweise unberücksichtigt ist. Drittens lassen sich neben den bekannten 28 mikroanatomischen Merkmalen zahlreiche weitere Merkmale definieren. Für ihre entweder allgemeingültige oder lediglich beschränkte Anwendbarkeit ist jedoch Voraussetzung, dass ihre Signifikanz als tatsächlich differenzierend systematisch an allen Nadelhölzern untersucht wird. Ziel des Forschungsvorhabens ist es daher, die gesamte Klasse der Pinatae, die nach KUBITZKY (1990) 9 Familien mit 68 Gattungen und ca. 580 Arten umfasst, systematisch holzanatomisch zu untersuchen sowie computergestützte Bestimmungsschlüssel zu erarbeiten.
Seit Beginn der 80er Jahre wird in der Ursachenforschung der Waldschaeden bestimmten Luftschadstoffen eine entscheidende Rolle beigemessen. Aus diesem Grund wurde von der Forstlichen Versuchs- und Forschungsanstalt Baden-Wuerttemberg ein Pilotprojekt begonnen. Ziel dieses Vorprojektes war die Entwicklung und Erprobung einer Grosskammer zur Untersuchung von Filterwirkung, Wintertauglichkeit und Kammerklima. Solche 'oben offenen Experimentierkammern' bieten die Moeglichkeit, Luftschadstoffe der Umgebungsluft auszuschliessen. Aus den Kontrollen mit den jeweiligen Freiluftbaeumen lassen sich dann Rueckschluesse auf die Auswirkungen der verschiedenen Schadstoffe ziehen. Dieses Pilotprojekt wurde im Muenstertal im Suedschwarzwald in 850 m ue NN durchgefuehrt. Die praktische Erprobung waehrend zweier Betriebsjahre zeigte einen weitgehend stoerungsfreien Kammerbetrieb. Die hoelzerne Konstruktion und die Folienbespannung widerstanden allen Belastungen durch Wind und Schnee. Lueftungs- und Filterungssystem arbeiteten befriedigend. Im Gegensatz zum technischen Kammerbetrieb bleiben die qualitativen Kammerbedingungen hinter den Erfordernissen zurueck. Eine wesentliche Abweichung von den Freilandbedingungen stellten die fehlenden Nebel- und Tauereignisse dar. Aus immissionsoekologischer Sicht entfielen hierdurch Depositionen, die fuer das aktuelle Schadensphaenomen der montanen Nadelvergilbung von besonderer Bedeutung sein koennten. Die nahezu lueckenlosen Messreihen der Klimawerte belegten ferner, dass die grundlegende Forderung nach einem freilandaehnlichen Kammerklima in den getesteten Kammern nur bedingt erfuellt werden konnte. Dies traf insbesondere fuer Luft- und Bodentemperaturen, fuer die relative Luftfeuchtigkeit und die Strahlungsverhaeltnisse zu. Aufgrund der beobachteten Klimaeffekte sowie des Fehlens wesentlicher immissionsoekologischer Feuchtefaktoren lassen die Testpflanzen sowohl kurz- als auch langfristig Wuchs- und Symptomreaktionen erwarten, die nicht mit denen des Freilandes vergleichbar sind. Unter diesen Bedingungen ist nur der Vergleich von Kammer zu Kammer statthaft. Die Durchfuehrung spezieller Kurzzeitexperimente (zB waehrend einer Vegetationsperiode) mit den Behandlungsvarianten Rein- und Umgebungsluft scheiterte an der relativ geringen Luftschadstoffbelastung des Projektstandortes. Gegen Langzeit-Experimente sprachen die nicht vergleichbaren Wachstumgsbedingungen innerhalb und ausserhalb der Kammern. Um uebertragbare Kammerergebnisse zu erzielen, muessten kostenintensive Optimierungsmassnahmen vorgenommen werden. Vorrangige Verbesserungen waeren im Bereich der Lichtbedingungen und der Temperaturreduktion angezeigt. Die Steuerungsgruppe kam zu dem abschliessenden Ergebnis, dass das Projekt im Vorprojektstadium abgeschlossen und am Standort 'Muenstertal' nicht in ein langfristiges Abschlussprojekt uebergeleitet werden sollte.
