Es werden synergistische & anatagonistische Toxizitätsmechanismen von Gemischen bestehend aus Nanopartikeln & löslichen Chemikalien in unterschiedlichen Leberzelllinien & Primärhepatozyten untersucht. Als Beispielsubstanzen werden hierbei Ceriumdioxid Nanopartikel und Paracetamol sowohl als Einzelsubstanzen als auch als Substanzgemische exponiert. Neben der Bestimmung von Überlebensraten und der Gentoxizität werden Studien zur Veränderung von Metabolitmustern im Gesamtmetabolom nach Exposition vermittels massenspektrometrischer Analytik durchgeführt. Bei denjenigen Zellkulturansätzen, bei denen sich charakteristische Toxizitätsmerkmale oder signifikante Veränderungen im Gesamtmetabolom zeigen, werden detaillierte Analysen zur Partikelverteilung sowie Biokinetikstudien zur Partikelaufnahme vermittels bildgebender Massenspektrometrie durchgeführt. Die Ergebnisse der Arbeiten sollen aufzeigen ob und wenn ja durch welche Mechanismen sich toxikologisch relevante Wirkmechanismen in den Zellkulturen manifestieren. Die so gewonnenen Daten sollen der Weiterentwicklung der Risikobewertung von Nanomaterialien und regulatorischen Zwecken dienen.
Derzeit wird zur Ermittlung der chronischen Inhalationstoxizität von nano-Cerdioxid (CeO2) eine Langzeitstudie an über 600 Ratten durchgeführt, die unter der Schirmherrschaft des BMUB als Kooperationsprojekt zwischen der BASF und den Bundesoberbehörden BAuA, BfR und UBA konzipiert ist. Ein besonderer Fokus liegt dabei auf der Untersuchung von Wirkungen im umweltrelevanten Niedrigdosisbereich dieser Substanz, die als UV-Absorber in Lacken und Plastik, als Polier- und Schleifmittel in der Halbleitertechnik und als Kraftstoffadditiv eingesetzt wird. Die Studie ist weltweit einzigartig, sowohl hinsichtlich der Konzentrationen im Niedrigdosisbereich als auch hinsichtlich der langen Expositionsdauer. Nach Vorversuchen zur Ermittlung der Konzentration im Überladungsbereich wurden Konzentrationen von 0,1; 0,3; 1 und 3 mg/m3 ausgewählt und eine maximal 24-monatige Exposition mit 6-monatiger Nachbeobachtung festgelegt. Histologische Befunde an Lungen von Ratten, die 12 Monate exponiert wurden, lassen erwarten, dass nach Exposition über 24 Monate auch in der niedrigsten Dosisgruppe adverse Effekte an Lungen/Lungen-assoziierten Lymphknoten auftreten werden (FuE 3712 61 206, Abschlussbericht Ende 2017). Wirkungen auf weitere Organe werden bisher nicht untersucht. Es soll deshalb ein Folgevorhaben zu dem FuE 3712 61 206 vergeben werden, bei dem 1. die Targetorgane Nasenhöhle und Kehlkopf (Nanopartikel konnten dort nachgewiesen werden) ausgewählter Dosisgruppen nach 12 Monaten und aller Dosisgruppen nach 24 und 30 Monaten Exposition histologisch untersucht werden. 2. sollen alle restlichen Organe der Kontroll- und Hoch-dosisgruppe sowie in Abstimmung mit der BAuA ausgewählte Organe der übrigen Dosisgruppen nach 24 und 30 Monaten untersucht werden. Die endgültige Festlegung des Untersuchungsmaterials soll nach Anhörung des Beraterkreises zum FuE 3712 61 206 erfolgen.
