API src

Found 134 results.

Related terms

Halbtechnische Versuche zur Dekarbonatisierung der Glasproduktion durch Einsatz alternativer Rohstoffe

Das Projekt "Halbtechnische Versuche zur Dekarbonatisierung der Glasproduktion durch Einsatz alternativer Rohstoffe" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Technische Universität Bergakademie Freiberg, Institut für Glas und Glastechnologie.Zielsetzung und Anlass des Vorhabens: Motivation Bis 2045 will Deutschland erreichen, dass die Bilanzen der Industrie und damit auch die der Glasindustrie klimaneutral auszuweisen sind. Die Glasindustrie in Deutschland stößt z.Zt. etwa 5,4 Mio. t CO2 bei einer Jahresproduktion von 7,4 Mio. t Glas aus. Der Anteil der eingesetzten Menge an natürlichen und synthetischen Rohstoffen im Massenglasbereich Behälter- und Fensterglas mit einer Jahresproduktion von 6 Mio. t Glas beträgt hier 3,3 Mio. t Rohstoffe ohne Scherben. Von diesen 3,3 Mio. t gelangen ca. 20% als CO2 (0,66 Mio. t) in die Atmosphäre, da ein Teil der Rohstoffe karbonatische Natur besitzen. Im Rahmen dieses Projektes wird versucht, den Ausstoß von klimaschädlichem CO2 aus diesen Rohstoffen (Karbonate) in der Glasindustrie zu verringern. Das soll durch den Einsatz von oxydischen oder hydroxydischen Rohstoffen als Ersatzrohstoff für karbonatische Rohstoffe sowie durch den Einsatz von Fein-Scherben erreicht werden. Im Rahmen dieses Projektes soll die technologische Einsetzbarkeit von alternativen Rohstoffen mittels Engineerings und Laboruntersuchungen bewertet und die Hindernisse für ihren Einsatz in der Glasindustrie beseitigt werden. Ziel des Projektes Die Hauptziele des Projektes in Bezug auf die Behälter- und Flachglasindustrie sind: a) Vermeidung der Anbackung beim Einsatz von oxydischen oder hydroxydischen Rohstoffen als Ersatzrohstoff für karbonatische Rohstoffe. b) Bewertung des Einflusses von Branntkalk / Löschkalk und Natriumhydroxid unter Berücksichtigung unterschiedlicher Scherbengehalte auf das Schmelzverhalten zur Klärung der Intensivierungsmöglichkeiten der Glasherstellung durch diese alternativen Rohstoffe und der damit verbundenen Möglichkeiten zur Reduzierung der Primärschaumproblematik beim Einsatz von Feinscherben.

AlkaliBattery als Weltspeicher

Das Projekt "AlkaliBattery als Weltspeicher" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.

Optimierung der Ammoniummetawolframat-Konzentration via Umkehrosmose (AMW-OSMO)