In der Umgebung der geplanten Wiederaufarbeitungsanlage in Wackersdorf (WAW) und an einem Referenzort werden Proben von Baumnadeln (Fichten, Tannen, Kiefern) und von Lebern der Roetelmaeuse genommen und auf alpha- bzw. gamma-strahlende Einzelnuklide untersucht. Das Forschungsvorhaben hat zum Ziel, vor Inbetriebnahme der WAW eine Grunderhebung der Radioaktivitaetsverteilung in biologisch signifikanten Proben zu erhalten. Es soll dadurch sichergestellt werden, dass nach Inbetriebnahme der WAW eine eventuelle Anreicherung von Radioaktivitaet in der Umwelt nachzuweisen waere.
Zielsetzung und Anlass des Vorhabens: Fuer die Waelder der Waldgemeinschaft 'Kirchenforst Oberlausitz' wird eine naturnahe Bewirtschaftung angestrebt. Wegen massiver Immissionsschaeden ist ein den gegebenen Rahmenbedingungen angepasstes Betriebskonzept zu entwickeln. Dieses soll die Dynamik oekologischer wie oekonomischer Faktoren gleichermassen beruecksichtigen. Fuer die langfristige Bestockungsplanung, die mittelfristige Nachhaltssicherung und die operative Massnahmenplanung und Betriebsfuehrung sind Datengrundlagen, Entscheidungshilfen und Steuerungsinstrumente bereitzustellen. Gleichzeitig ist eine oekonomisch differenzierte Holzaufkommensprognose fuer das Biomassekraftwerk Ostritz abzuleiten. Darstellung der Arbeitsschritte und der angewandten Methoden: Zur Gewinnung einer Datenbasis fuer betriebliche Planungen wird zunaechst ein angepasstes Inventurverfahren entwickelt. Eine permanente Stichprobeninventur ermoeglicht die Erfassung dynamischer Veraenderungen und naturnaher Waldstrukturen. Das entprechende Inventurdesign wird vom Institut entwickelt, in einem Teilbereich erprobt und dann auf der Gesamtflaeche durch die Waldgemeinschaft durchgefuehrt. Boden- und Nadelanalysen, die in Abstimmung mit der Saechsischen Landesanstalt fuer Forsten an ausgewaehlten Probepunkten durchgefuehrt werden, dokumentieren insbesondere den Einfluss der Immissionen auf Oekosystem und Betrieb. Ein geographisches Informationssystem dient der Integration und Auswertung flaechenbezogener Daten aus Standorts- und anderen Kartierungen sowie von Bestockungsinformationen aus Luftbildern. Damit lassen sich einerseits die bodenoekologischen Erkenntnisse mit Methoden der Regionalisierung auf die Gesamtflaeche uebertragen und andererseits koennen ueber eine variable Typenbildung Ergebnisse der Stichprobeninventur auf Waldbestaende bezogen werden. Durch die Ableitung von typenweisen Behandlungsprogrammen und die darauf aufbauende Simulation der weiteren betrieblichen Entwicklung wird die Gesamtplanung optimiert und eine operative waldbauliche Einzelplanung programmiert. Gezielt vereinfachte Bestandesbegaenge werden dann durch die Revier- bzw. Betriebsleiter in enger Zusammenarbeit mit dem Institut durchgefuehrt. Mit der Integration aller Inventur- und Planungsmodule in ein betriebliches Informationssystem soll dem Betrieb ein oekologisch ausgerichtetes Managementinstrument zur Verfuegung gestellt werden.
