Mikroplastik (Partikel im µm Bereich) entsteht durch verschiedenste Prozesse, insbesondere jedoch durch Abrieb und Erosion von Plastik. Dabei ist ein Eintrag über den Wasser- und Bodenpfad mittlerweile unbestritten. Jedoch weiterhin ungeklärt ist der tatsächliche Eintrag über den Luftpfad. Zwar belegen Studien das Vorkommen von Mikroplastik an weitentfernten Orten und lassen auch den Schluss eines zumindest teilweisen Transportes über die Luft zu, aber wie hoch dieser Beitrag tatsächlich ist bleibt zurzeit ungeklärt. Darüber hinaus spielt die Identifikation der Polymere und somit die Erfassung der Quellbeiträge eine entscheidende Rolle. Ziel des Projektes ist es den luftgetragenen Eintrag von Mikroplastik und deren Quellen an Hintergrundstationen des Luftmessnetzes zu bestimmen.
Dafür sollen an ausgewählten Messstationen des Luftmessnetzes des Umweltbundesamts (UBA) plastikfreie Niederschlagssammler sowie Vorrichtungen zur Feinstaubprobenahme installiert und über den Projektzeitraum repräsentativ PM10 Feinstaub- und Niederschlagsproben gesammelt und deren chemische Zusammensetzung analysiert werden. Zusätzlich sind Analysen von Niederschlagsproben zu Vergleichszwecken vorzusehen.
In der Studie soll zudem die Ergebnisse statistisch (deskriptiv und beurteilend) ausgewertet und eine mögliche Quellenidentifikation über die Inhaltsstoffe erarbeitet werden.
Ziel des Vorhabens ist die deutliche Verbesserung der Geräteausstattung des Verbundlabors zur Untersuchung des Umweltverhaltens von anthropogenen Stoffen in Gewässer-, Boden- und Vegetationskompartimenten. Ausgehend von aktuellen Forschungsprojekten steht das Umweltverhalten von Polymeren, insbesondere Mikroplastik im Fokus. Die neuen Geräte sollen von verschiedenen Akteuren genutzt wer-den, neben forschungsstarken Professuren, Nachwuchsforschende, wissenschaftliche Mitarbeitende und Promovierende, die in Projekten zu Mikroplastik, Bodenkunde, Wasserwesen und Vegetationstechnik tätig sind. Mit der Forschung zur Mikroplastik, der Entwicklung der Mikroplastikanalyse durch Elektroseparation in Verbindung mit der Differenzkalorimetrie und eines neuen Herstellverfahrens für Mikroplastikstandards und -referenzmaterialien hat die HTWD bereits ein Alleinstellungsmerkmal erreicht, was sich in Patenten und Publikationen widerspiegelt. Die Geräteauswahl ist primär auf die Weiterentwicklung der Mikroplastikforschung und ihrer Anwendungsbreite ausgerichtet, soll aber ebenso Projekte zur Untersuchung anderer anthropogener Stoffe und zum Umweltverhalten von Polymerwerkstoffen fördern. Die Mikroplastik-Verbundforschung der HTWD wurde ausgehend von fakultätsübergreifenden Lehrangeboten entwickelt und bildet den Kern des Verbundlabors, dessen Gründung die Hochschulleitung initial durch Sondermittel unterstützt hat. Mikrowellenaufschluss, Durchflusszentrifuge, TED-GC-MS, Durchflusszytometer und Thermowaage sollen nun vorhandene Lücken in der Probenvorbereitung und -aufbereitung schließen, neue Möglichkeiten für die Analytik bei hohem Probendurchsatz bieten und verbesserte Nachweisgrenzen für Mikro- und Nanoplastik ermöglichen. Der Ausbau stärkt die Umweltforschung im Bereich Materialforschung, Böden, Wasser und Vegetation, um das Verhalten anthropogener Stoffe in komplexen Umweltkompartimenten besser zu verstehen und die Auswirkungen menschlicher Eingriffe in die Umwelt sinnvoll zu gestalten. Die synergistische, fakultätsübergreifende Forschung zu Fragen der produktiven Land- und Gewässernutzung, der Energieproduktion, der Kontamination von Böden und Gewässern und der Rolle der Vegetation als anzeigendes, verbindendes und gestaltendes Element soll neue Erkenntnisse und Technologien für eine nachhaltige Entwicklung generieren. Eine moderne analytische Ausstattung ist dazu unerlässlich. Deren Beschaffung übersteigt die Möglichkeiten der Hochschule und kann nicht auf anderem Weg finanziert werden. Die HTWD kann durch die beantragte Ausstattung Alleinstellungsmerkmale weiterentwickeln und die Vorteile der fakultätsübergreifenden Kooperation demonstrieren. Offenheit zur interdisziplinären Zusammenarbeit ist ebenso gelebte Praxis wie die Berücksichtigung neuer Schwerpunkte und aktueller Trends, eine bevorzugte Förderung junger Wissenschaftler und Begleitung durch Maßnahmen für chancengerechte Forschung, um eine nachhaltige Zukunftsfähigkeit zu gewährleisten.