Die H.C. Starck Tungsten GmbH produziert aus Recyclingmaterialien und Erzen hochleistungsfähige Wolfram-Pulver und Wolfram-Verbindungen für den Maschinen- und Werkzeugbau, die Automobil- und Energieindustrie, die Luftfahrt sowie die Chemische Industrie. Das Unternehmen beschäftigt weltweit 550 Mitarbeiter. Ein wichtiges Produkt der Wolframchemie ist Ammoniummetawolframat (AMW), welches u.a. als Vorstoff für Industriekatalysatoren verwendet wird. Bisher wurde dieser Stoff über ein energieintensives mehrstufiges Aufbereitungsverfahren produziert. Dabei wurden mehrere Verdampfer zum Wasserentzug bzw. zur Aufkonzentrierung der AMW-Lösung verwendet. Darüber hinaus musste die AMW-Lösung mehrmals im Kreis gefahren werden, um die gewünschte Konzentration zu erreichen. Die Umkehrosmosetechnologie wurde nach dem bisherigen Stand der Technik vorrangig im Bereich der Trinkwasseraufbereitung, der Behandlung von nitrathaltigen Abwässern in der chemischen Industrie sowie zur Meerwasserentsalzung eingesetzt. Ziel des Projektes war die energieeffiziente Herstellung von Ammoniummetawolframat (AMW) aus wolframhaltigen Schrotten durch den erstmaligen Einsatz der Hochdruckumkehrosmose zur Aufkonzentrierung von AMW. Dabei sollte der Verdampfungsprozess durch eine energieeffiziente Umkehrosmoseanlage mit Arbeitsdrücken von über 100 bar substituiert werden. Die Hauptinnovation des Projektes besteht darin, dass die Hochdruckumkehrosmose erstmalig nicht nur auf einfache anorganische Salze in wässriger Lösung angewendet wird, sondern auf Isopolyionen bildende Metallate, bei denen zum Teil sehr komplizierte Gleichgewichte zwischen verschiedenen Spezies bestehen, die durch möglicherweise auftretende selektive Ionenpermeabilitäten der Membran nicht gestört werden dürfen. Kern der Anlage sind zwei parallel geschaltete Druckrohre, von denen jedes mit maximal drei Membranwickelmodulen bestückt werden kann. Diese werden über eine Kreislaufpumpe von ihrer Stirnseite her mit mehreren Kubikmetern pro Stunde auf der Konzentratseite durchströmt. Diesem Kreislauf wird über eine vorgeschaltete Vordruckpumpe und eine Hochdruckpumpe Feedlösung geringerer Konzentration zugeführt. Die Membranen haben sich auch im Langzeitbetrieb als stabil erwiesen, was die wirtschaftliche Nutzung dieser Technologie erst ermöglicht. Im Vergleich zum herkömmlichen Verdampfungsverfahren konnte durch die Hochdruckumkehrosmose eine Energieeinsparung von über 97 Prozent erzielt werden. Bei einer jährlichen Produktionsmenge von 1.000 Tonnen AMW entspricht das einer Einsparung von 5600 Megawattstunden Energie und damit ca. 1.021 Tonnen CO 2 -Äquivalente bzw. ca. 1.023 Kilogramm CO 2 -Äquivalente pro Tonne AMW. Da die H.C. Starck Tungsten GmbH ausschließlich Strom aus erneuerbaren Quellen bezieht, beträgt die CO 2 -Einsparung 100 Prozent. Zusätzlich zur Energieeinsparung wurde auch der Verbrauch an Natronlauge (50-prozentige NaOH) um ca. 39 Tonnen pro Jahr gesenkt. Die Emissionen an Neutralsalz (Na 2 SO 4 ) über das behandelte Abwasser konnten so um etwa 35 Tonnen pro Jahr reduziert werden. Das Vorhaben hat einen sehr guten Modellcharakter und ist prinzipiell auch auf andere Anwendungen zur Aufkonzentrierung von Metallaten oder auf andere komplizierte chemische Systeme übertragbar. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Klimaschutz Fördernehmer: H.C. Starck Tungsten GmbH Bundesland: Niedersachsen Laufzeit: 2018 - 2020 Status: Abgeschlossen

Zott SE & Co. KG, Neugenehmigung nach § 4 BImSchG für die Errichtung und Betrieb einer Anlage zum Lagern von Salpetersäure, Phosphorsäure und Natronlauge

Die Fa. Zott SE & Co. KG, Bäumenheimer Straße 25, 86690 Mertingen, Fl.-Nr. 1321 Gemarkung Mertingen, betreibt eine Anlage zur Verarbeitung von Milch (Molkerei), eine Ammoniakkälteanlage sowie ein Heizkraftwerk mit mehreren Dampfkesseln in der Bäumenheimer Straße 25, 86690 Mertingen (Werk 2). Diese Anlagen wurden gem. den immissionsschutzrechtlichen Vorschriften genehmigt. Die Fa. plant nunmehr die Errichtung und den Betrieb einer Anlage zum Lagern von Salpetersäure, Phosphorsäure und Natronlauge (Konzentrattanklager) um den sog. Bauteil 5. Dafür soll die bestehende CIP-Anlage (Cleaning-in-Place-Anlage) für die Reinigung von Behältern um 4 Behälter erweitert und eingehaust werden. Die neu errichteten Behälter sollen die folgenden Stoffe aufnehmen und lagern: Natronlauge (NaOH) 1 x 43 m³ Volumen (ca. 65 Tonnen), Salpetersäure (HNO3) 2 x 20 m³ Volumen (ca. 52 Tonnen) AZ Säure (Gemisch Phosphors. und Alkohole) 1 x 20 m³ Volumen (ca. 26 Tonnen). Das bestehende Tanklager für Salpeter- und AZ-Säure bzw. Natronlauge stellte bisher noch keine BImSchG-Anlage entsprechend der 4. BImSchV dar. Die Anlage ist nunmehr der Ziffer Nr. 9.3 des Anhangs 1 der 4. BImSchV i.V.m. Spalte 4 des Anhangs 2 - Stoffliste zuzuordnen. Zudem ist eine Allgemeine Vorprüfung zur Umweltverträglichkeit § 9 Abs. 4 i.V.m. § 7 Abs. 2 und Nr. 9.3.2 der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung, erforderlich.