Eigene Untersuchungen in einem hohen atmogenen N-Eintrag sowie erhöhten NH3- und NO2-Konzentrationen in der Außenluft ausgesetzten Fichtenwald-Ökosystem zeigen erstmals, dass autotrophe Nitrifizierer einen für diese Mikroorganismen zuvor nicht identifizierten Lebensraum, die Phyllosphäre, wahrscheinlich den Nadelapoplasten, besiedeln. Erste Ergebnisse aus in situ-Begasungsexperimenten von Fichtenzweigen dieses Standorts mit NH3 bzw. mit NH3 plus 10 Pa C2H2 (als Inhibitor der Ammoniak-Monooxygenase: AMO) deuten darauf hin, daß die beobachtete NH3-Aufnahme über die Fichtennadeln nicht allein auf pflanzliche Aktivität zurückgeführt werden kann, sondern das autotrophe Nitrifizierer hierzu wesentlich beitragen. Ziel des Vorhabens ist es, unter Einsatz molekularbiologischer und mikroskopischer Techniken (confokales LSM) zum einen die Besiedlung des Nadel-Apoplasten von Fichten durch autotrophe NH3- und NO2-Oxidierern zu charakterisieren, zum anderen die Aufnahme von atmosphärischem NH3 und NO2 in die Nadelblätter in Abhängigkeit von dieser Besiedlung zu quantifizieren. Zu diesem Zweck sollen an zwei unterschiedlich stark atmogenen N-Einträgen ausgesetzten Fichten-Standorten die Nitrifizierer im Nadel-Apoplasten genau lokalisiert und deren Zellzahlen quantifiziert werden. Diese Daten sollen mit Ergebnissen aus NH3-Gaswechselmessungen korreliert werden, die mit bzw. ohne C2H2 als Inhibitor der AMO durchgeführt werden. Darüber hinaus soll die NH3- sowie NO2-Aufnahme an sterilen bzw. mit Nitrifizierern inokulierten Fichtenjungpflanzen parametrisiert sowie im Rahmen von 15NO3-Nachweis in der apoplastischen Waschflüssigkeit die Nitrifiziereraktivität zusätzlich nachgewiesen werden.
Background: An increasing frequency of massive flooding along the lower Yangtse River in China ended in a disastrous catastrophe in summer 1998 leaving several thousand people homeless, more than 3.600 dead and causing enormous economic damage. Inappropriate land-use techniques and large scale timber felling in the water catchment of the upper Yangtse and its feeder streams were stated to be the main causes. Immediate timber cutting bans were imposed and investigations on land use patterns were initiated by the Chinese Government. The Institute for World Forestry of the Federal Research Centre for Forestry and Forest Products was approached by the Yunnan Academy of Forestry in Kunming to exchange experiences and to cooperate scientifically in the design and application of appropriate afforestation and silvicultural management techniques in the water catchment area of the Yangtse. This cooperation was initiated in 1999 and is based on formal agreements in the fields of agrarian research between the German and Chinese Governments. Objectives: The cooperation was in the first step focussing on the identification of factors which caused the enormous floodings. After their identification measures of prevention were determined and put into practice. In this context experiences made in past centuries in the alpine region of central Europe served as an incentive and example for similar environmental problems and solutions under comparable conditions. Relevant key questions of the cooperation project were: - Analysis of forest related factors influencing the recent floodings of the Yangtse, - Analysis and evaluation of silvicultural management experiences from central Europe for know-how transfer, - Evaluation of rehabilitation measures for successful application in Yunnan, - Dissemination of knowledge through vocational training. Results: - Frequent wild grazing of husbandry is a key factor for forest degeneration beyond unsustainable timber harvests, forest fires and insect calamities leading to increased water run-off in the mountainous region of Yunnan; - Browsing of cattle interrupts succession thus avoiding natural regeneration and leaving a logging ban ineffective; - Mountain pasture in the Alps had similar effects in the past in central Europe. The introduction of controlled grazing has led to an ecologically compatible coexistence of pasture and ecology. Close-to-nature forestry can have positive effects in this sensitive environment. - Afforestation with site adopted broadleaves and coniferous tree species was implemented on demonstration level using advanced techniques in Yunnan.
