API src

Found 10 results.

Safe Implementation of Innovative Nanoscience and Nanotechnology (SIINN)

Objective: The primary aim of the SIINN ERA-NET is to promote the rapid transfer of the results of nano-science and nanotechnology (N&N) research into industrial application by helping to create reliable conditions. In order to strengthen the European Research Area and to coordinate N&N-related R&D work, the project has the aim of bringing together a broad network of ministries, funding agencies, academic and industrial institutions to create a sustainable transnational programme of joint R&D in N&N. The commercial application of nano-materials (NMs) products is increasing rapidly, but one important question, the safety of NMs, still represents a barrier to their wide innovative use. Therefore the first priority of SIINN is to focus on developing a consolidated framework to address nano-related risks and the management of these risks for humans and the environment by investigating the toxicological behaviour of NMs. European R&D activities in N&N remain largely uncoordinated and fragmented, resulting in the sub-optimal use of available resources, such as human resources, research equipment and funding. Since available data on their toxicological behaviour is often scant, unreliable or contradictory, the SIINN Project will focus on ways of remedying this situation. After defining the criteria important for NM toxicology, the environmental health and safety (EHS) information currently available to Europe will be examined. Liaisons will strategically be established and maintained. They will network with organisations looking into the EHS of NMs within Europe and abroad with the aim of continually exchanging information with these. Available information will be examined for their reliability in respect of the assessment of the risks of NMs towards human health and to the environment and major knowledge gaps identified. At least two joint, transnational calls will be organised during the initial lifetime of SIINN in order to fill these gaps.

Nanotechnologie im Kontext einer Bildung für nachhaltige Entwicklung (NanoBiNE)

Eine systematische Schulung von Bewertungskompetenz im ethischen Orientierungsrahmen einer Bildung für nachhaltige Entwicklung qualifiziert junge Menschen zur Teilnahme an öffentlichen Diskursen zu gesellschaftlichen Gestaltungsfragen. Hierzu leistet das Projekt NanoBinE einen wesentlichen Beitrag, in dem im exemplarischen Themenfeld der Nanowissenschaften Schülerlaborkonzepte und Unterrichtssequenzen entwickelt, erprobt und in Fortbildungsmaßnahmen in der Breite vermittelt werden, welche zentrale in den Bildungsstandards geforderte Kompetenzen adressieren und sich in der Förderung der Bewertungskompetenz an den Leitlinien der Bildung für nachhaltige Entwicklung orientieren. Konkrete Ziele des Projektes an vier Standorten sind die Verknüpfen von Fachwissen und Aspekten einer Bildung für nachhaltige Entwicklung im Kontext Nanowissenschaften und Nanotechnologie. Dies soll erreicht werden durch die Erweiterung der vier Schülerlaborkonzepte, indem deren fachliche Inhalte und experimentelle Settings gesellschaftlich gerahmt werden und mit einem Entscheidungsplanspiel gezielt BnE adressieren. Nach Ende der Entwicklungsphase gehen diese Konzepte in das Regelangebot der verschiedenen Standorte ein. Zweitens durch Entwicklung, Erprobung und Optimierung von Unterrichtssequenzen zum Themenkomplex Nanowissenschaften und Technikfolgenabschätzung in Gruppen von Lehrkräften nach der Methode der partizipativen fachdidaktischen Aktionsforschung. Erarbeiten von Kontexten, Fachinhalten und Experimenten (Kompetenzbereiche Fachwissen und Erkenntnisgewinnung). Ferner durch entwickeln von Planspielen zur Technikfolgenabschätzung am Beispiel der Nutzung alltäglicher Produkte oder gesellschaftlicher Entscheidungen (Kompetenzbereiche Bewerten und Kommunikation). Drittens durch breit angelegte Fortbildungsmaßnahmen in Kooperation mit den Trägern der regionalen Lehrerfortbildungszentren. Mit Beteiligung der Lehrkräfte aus o.g. Arbeitsgruppen werden mehrteilige Fortbildungen realisiert, die eine Unterrichtserprobung der Einheit beinhalten, um die Förderung naturwissenschaftsbasierter Bewertungskompetenz im Orientierungsrahmen BnE praktisch zu erproben. Inhaltliche Basis bilden die in den Arbeitsgruppen entwickelten Unterrichtssequenzen. Viertens und abschließend durch Initiieren von BnE-Aktivitäten an den Schulen, deren Lehrkräfte und Lernende die Schülerlabore besuchen. Die Teilnehmenden erhalten ein Zertifikat als BnE-Coaches, Material mit Vorschlägen für BnE-Projekttage, Schul-AGs u.a. Beratend steht ihnen für die Projektdauer ein Ansprechpartner zur Verfügung.