Wasserlösliche Polymere (WSPs) werden in großen Mengen produziert (1.000-1.000.000 Tonnen pro Jahr, je nach Polymer) und haben zahlreiche Anwendungen, die einen Eintrag in die aquatische Umwelt zur Folge haben können. In den wenigen Fällen in denen Konzentrationen zumindest abgeschätzt werden konnten wurde je nach Polymer und Nähe zu einer Quelle von Konzentrationen im µg/L bis mg/L Bereich berichtet. Dennoch sind zu wenige Informationen zu ihrem Vorkommen und Verhalten in der aquatischen Umwelt verfügbar, um eine Bewertung ihrer Umweltrelevanz vornehmen zu können. Dies liegt zum einen daran, dass spurenanalytische Methoden für WSPs in komplexen Umweltmatrizes noch nicht etabliert sind und zum anderen daran, dass die in Studien zum Abbau verwendeten analytischen Methoden oft nur die Betrachtung eines Primärabbaus oder des Grades der Mineralisierung zuließen. In vielen Fällen fanden Transformationsprodukte wenig oder keine Beachtung. Für andere WSPs fehlen solche Studien noch komplett. Auf Basis des Literaturstandes untersucht PolyAqua das Umweltvorkommen und Umweltverhalten (Biotransformation, gebildete Transformationsprodukte und Sorption) von 5 ausgewählten Polymeren (Polyethyleneoxid - PEO, Polyvinylpyrrolidone - PVP, Polydiallyldimethylammonium chlorid - PolyDADMAC, Polyacrylsäure - PAA und Polyacrylamid - PAM) in drei Arbeitspaketen. Im Arbeitspaket 1 werden spurenanalytische Methoden für WSPs entwickelt und somit der Grundstein für die weitere Untersuchung gelegt. Es werden verschiedene analytische Methoden betrachtet, die bereits vereinzelt für WSPs angewendet wurden oder auf die Übertragbarkeit von Mikro- oder Nanoplastik auf WSPs schließen lassen. In Arbeitspaket 2 werden die Biotransformation und das Sorptionsverhalten der ausgewählten WSPs in Laborstudien untersucht. Die vorrausgegangenen Arbeiten werden in Arbeitspaket 3 auf reale Systeme übertragen (Oberflächenwässer und potentielle Quellen wie kommunale Kläranlagen). In diesem Arbeitspaket wird ein Umweltmonitoring für die ausgewählten WSPs und deren in Arbeitspaket 2 identifizierten Transformationsprodukte durchgeführt das nicht nur die wässrige Phase, sondern auch feste Phasen wie Sediment, Schwebstoffe und Klärschlamm untersucht. Dieses Monitoring dient zur Bestätigung der in Arbeitspaket 2 erzielten Ergebnisse in realen Systemen. Die kombinierten Ergebnisse zeigen, in welchen Mengen WSPs in die aquatische Umwelt eingeleitet werden. Zudem verdeutlichen sie, wie sich die WSPs zwischen verschiedenen Phasen verteilen und welche Rolle Transformationsprozesse für ihr Umweltverhalten spielen.