Wichtige Hinweise zum Layer: Grundlage des spezifischen Grünvolumens pro Nettoteilblock bildet das spezifische Grünvolumen als Raster mit einer räumlichen Auflösung von 1m (beachte: Basisdatensatz in GK5 mit 0,5 m Auflösung). Dieses wurde im vorliegenden Layer für die einzelnen Nettoteilblöcke statistisch ausgewertet. Der ausgewiesene Wert entspricht hierbei dem Mittelwert aller im jeweiligen Block enthaltenen Rasterzellen. Ein Rückschluss auf deren Verteilung sowie der vegetativen Strukturelemente im Raum (zum Beispiel nur Wiese und am Flächenrand hohe Vegetation oder Wiese mit Baumbestand) lässt sich daraus nicht ableiten. Für konkretere Aussagen zur Verteilungsstruktur ist das Raster des spezifischen Grünvolumens heranzuziehen. Da Gewässerflächen (hier: Nettoteilblockflächen mit der Nutzungsart Gewässer) mit Ausnahme von Baumkronenüberhängen kein durch Fernerkundung erfassbares Grünvolumen enthalten, bleiben diese Flächen von der Darstellung des Grünvolumens unberücksichtigt. Allgemeine Hintergrundinformationen zum spezifischen Grünvolumen: Das spezifische Grünvolumen als Synonym für Grünvolumenzahl basiert auf dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014 (Beachte: Datenbasis 2009-2011). Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Je nach Kontext wird die Vegetation durch unterschiedliche Bestandsmerkmale beschrieben: - Forstwirtschaft (Baumart, Bestandsdichte, Brusthöhendurchmesser und Überschirmungsgrad) - Botanik (Blattflächenindex - LAI = Leaf Area Index - als Grundlage zur Bestimmung der Belaubungsdichte sowie der fotosynthetischen Aktivität bzw. der Produktionsleistung) - Landwirtschaft (pflanzliche Biomasse, als Maß der Ertragsbilanzierung). Im städtischen Kontext ist aufgrund der Artenvielfalt der Vegetation eine Erfassung von Blattflächenindex oder Biomasse schwierig. Aus diesem Grund spielen einfache, planerisch sinnvolle und vor allem praktikable Indikatoren eine wichtige Rolle. Für die Anwendung in der großmaßstäbigen Bauleit- und Landschaftsplanung wurde deshalb eine rechnerische Bestimmung des Grünvolumens durch die Planungsgemeinschaft GROSSMANN, SCHULZE, POHL entwickelt. Dabei wird das Grünvolumen mittels der flächenbezogenen Grünvolumenzahl (GVZ) beschrieben. Sie wurde als Pendant zu den planungsrelevanten Richtgrößen der baulichen Nutzung, wie der Grundflächenzahl (GRZ) oder der Geschossflächenzahl (GFZ) eingeführt. Es soll neben den vegetationsbezogenen Indikatoren Biotopflächenfaktor (BFF), Bodenfunktionszahl (BFZ) und dem Durchgrünungsgrad die Formulierung von Mindestanforderungen an die Grünausstattung bei der Planung ermöglichen, da sie eine hohe ökologische Aussagekraft besitzt. Was beschreibt die Grünvolumenzahl (GVZ)? Als Grünvolumen wird die Summe des oberirdischen Volumens aller Pflanzen verstanden. Es wird in m³ angegeben. Das Grünvolumen ist durch die äußere Hülle der Vegetation begrenzt, die in der praktischen Erfassung über idealisierte geometrisch primitive Formen beschrieben wird: - Quader: Rasen, Kräuter sowie Sträucher - Kugel: z. B. Eiche - Zylinder: z. B. Pappel - Kegel: z. B. Nadelbaum Aus der Grünvolumensumme aller Vegetationsobjekte in Bezug auf eine definierte Bezugsfläche (z. B. Baublock) ergibt sich die Grünvolumenzahl (GVZ), die alternativ auch als "spezifisches Grünvolumen" bezeichnet wird und die Einheit m³/m² besitzt. Das vorliegende generalisierte Raster (ursprüngliche Auflösung 0,5 m) weist für die einzelnen Zellen (Auflösung jetzt 1 m) bereits das spezifische Grünvolumen (m³/m²) auf, welches zugleich dem absoluten Grünvolumen entspricht. Datengrundlage/Methodik: Grundlage der Bestimmung des Grünvolumens sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Eine detaillierte Beschreibung der Vorgehensweise ist dem zugeordneten Dokument zu entnehmen. Klassifizierung des spezifischen Grünvolumen: - 1. Klasse: vegetationslos (= 0 m³/m²) - 2. Klasse: bis einschließlich 0,1 m³/m² - 3. Klasse: bis einschließlich 0,5 m³/m² - 4. Klasse: bis einschließlich 0,75 m³/m² - 5. Klasse: bis einschließlich 1 m³/m² - 6. Klasse: bis einschließlich 3 m³/m² - 7. Klasse: bis einschließlich 8 m³/m² - 8. Klasse: bis einschließlich 14 m³/m² - 9. Klasse: bis einschließlich 20 m³/m² - 10. Klasse: bis einschließlich 25 m³/m² - 11. Klasse: größer als 25 m³/m² Die Klassifikation in der vorliegenden Abstufung erfolgt aufgrund der im Modell getroffenen Annahmen sowie zur besseren plastischen Darstellung der Vegetationsobjekte. Einschränkung: Entsprechend der vorgesehenen Nutzung für die Umwelt-, Landschafts- und Bauleitplanung ist trotz scheinbar detaillierter Darstellungsmöglichkeit der Anwendungsmaßstab auf 1:5.000 begrenzt. Die Karte soll Aufschluss über die Verteilung des Grünvolumens geben. Hieraus ergeben sich Rückschlüsse aus stadtökologischer und sozialer Sicht. Dieser Datensatz kann gemäß den Nutzungsbestimmungen Datenlizenz Deutschland - Namensnennung - Version 2.0 (http://www.govdata.de/dl-de/by-2-0) genutzt werden. Eine Haftung für die Richtigkeit der Daten wird nicht übernommen, insbesondere übernimmt die Landeshauptstadt Dresden keine Haftung für mittels dieser Daten erhobene oder berechnete Ergebnisse Dritter.