Study on the emission of nanoparticles in products in the life cycle and the ecological evaluation

Objective of the project is the assessment of the exposure of environment and human health by synthetic nanomaterials. The project includes a life cycle analysis of relevant products, an analysis of measurement equipment, and the identification of the demand for research and development. A reference study was commissioned by the Federal Environmental Agency - FKZ 3708 61 300 - in the scope of the UFOPLAN 2008, to summarise the current knowledge and research needs in the area of emission of nanoscale particles from products in the course of their life cycle as well as their possible environmental effects (relevance). For this purpose, information about nanoscale silver, titanium dioxide, carbon black, cerium oxide used in wipes, wall paint, in tires and additives in fuel, were compiled and evaluated. Possible measurement techniques and methods, for different measurement parameters and matrices, for examining the emission and characterizing nanostructures and their behaviour in the environment were summarized in a separate section. Emission of nanoscale material from products can take place at different stages in the course of its life cycle; during production, processing, transportation, when in use or during disposal of materials and products. Release generally takes place in environmental media such as air, water or soil/sediments. Nanoscale silver and titanium dioxide is mainly released into the aquatic medium. The release of silver particles has been shown when washing tissues and textiles in particular which have been impinged with nanoscale silver. It is not clear if the particles are release in the form of ions or nanoparticles. The release of TiO2 from wall paint after rain events was seen in rain water and in near by surface waters during field measurements. Laboratory studies have shown that TiO2 particles can be released through mechanical stress.It seems on the other hand that the emission of carbon black and cerium oxide mainly takes place in air. Carbon black can stem from ink, laser printers or tires. Studies have established the release of nanoscale soot particles form tires. It could not be determined if the released particles were the original particles or particles formed from secondary processes. The primary application for nanoscale cerium oxide is in polishing agents, coating products and as catalysts in e.g. diesel fuels. Cerium oxides have also been used recently for medical purposes, e.g. tested and marketed as antioxidants. Cerium oxide emission is likely for all the listed applications. This could be proven by field measurements particularly when used in fuels. It was not examined whether the released cerium oxide from diesel fumes correspond to that which was applied. There are generally very few publications for this study that deal explicitly with the emission from the materials and products which are to be examined...

Managing Risks of Nanoparticles (MARINA)

The MARINA project is a major new European Commission Framework 7 project to develop reference methods for managing the risk of engineered nanoparticles and engineered nanomaterials (ENM). With very significant economic impact across industrial, consumer and medical products, nanotechnology is now one of the key industries within Europe and worldwide. Key to its long term growth and sustainability is establishing end-user confidence that the technologies developed arc safe. While there are standard procedures for product life cycle analysis, exposure, hazard, and risk assessment for traditional chemicals, it is not yet clear how these procedures need to be modified to address all the novel properties of nanomaterials. There is a need to develop specific reference methods for all the main steps in managing the potential risk of ENM. The aim of MARINA is to develop such methods. MARINA will address the four central themes in the risk management paradigm for ENM: Materials, Exposure, Hazard and Risk. The methods developed by MARINA will be (i) based on beyond-state-of-the-art understanding of the properties, interaction and fate of ENM in relation to human health and the quality of the environment and will either (ii) be newly developed or adapted from existing ones but ultimately, they will be compared/validated and harmonised/standardized as reference methods for managing.