STEP, Teilvorhaben: Herstellung von strohbasierten Biogaspellets sowie Brennstoff- und Nährstoffpellets aus den Reststoffen der Gärrestbehandlung

Das Projekt "STEP, Teilvorhaben: Herstellung von strohbasierten Biogaspellets sowie Brennstoff- und Nährstoffpellets aus den Reststoffen der Gärrestbehandlung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: ATS Agro Trading & Solutions GmbH.Thema: Das Gesamtprojekt thematisiert die energetische Nutzung von Geflügelmist und Stroh auf Basis der Biogaserzeugung. Neben der energetischen Bilanz (inkl. Logistik) wird vor allem das stoffliche Potenzial der entstehenden Gärreste (Dünger und Brennstoff) berücksichtigt bzw. erschlossen. Ziel: Zielsetzung ist zum einen der Nachweis der Praxistauglichkeit von strohbasierten Energiepellets in einer großtechnischen BGA und zum anderen die weitere Verbesserung der Energiebilanz bei der gezielten Aufbereitung von Gärresten zu Wertstoffen und Prozesswasser. Weiterhin soll neben der Erzeugung von Düngeprodukten ein Brennstoff aus Gärresten erzeugt werden, welcher hinsichtlich seiner Verbrennungseigenschaften für eine direkte Nutzung in Heizkesseln geeignet ist. Zur weiteren Verbesserung der thermischen Gärrestnutzung wird die Verbrennungsstrecke in praktisch relevanten Heizkesseln hinsichtlich der Emissionsminimierung optimiert. Am Ende des Projektes stehen Auslegungsparameter für die gesamte Verfahrenskette für eine großtechnische Umsetzung zur Verfügung. Maßnahmen: Durch ATS wird ein Demonstrationsversuch zur Herstellung von ca. 250 t Biogaspellets konzipiert und die notwendigen organisatorischen und sicherheitstechnischen Maßnahmen realisiert. Weiterhin übernimmt ATS zum einen die Herstellung größerer Mengen Pellets aus separierten, getrockneten sowie optional konditionierten Gärresten. Zum anderen befasst sich ATS mit der Möglichkeit, ein Düngepellet oder -granulat aus der Zusammenführung von Verbrennungsaschen und den Konzentratströmen der Gärresteindampfung herzustellen. Schwerpunkte: Pelletierung Stroh inkl. Zugabe von NaOH (großtechnisch) - Pelletierung Gärreste - Pelletierung Asche + Eindampferkonzentrat.