Bei der BASF wird im Rahmen des EU-Forschungsprojekts NanoREG eine chronische in vivo Inhalationstoxizitäts- und Kanzerogenitätsstudie mit nanoskaligem CeO2 und BaSO4 durchgeführt. In diesem Vorhaben ist als eine Erweiterung zur Langzeitstudie eine parallele 90-Tage-Inhalationsstudie geplant. Die Kanzerogenitätswirkung von Nanopartikeln (NP) im Niedrigdosisbereich soll in vivo und in vitro untersucht werden. Gesamtziel des Vorhabens ist die Etablierung und Validierung neuer sensitiver Endpunkte als frühe Indikatoren zur Vorhersage späterer kanzerogener/toxischer Befunde. Ziele des Teilvorhabens sind das Auffinden und die Entwicklung von innovativen prädiktiven nanotoxikologischen Endpunkten mittels hochauflösender bildgebender Techniken, wie Konfokaler Raman-Mikrospektroskopie (CRM) und Ionenstrahl-Mikroskopie (IBM). Molekular-spektroskopische Biomarker, die toxikologisch relevante intrazelluläre Nanopartikeldosis und Translokationspattern von Nanopartikeln sollen als potentielle Endpunkte untersucht werden. Die Ergebnisse werden mit Genexpessionmarkern und Ergebnissen der Langzeitstudie korreliert und verifiziert. Dazu werden die Translokation von Nanopartikeln, ihre Verteilung in Lungenepithelzellen und im Lungengewebe, die Kolokalisation von Nanopartikeln mit zellulären Bestandteilen, sowie die Quantifizierung von CeO2 und BaSO4 NP auf Organ- und zellulärer Ebene mit IBM und CRM bildlich dargestellt. Die tatsächlich gemessene intrazelluläre Dosis soll mit dem genotoxischen Response korreliert werden, um kausale Dosis-Wirkungsbeziehungen abzuleiten. Das ist eine wichtige Voraussetzung, um die Relevanz von in vitro Untersuchungen der Genexpression für die Vorhersage der Toxizität von Nanopartikeln in vivo zu begründen. Die Quantifizierung der Aufnahme in Epithelzellen und die Korrelation mit dem genotoxischen Response ermöglicht es, zwischen primären und über immunkompetente Zellen vermittelten genotoxischen Wirkungen von Nanopartikeln zu unterscheiden.
Ziel von DENANA ist die Entwicklung von Kriterien für die Herstellung nachhaltiger Nanomaterialien. Im Fokus stehen Nanopartikel aus Siliziumdioxid, Cerdioxid und Silber, die unter anderem in Schmierstoffen, Abgaskatalysatoren, Medizinprodukten und Poliermitteln eingesetzt werden. Die Nanopartikel werden bei der Herstellung variiert und auf ihr Gefährdungspotenzial hin geprüft. Durch das Ineinandergreifen verschiedenster Fragestellungen im Rahmen von DENANA erwarten die Beteiligten im Lauf der nächsten drei Jahre Kriterien für das Design von Nanomaterialien abzuleiten, die sowohl den technischen Ansprüchen genügen, gleichzeitig aber auch das Gefährdungspotenzial minimieren. Es werden zum einen Langzeitwirkungen der Partikel unter realitätsnahen Freilandbedingungen in Gewässern, Sedimenten und Böden, zum anderen ihr Verhalten und ihre Wirkung unter kontrollierten Laborbedingungen untersucht. Wesentlich dabei ist, aus der Kombination von Kurzzeittests und langjährigen Untersuchungen Frühwarnindikatoren für Langzeitwirkungen zu ermitteln, die der nationalen und internationalen Umweltregulierung als Entscheidungsinstrument dienen können.
Für eine umwelt- und gesundheitsverträgliche Gestaltung der Nanotechnologie sind Maßnahmen der Risikoerkennung und gegebenenfalls Risikominimierung frühzeitig durchzuführen. In der von BAuA, BfR und UBA gemeinsam erarbeiteten Forschungsstrategie ist der notwendige Forschungsbedarf hierfür benannt. Dort wird auch intensivierte Forschung zur Ermittlung der chronischen Toxizität von Nanomaterialien gefordert. Bisher liegen nur sehr vereinzelt Untersuchungen zur chronischen Toxizität von Nanomaterialien mit dem Endpunkt Kanzerogenität vor. Eine Einschätzung hinsichtlich eines möglichen kanzerogenen Potentials von Nanomaterialien, insbesondere im umweltrelevanten Niedrigdosisbereich ist deshalb derzeit nicht möglich. In einer Kooperation des BMU mit der BASF soll nun unter Beteiligung der Bundesoberbehörden BAuA, BfR und UBA eine chronische Inhalationsstudie mit nano CeO2 (Ceriumdioxid) an Ratten realisiert werden. Das UBA beteiligt sich an dieser Langzeitstudie mit einer erweiterten histophathologischen Untersuchung der Lungen sowie Untersuchungen zur Gentoxizität.