Anbahnungsreise zu CSIRO in Melbourne, Australien

CSIRO arbeitet wie wir an der biologischen Gewinnung von Metallen aus Erzen und industriellen Rückständen sowie den Umweltproblemen durch saure, schwermetallhaltige (Bergwerks)wässer. Während sich CSIRO auf die technische Anwendung konzentriert, arbeiten wir an Grundlagen zum Verständnis der bakteriellen Umsetzungen, die zur Metallsolubilisierung führen. Aufgrund der apparativen Ausstattung incl. des Zugangs zu der Synchrotonquelle in Melbourne ist zu erwarten, dass eine Kooperation zu völlig neuen Einsichten beim Bioleaching führen wird. Beide Arbeitsgruppen befassen sich zur Zeit schwerpunktmäßig mit Grenzflächenprozessen, also mit Substanzen und Kräften im Nanometermaßstab, die zwischen Material/Werkstoff und Mikroorganismen existieren. Wir wollen klären, wie sich die Organismen und wo sie sich an die Oberflächen anheften, wie dann die Auflösungsprozesse in Gang kommen und durch welche Materialeigenschaften das beeinflusst wird. Auf diese Weise wollen wir zweierlei erreichen: die Optimierung dieser Prozesse, um möglichst hohe Auflösungsraten zu erzielen, und Möglichkeiten zur gezielten Hemmung zu entwickeln. Letzteres ist für die Lösung von Umweltproblemen wie saure Bergwerksausflüsse -Acid Mine/Rock Drainage- (Problematik Wismut oder Braunkohlerestseen in Deutschland) weltweit von größter Bedeutung. Desweiteren werden auch Lösungen von Biokorrosionsproblemen bei Metallen und industriellen Anlagen angestrebt Besuch in Melbourne und Fachdiskussionen + Synchrotonbesichtigung.

NANOCELL

The Nanocell project is a European research project with partners from Germany (TU Dresden, MPI Göttingen, MPI Frankfurt), UK (University of Oxford), and Switzerland (U Basel, U Geneva, ETH Zurich). The overall goal is to engineer molecular machines that allow providing artificial cells with functionalities, such as energy generation, movement, transport of genetic material, and protein production. The subproject at ETH Zurich focuses on cell free protein production. First, we intend to implement an efficient process to produce proteins in a cell-free fashion by using cell-free extracts obtained from the protein Escherichia coli. Such extracts contain, next to the desired components of the protein production machinery, a variety of enzymes that interfere with a long-term protein production process, such as enzymes that remove energy carriers (ATP) from the system. These interfering activities will be comprehensively identified in a systems-level approach and the corresponding genes will be either knocked out or modified such that the corresponding enzyme activities can be removed from the cell free stage by selective protein hydrolysis. In a second step of the project, we will investigate whether we can substitute energy rich chemicals (such as phosphoenolpyruvate), which are usually used to drive cell free protein synthesis, by light. For this, the cell free extracts have to be turned into the intererior of vesicles whose membranes harbor photosynthetic complexes. The complexes can be used to establish proton gradients across a vesicle membrane and then, the proton gradients can be used to generate ATP. Previous attempts at this scheme were frustrated by the limited stability of the photosynthetic complexes. Together with our partners, we hope to be able to eliminate this problem by using recently discovered novel types of light-complexes and artificial membranes. In the final stages of the project (beyond 3 years), we aim to extend the functions of the vesicle by integrating into the artificial membranes additional functionalities provided form partner groups, such as (1) a DNA-transporter, which would be an important contribution to the efficiency of in vivo directed evolution experiments, and (2) a peptide transporter, which would allow providing resources for protein formation from the outside.

Natürliche Nanopartikel in Böden und Sedimenten als mögliche Vektoren für Umweltkontaminanten

Untersuchungen zum Verständnis der Wirkung von nanopartikulären Boden- bzw. Sedimentbestandteilen hinsichtlich Schadstofftransport, -verhalten und -bioverfügbarkeit Seit bekannt ist, dass im Bereich von 1 - 100 nm Größe viele bekannte Materialien einzigartige physikalische Eigenschaften und chemisches Verhalten zeigen, sind die Nanowissenschaften ein fantastischer neuer Forschungsbereich. Auch für die Umweltwissenschaften ergeben sich daraus völlig neue Erkenntnisse und Forschungsinteressen, da viele Bestandteile natürlicher Matrices nanopartikulär sind bzw. entsprechende Eigenschaften besitzen. Beispiele für natürliche Nanopartikel in Böden und Sedimenten sind Hydroxide, aluminosilikate Tonmineralien, Humin- bzw. Fulvinsäuren, Viren, Nanomineralien wie nanopartikuläre Eisen- oder Manganhydroxide, und sog. Black carbon. Die Mobilität von Nanopartikeln in Böden und Sedimenten kann vom Wasserdurchfluss beeinflusst werden, da die Bindung von Nanopartikeln an Bodenporen von Aggregation und Disaggregation abhängig ist. Auch die Mobilität von Schadstoffen hängt mit diesen Phänomenen zusammen, durch die Eigenschaft von Nanopartikeln, als starke Sorptionsphasen für hydrophobe Substanzen deren Transport und Bioverfügbarkeit zu verändern. Für mehrere Arten von Nanopartikel wurde gezeigt, dass sie in der Lage sind, eine ganze Reihe von organischer Verbindungen anzulagern, wie z.B. Dioxine, PAHs, DDTs, PBDEs, PCBs und Pestizide. Dieses Projekt fokussiert Verhalten und Verbleib von Nanopartikeln mithilfe einer genauen Charakterisierung unterschiedlicher Typen von natürlichen Kleinstpartikeln in Böden und Sedimenten. Es soll die Bindung von Kontaminanten untersucht und in diesem Zusammenhang geeignete Analysemethoden verbessert werden, hinsichtlich der Untersuchung bestimmter Probenarten. Daraus abgeleitet werden soll eine Korrelation von Auftreten und Verteilung von Nanopartikeln mit dem Vorhandensein von organischen Kontaminanten. Mittels einer umfangreichen Biotest-Batterie, die eine große Breite ökotoxikologischer Endpunkte abdeckt, soll der Einfluss von Nanopartikeln auf Transport, Extrahierbarkeit und Bioverfügbarkeit von Schadstoffen untersucht werden.