Wichtige Hinweise zum Layer: Grundlage des spezifischen Grünvolumens pro Nettoteilblock bildet das spezifische Grünvolumen als Raster mit einer räumlichen Auflösung von 1m (beachte: Basisdatensatz in GK5 mit 0,5 m Auflösung). Dieses wurde im vorliegenden Layer für die einzelnen Nettoteilblöcke statistisch ausgewertet. Der ausgewiesene Wert entspricht hierbei dem Mittelwert aller im jeweiligen Block enthaltenen Rasterzellen. Ein Rückschluss auf deren Verteilung sowie der vegetativen Strukturelemente im Raum (zum Beispiel nur Wiese und am Flächenrand hohe Vegetation oder Wiese mit Baumbestand) lässt sich daraus nicht ableiten. Für konkretere Aussagen zur Verteilungsstruktur ist das Raster des spezifischen Grünvolumens heranzuziehen. Da Gewässerflächen (hier: Nettoteilblockflächen mit der Nutzungsart Gewässer) mit Ausnahme von Baumkronenüberhängen kein durch Fernerkundung erfassbares Grünvolumen enthalten, bleiben diese Flächen von der Darstellung des Grünvolumens unberücksichtigt. Allgemeine Hintergrundinformationen zum spezifischen Grünvolumen: Das spezifische Grünvolumen als Synonym für Grünvolumenzahl basiert auf dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014 (Beachte: Datenbasis 2009-2011). Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Je nach Kontext wird die Vegetation durch unterschiedliche Bestandsmerkmale beschrieben: - Forstwirtschaft (Baumart, Bestandsdichte, Brusthöhendurchmesser und Überschirmungsgrad) - Botanik (Blattflächenindex - LAI = Leaf Area Index - als Grundlage zur Bestimmung der Belaubungsdichte sowie der fotosynthetischen Aktivität bzw. der Produktionsleistung) - Landwirtschaft (pflanzliche Biomasse, als Maß der Ertragsbilanzierung). Im städtischen Kontext ist aufgrund der Artenvielfalt der Vegetation eine Erfassung von Blattflächenindex oder Biomasse schwierig. Aus diesem Grund spielen einfache, planerisch sinnvolle und vor allem praktikable Indikatoren eine wichtige Rolle. Für die Anwendung in der großmaßstäbigen Bauleit- und Landschaftsplanung wurde deshalb eine rechnerische Bestimmung des Grünvolumens durch die Planungsgemeinschaft GROSSMANN, SCHULZE, POHL entwickelt. Dabei wird das Grünvolumen mittels der flächenbezogenen Grünvolumenzahl (GVZ) beschrieben. Sie wurde als Pendant zu den planungsrelevanten Richtgrößen der baulichen Nutzung, wie der Grundflächenzahl (GRZ) oder der Geschossflächenzahl (GFZ) eingeführt. Es soll neben den vegetationsbezogenen Indikatoren Biotopflächenfaktor (BFF), Bodenfunktionszahl (BFZ) und dem Durchgrünungsgrad die Formulierung von Mindestanforderungen an die Grünausstattung bei der Planung ermöglichen, da sie eine hohe ökologische Aussagekraft besitzt. Was beschreibt die Grünvolumenzahl (GVZ)? Als Grünvolumen wird die Summe des oberirdischen Volumens aller Pflanzen verstanden. Es wird in m³ angegeben. Das Grünvolumen ist durch die äußere Hülle der Vegetation begrenzt, die in der praktischen Erfassung über idealisierte geometrisch primitive Formen beschrieben wird: - Quader: Rasen, Kräuter sowie Sträucher - Kugel: z. B. Eiche - Zylinder: z. B. Pappel - Kegel: z. B. Nadelbaum Aus der Grünvolumensumme aller Vegetationsobjekte in Bezug auf eine definierte Bezugsfläche (z. B. Baublock) ergibt sich die Grünvolumenzahl (GVZ), die alternativ auch als "spezifisches Grünvolumen" bezeichnet wird und die Einheit m³/m² besitzt. Das vorliegende generalisierte