In den letzten Jahren beschäftigten sich eine Vielzahl von Veröffentlichungen mit der Thematik 'Nanopartikel' und deren Auswirkungen auf die Umwelt. Nanopartikel, freigesetzt aus industriellen bzw. im Haushalt genutzten Nanomaterialien, gelangen durch Anwendung, Verschleiß bzw. Abfallentsorgung in die Abwässer und Klärschlämme der Wasseraufbereitung. Ziel des Projektes ist es, den Verbleib von Nanopartikeln in Abwasserkläranlagen zu untersuchen und explizit die mögliche Aufnahme von Nanopartikeln aus Klärschlammen über den Bodenpfad in die Pflanze zu untersuchen. Vita 34 übernimmt vorwiegend die Entwicklung, Planung und Durchführung der Laborversuche mit Pflanzen. Insgesamt werden jeweils vier Pflanzenarten aus dem Bereich der Nahrungsmittel- und Nutzpflanzen untersucht. Dazu zählen Radieschen, Feldsalat, Sonnenblume und das deutsche Weidelgras. Für die Untersuchungen werden zwei Testsysteme verwendet. Im ersten Ansatz wird die Aufnahme von radiomarkierten Nanopartikel (TiO2 und CeO2) über die wässrige Phase (Leitungswasser, synthetisches und vorgeklärtes Abwasser) betrachtet. Die Radiomarkierung erlaubt es in geringen (umweltrelevanten) Konzentrationen zu arbeiten. In der Pflanze können so die Aufnahmewege und die Ort der Ablagerung besser verdeutlicht werden. Die wässrige Phase erlaubt es außerdem die Aufnahme ohne Wechselwirkung mit Bodenpartikeln abzubilden. Im zweiten Ansatz wird die Aufnahme aus natürlichen Bodenmatrizes nachgebildet. Topfversuche zeigen die Aufnahme der Nanopartikel aus dem Boden bzw. Bodenporenwasser in die Pflanze. Als Kontrolle wird der Ansatz vorerst ohne Klärschlamm untersucht. Anschließend wird Nanopartikel dotierter Klärschlamm beigefügt. In beiden Ansätzen werden ausgewählte Parameter (pH, Zeta-Potential, Leitfähigkeit, Partikelgröße, org. Gehalt, u.a.) ermittelt, um die Agglomerationseigenschaften der Nanopartikel abbilden und verstehen zu können. Die Synthese von radiomarkierten Nanopartikeln und der Nachweis in den verschiedenen Matrizes wird bei unserem Partner, dem HZDR, realisiert und unter Strahlenschutzbedingungen statt finden. Aus den Ergebnissen wird eine systematische Bewertung von möglichen Umweltgefährdungen ausgehend von Nanopartikel entlang des Wirkungspfades Klärschlamm - Boden - Pflanze erstellt. Standartarbeitsanweisungen, Richtlinien bzw. Konzepte sowohl für die landwirtschaftliche Praxis als auch Vorschläge für eine potentielle Phytosanierung werden ausgearbeitet.
Ziel von DENANA ist die Entwicklung von Kriterien für die Herstellung nachhaltiger Nanomaterialien. Im Fokus stehen Nanopartikel aus Siliziumdioxid, Cerdioxid und Silber, die unter anderem in Schmierstoffen, Abgaskatalysatoren, Medizinprodukten und Poliermitteln eingesetzt werden. Die Nanopartikel werden bei der Herstellung variiert und auf ihr Gefährdungspotenzial hin geprüft. Durch das Ineinandergreifen verschiedenster Fragestellungen im Rahmen von DENANA erwarten die Beteiligten im Lauf der nächsten drei Jahre Kriterien für das Design von Nanomaterialien abzuleiten, die sowohl den technischen Ansprüchen genügen, gleichzeitig aber auch das Gefährdungspotenzial minimieren. Es werden zum einen Langzeitwirkungen der Partikel unter realitätsnahen Freilandbedingungen in Gewässern, Sedimenten und Böden, zum anderen ihr Verhalten und ihre Wirkung unter kontrollierten Laborbedingungen untersucht. Wesentlich dabei ist, aus der Kombination von Kurzzeittests und langjährigen Untersuchungen Frühwarnindikatoren für Langzeitwirkungen zu ermitteln, die der nationalen und internationalen Umweltregulierung als Entscheidungsinstrument dienen können.