Nanosciences - conception and ecopolitical establishment of technology risks with an international comparison

International multi-stakeholder dialogue platform framing the responsible development of nanosciences and nanotechnologies (NS&T) (FRAMINGNANO)

Objective: The FramingNano project will support the establishment of a multistakeholders dialogue on NS&T regulation and governance among the scientific, institutional, industrial communities, the broad public to articulate consensus and absence of consensus between the various stakeholders, sustain a European debate between them, and foster the development of a shared frame of knowledge, objectives, actions to define constructive and practicable regulatory solutions toward a responsible development of NS&T. This action will lead to a proposal of a Governance Plan designing a deliberative process for the responsible development of NS&T at European level and beyond, including recommendations for future research, policy actions, and co-operative research processes over the years 2009-2013. The activity of the project will be articulated in 28 months and geared around 4 key actions: 1. Analysis and review of existing-proposed regulatory processes, identification of stakeholders; 2. collection and analysis of stakeholders positions and needs; 3. Development of an appropriate proposal of a Governance Plan; communication and dissemination of information on the project and NS&T governance. Project website and Newsletter, a mid term international workshop, a final international conference, and national workshops will be organised. The project brings together 6 partners from 6 countries, covering all main European geographical areas (North, Eastern, Centre, South). Consortium partners have a long experience in NS&T, in S&T assessment, consultation processes, analysis of technological and societal issues, communication, and liaison already established with many relevant stakeholders. The project will support the European Commission, EU policy makers and stakeholders in designing a European model that assure that the development of NS&T takes place responsibly and to the benefit of the individuals and the society.

Carbon Nanotubes for Applications in Electronics, Catalysis, Composites and Nano-Biology (CANAPE)

Objective: A major limitation on the application of the unique properties of carbon nanotubes has been their high cost and lack of availability. This IP brings together leading laboratories and companies within Europe to produce nanotubes on a bulk scale of ultimately tons per year. The large-scale growth of carbon nanotubes will be developed by chemical vapour deposition (CVD). The applications in electronics as interconnects and vias for integrated circuits, for field effect transistors, and spin coherent transport will be developed. Field emission will be developed further for use in microwave amplifiers and micron scale x-ray sources. Electronic applications will be enabled by controlled growth in plasma enhanced CVD and thermal CVD. Multi-wall CNTs will be used as a catalyst in large-scale chemical reactions such as the dehydrogenation of ethyl benzene to styrene. Control of the nanotube internal orientation to give the herring bone microstructure is needed for catalysis, as plane edges are catalytically active. Fictionalisation of CNTs will be extended, in order to improve the performance of structural, electrically conducting and thermally conducting nanotube-polymer composites. Dispersion of nanotubes at high loading will be achieved in polymers to obtain high strength composites. Nanotubes are known to act as high energy density actuators, or 'artificial muscles'. Nanobiological devices will be fabricated based on self-assembly and molecular absorption. A toxicological study of CNTs particularly with respect to possible health hazards will be carried out, and nanotube/polymer composites will be tested for biocompatibility. Public acceptance of nanomaterials and nanotechnology will be encouraged by publicity and poling. Training, workshops and conferences will be held, and to promote technology transfer from universities and research institutes to companies. SMEs will be dominant in the CVD, catalysis and composite applications

1