Raster (ursprüngliche Auflösung 0,5 m) weist für die einzelnen Zellen (Auflösung jetzt 1 m) bereits das spezifische Grünvolumen (m³/m²) auf, welches zugleich dem absoluten Grünvolumen entspricht. Datengrundlage/Methodik: Grundlage der Bestimmung des Grünvolumens sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Eine detaillierte Beschreibung der Vorgehensweise ist dem zugeordneten Dokument zu entnehmen. Klassifizierung des spezifischen Grünvolumen: - 1. Klasse: vegetationslos (= 0 m³/m²) - 2. Klasse: bis einschließlich 0,1 m³/m² - 3. Klasse: bis einschließlich 0,5 m³/m² - 4. Klasse: bis einschließlich 0,75 m³/m² - 5. Klasse: bis einschließlich 1 m³/m² - 6. Klasse: bis einschließlich 3 m³/m² - 7. Klasse: bis einschließlich 8 m³/m² - 8. Klasse: bis einschließlich 14 m³/m² - 9. Klasse: bis einschließlich 20 m³/m² - 10. Klasse: bis einschließlich 25 m³/m² - 11. Klasse: größer als 25 m³/m² Die Klassifikation in der vorliegenden Abstufung erfolgt aufgrund der im Modell getroffenen Annahmen sowie zur besseren plastischen Darstellung der Vegetationsobjekte. Einschränkung: Entsprechend der vorgesehenen Nutzung für die Umwelt-, Landschafts- und Bauleitplanung ist trotz scheinbar detaillierter Darstellungsmöglichkeit der Anwendungsmaßstab auf 1:5.000 begrenzt.
Wichtige Hinweise zum Layer: Grundlage des spezifischen Grünvolumens pro Nettoteilblock bildet das spezifische Grünvolumen als Raster mit einer räumlichen Auflösung von 1m (beachte: Basisdatensatz in GK5 mit 0,5 m Auflösung). Dieses wurde im vorliegenden Layer für die einzelnen Nettoteilblöcke statistisch ausgewertet. Der ausgewiesene Wert entspricht hierbei dem Mittelwert aller im jeweiligen Block enthaltenen Rasterzellen. Ein Rückschluss auf deren Verteilung sowie der vegetativen Strukturelemente im Raum (zum Beispiel nur Wiese und am Flächenrand hohe Vegetation oder Wiese mit Baumbestand) lässt sich daraus nicht ableiten. Für konkretere Aussagen zur Verteilungsstruktur ist das Raster des spezifischen Grünvolumens heranzuziehen. Da Gewässerflächen (hier: Nettoteilblockflächen mit der Nutzungsart Gewässer) mit Ausnahme von Baumkronenüberhängen kein durch Fernerkundung erfassbares Grünvolumen enthalten, bleiben diese Flächen von der Darstellung des Grünvolumens unberücksichtigt. Allgemeine Hintergrundinformationen zum spezifischen Grünvolumen: Das spezifische Grünvolumen als Synonym für Grünvolumenzahl basiert auf dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014 (Beachte: Datenbasis 2009-2011). Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Je nach Kontext wird die Vegetation durch unterschiedliche Bestandsmerkmale beschrieben: - Forstwirtschaft (Baumart, Bestandsdichte, Brusthöhendurchmesser und Überschirmungsgrad) - Botanik (Blattflächenindex - LAI = Leaf Area Index - als Grundlage zur Bestimmung der Belaubungsdichte sowie der fotosynthetischen Aktivität bzw. der Produktionsleistung) - Landwirtschaft (pflanzliche Biomasse, als Maß der Ertragsbilanzierung). Im städtischen Kontext ist aufgrund der Artenvielfalt der Vegetation eine Erfassung von Blattflächenindex oder Biomasse schwierig. Aus diesem Grund spielen einfache, planerisch sinnvolle und vor allem praktikable Indikatoren eine wichtige Rolle. Für die Anwendung in der großmaßstäbigen Bauleit- und Landschaftsplanung wurde deshalb eine rechnerische Bestimmung des Grünvolumens durch die Planungsgemeinschaft