Ziel von DENANA ist die Entwicklung von Kriterien für die Herstellung nachhaltiger Nanomaterialien. Im Fokus stehen Nanopartikel aus Siliziumdioxid, Cerdioxid und Silber, die unter anderem in Schmierstoffen, Abgaskatalysatoren, Medizinprodukten und Poliermitteln eingesetzt werden. Die Nanopartikel werden bei der Herstellung variiert und auf ihr Gefährdungspotenzial hin geprüft. Durch das Ineinandergreifen verschiedenster Fragestellungen im Rahmen von DENANA erwarten die Beteiligten im Lauf der nächsten drei Jahre Kriterien für das Design von Nanomaterialien abzuleiten, die sowohl den technischen Ansprüchen genügen, gleichzeitig aber auch das Gefährdungspotenzial minimieren. Es werden zum einen Langzeitwirkungen der Partikel unter realitätsnahen Freilandbedingungen in Gewässern, Sedimenten und Böden, zum anderen ihr Verhalten und ihre Wirkung unter kontrollierten Laborbedingungen untersucht. Wesentlich dabei ist, aus der Kombination von Kurzzeittests und langjährigen Untersuchungen Frühwarnindikatoren für Langzeitwirkungen zu ermitteln, die der nationalen und internationalen Umweltregulierung als Entscheidungsinstrument dienen können.
Ziel von DENANA ist die Entwicklung von Kriterien für die Herstellung nachhaltiger Nanomaterialien. Im Fokus stehen Nanopartikel aus Siliziumdioxid, Cerdioxid und Silber, die unter anderem in Schmierstoffen, Abgaskatalysatoren, Medizinprodukten und Poliermitteln eingesetzt werden. Die Nanopartikel werden bei der Herstellung variiert und auf ihr Gefährdungspotenzial hin geprüft. Durch das Ineinandergreifen verschiedenster Fragestellungen im Rahmen von DENANA erwarten die Beteiligten im Lauf der nächsten drei Jahre Kriterien für das Design von Nanomaterialien abzuleiten, die sowohl den technischen Ansprüchen genügen, gleichzeitig aber auch das Gefährdungspotenzial minimieren. Es werden zum einen Langzeitwirkungen der Partikel unter realitätsnahen Freilandbedingungen in Gewässern, Sedimenten und Böden, zum anderen ihr Verhalten und ihre Wirkung unter kontrollierten Laborbedingungen untersucht. Wesentlich dabei ist, aus der Kombination von Kurzzeittests und langjährigen Untersuchungen Frühwarnindikatoren für Langzeitwirkungen zu ermitteln, die der nationalen und internationalen Umweltregulierung als Entscheidungsinstrument dienen können.
Ziel von DENANA ist die Entwicklung von Kriterien für die Herstellung nachhaltiger Nanomaterialien. Im Fokus stehen Nanopartikel aus Siliziumdioxid, Cerdioxid und Silber, die unter anderem in Schmierstoffen, Abgaskatalysatoren, Medizinprodukten und Poliermitteln eingesetzt werden. Die Nanopartikel werden bei der Herstellung variiert und auf ihr Gefährdungspotenzial hin geprüft. Durch das Ineinandergreifen verschiedenster Fragestellungen im Rahmen von DENANA erwarten die Beteiligten im Lauf der nächsten drei Jahre Kriterien für das Design von Nanomaterialien abzuleiten, die sowohl den technischen Ansprüchen genügen, gleichzeitig aber auch das Gefährdungspotenzial minimieren. Es werden zum einen Langzeitwirkungen der Partikel unter realitätsnahen Freilandbedingungen in Gewässern, Sedimenten und Böden, zum anderen ihr Verhalten und ihre Wirkung unter kontrollierten Laborbedingungen untersucht. Wesentlich dabei ist, aus der Kombination von Kurzzeittests und langjährigen Untersuchungen Frühwarnindikatoren für Langzeitwirkungen zu ermitteln, die der nationalen und internationalen Umweltregulierung als Entscheidungsinstrument dienen können.
Origin | Count |
---|---|
Bund | 18 |
Type | Count |
---|---|
Förderprogramm | 18 |
License | Count |
---|---|
offen | 18 |
Language | Count |
---|---|
Deutsch | 17 |
Englisch | 5 |
Resource type | Count |
---|---|
Keine | 6 |
Webseite | 12 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 18 |
Luft | 18 |
Mensch & Umwelt | 18 |
Wasser | 15 |
Weitere | 18 |