GROSSMANN, SCHULZE, POHL entwickelt. Dabei wird das Grünvolumen mittels der flächenbezogenen Grünvolumenzahl (GVZ) beschrieben. Sie wurde als Pendant zu den planungsrelevanten Richtgrößen der baulichen Nutzung, wie der Grundflächenzahl (GRZ) oder der Geschossflächenzahl (GFZ) eingeführt. Es soll neben den vegetationsbezogenen Indikatoren Biotopflächenfaktor (BFF), Bodenfunktionszahl (BFZ) und dem Durchgrünungsgrad die Formulierung von Mindestanforderungen an die Grünausstattung bei der Planung ermöglichen, da sie eine hohe ökologische Aussagekraft besitzt. Was beschreibt die Grünvolumenzahl (GVZ)? Als Grünvolumen wird die Summe des oberirdischen Volumens aller Pflanzen verstanden. Es wird in m³ angegeben. Das Grünvolumen ist durch die äußere Hülle der Vegetation begrenzt, die in der praktischen Erfassung über idealisierte geometrisch primitive Formen beschrieben wird: - Quader: Rasen, Kräuter sowie Sträucher - Kugel: z. B. Eiche - Zylinder: z. B. Pappel - Kegel: z. B. Nadelbaum Aus der Grünvolumensumme aller Vegetationsobjekte in Bezug auf eine definierte Bezugsfläche (z. B. Baublock) ergibt sich die Grünvolumenzahl (GVZ), die alternativ auch als "spezifisches Grünvolumen" bezeichnet wird und die Einheit m³/m² besitzt. Das vorliegende generalisierte Raster (ursprüngliche Auflösung 0,5 m) weist für die einzelnen Zellen (Auflösung jetzt 1 m) bereits das spezifische Grünvolumen (m³/m²) auf, welches zugleich dem absoluten Grünvolumen entspricht. Datengrundlage/Methodik: Grundlage der Bestimmung des Grünvolumens sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Eine detaillierte Beschreibung der Vorgehensweise ist dem zugeordneten Dokument zu entnehmen. Klassifizierung des spezifischen Grünvolumen: - 1. Klasse: vegetationslos (= 0 m³/m²) - 2. Klasse: bis einschließlich 0,1 m³/m² - 3. Klasse: bis einschließlich 0,5 m³/m² - 4. Klasse: bis einschließlich 0,75 m³/m² - 5. Klasse: bis einschließlich 1 m³/m² - 6. Klasse: bis einschließlich 3 m³/m² - 7. Klasse: bis einschließlich 8 m³/m² - 8. Klasse: bis einschließlich 14 m³/m² - 9. Klasse: bis einschließlich 20 m³/m² - 10. Klasse: bis einschließlich 25 m³/m² - 11. Klasse: größer als 25 m³/m² Die Klassifikation in der vorliegenden Abstufung erfolgt aufgrund der im Modell getroffenen Annahmen sowie zur besseren plastischen Darstellung der Vegetationsobjekte. Einschränkung: Entsprechend der vorgesehenen Nutzung für die Umwelt-, Landschafts- und Bauleitplanung ist trotz scheinbar detaillierter Darstellungsmöglichkeit der Anwendungsmaßstab auf 1:5.000 begrenzt.
| Origin | Count |
|---|---|
| Bund | 1794 |
| Kommune | 11 |
| Land | 62 |
| Wirtschaft | 1 |
| Wissenschaft | 5 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Bildmaterial | 1 |
| Daten und Messstellen | 1295 |
| Ereignis | 4 |
| Förderprogramm | 466 |
| Hochwertiger Datensatz | 1 |
| Text | 47 |
| Umweltprüfung | 1 |
| unbekannt | 30 |
| License | Count |
|---|---|
| geschlossen | 1347 |
| offen | 487 |
| unbekannt | 11 |
| Language | Count |
|---|---|
| Deutsch | 1811 |
| Englisch | 1363 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 6 |
| Datei | 1299 |
| Dokument | 25 |
| Keine | 462 |
| Unbekannt | 2 |
| Webdienst | 9 |
| Webseite | 1367 |
| Topic | Count |
|---|---|
| Boden | 1751 |
| Lebewesen und Lebensräume | 1845 |
| Luft | 1681 |
| Mensch und Umwelt | 1439 |
| Wasser | 1666 |
| Weitere | 1826 |