Chem-Anorg\Chlor(Diaphragma)-DE-2030

Chlorherstellung (Diaphragmaverfahren): Chlor in elementarer Form (Cl2) wird heute elektrochemisch dargestellt. Im Prozess wird die Herstellung von Cl2 durch Elektrolyse von Natriumchlorid (NaCl) nach dem Diaphragmaverfahren bilanziert. Der Prozess liefert neben Chlor stets Natronlauge und Wasserstoff. Ausgangsstoff ist Steinsalz (NaCl) oder direkt die Sole aus dem Bergbau. Verunreinigungen des Rohstoffs werden durch Fällung mit Natronlauge oder Soda entfernt. Bei diesem Verfahren trennt ein Diaphragma (Asbest) Anoden- und Kathodenraum. Der Elektrolyt (NaCl in Wasser) wird beim Diaphragmaverfahren im direkten Durchlauf geführt. Die Kochsalzlösung wird zuerst in den Anodenraum gepumpt. Hier entwickelt sich an der Anode (Titan) Chlor, das gekühlt, mit Schwefelsäure getrocknet und komprimiert wird. Der Elektrolyt fließt nun durch das Diaphragma zur Kathode (Stahl). An der Kathode scheidet sich Wasserstoff ab, und es bildet sich Natronlauge. Die resultierende Natronlauge ist jedoch mit NaCl verunreinigt und muß von 12 auf 50 % eingeengt werden, was den Gesamtenergieverbrauch stark erhöht. Während des Eindampfens und Abkühlens der Lösung fällt Natriumchlorid aus, das in den Prozess zurückgeführt wird. Als Rohstoffe für die Elektrolyse dienen neben Natriumchlorid in geringem Umfang auch Salzsäure und Kaliumchlorid. 1987 wurden etwa 93 % aus NaCl hergestellt. Es stehen drei verschiedene Elektrolyseverfahren für NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. 1985 entfielen in der BRD ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (Tötsch 1990). Die Verteilung der weltweiten Produktionskapazitäten auf die verschiedenen Verfahren nach (Ullmann 1993) können für das Jahr 1990 der Tabelle 1 entnommen werden. Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an Chlor betrug 1987 in der BRD ca. 3,5 Mio. Tonnen. Die Weltkapazität für die Chlorherstellung ist größer als 40 Mio. Tonnen pro Jahr (Ullmann 1986). Die Kennziffern dieses Prozesses beziehen sich auf die Chlorherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Mengen um, so enstehen pro Tonne Cl2 1,128 Tonnen NaOH (100 %ig). Bei der Elektrolyse entstehen weiterhin 28 kg Wasserstoff (H2)/t Cl2. Es wird angenommen, dass der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift (siehe: „H2-Kessel-D“) berechnet, die zu jeweils 50 % der Chlor- und Natronlaugeherstellung gutgeschrieben wird. (Vgl. Prozeßeinheit: Chem-Anorg\NaOH). Massenbilanz: Zur Herstellung einer Tonne Cl2 (und gleichzeitig 1,128 t NaOH) werden als Rohstoff 1710 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten für die Elektrolyse zu entfernen werden 44 kg Fällungsmittel (NaOH, Na2CO3) eingesetzt. Die Verunreinigungen fallen als Abfall (151 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 28 kg Wasserstoff (Energiegutschrift bei GEMIS). (Tötsch 1990). Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel dem Chlor 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung der Natronlauge. Energiebedarf: Der Energiebedarf für den Gesamtprozess der Herstellung einer Tonne Chlor und 1,128 Tonnen NaOH (die Werte wurden von der Natronlaugen- auf die Chlorherstellung umgerechnet) für die verschiedenen Elektrolyseverfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für den hier betrachteten Prozess (Diaphragmaverfahren) wurde gemäß der Allokationsregel 50 % der Mittelwert der Werte aus Tabelle 2 - 1438 + 451 kWh/t Cl 2 - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t Chlor und 1,128 t NaOH Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 3158-3610 2820-2933 2594-2820 Dampf(äquivalent) 0 790-1015 102-203 Summe 3158-3610 3610-3948 2696-3023 Im Vergleich dazu wird der Gesamtenergiebedarf bei (Tötsch 1990) mit 3050 kWh/t Cl2 + 1,128 t NaOH elektrischer Energie - nach Allokation: 1525 kWh/t Cl2 - angegeben. Da die Werte aus (Ullmann 1993) besser nachvollziehbar sind, werden diese für GEMIS verwendet. Prozessbedingte Emissionen: Die Chloremissionen in die Luft werden bei (BUWAL 1991) für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,001 g pro kg Produkt (1 kg NaOH 100 % + 0,887 kg Cl2) beziffert. Umgerechnet auf die Chlorherstellung ergibt sich ein Gesamtemissionswert von 0,0011 g Cl2/kg Produkt (1 kg Cl2 + 1,128 kg NaOH 100 %). Für die Bildung der Kennziffern bei GEMIS wurden die obigen Gesamtemissionen je zur Hälfe der Chlor- und der Natronlaugenherstellung zugeordnet. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (508 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (1147 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (2800 kg), dem Prozeßwasser (4300 kg) und dem Kühlwasser (290000 kg) zusammen (Tötsch 1990). Abwasser: BUWAL (1991) gibt für die Natronlaugenherstellung nach dem Diaphragmaverfahren mit 0,002 g BSB5, 0,005 g CSB und 0,006 g Blei pro kg Produkt (1 kg NaOH 100 % + 0,887 Cl2) an. Umgerechnet auf die Chlorherstellung ergeben sich Werte von 0,0023 g BSB5, 0,0056 g CSB und 0,0068 g Blei für 1kg Cl2 + 1,128 kg NaOH 100%ig. Die oben aufgeführten Gesamtwassermengen und Abwasserfrachten wurden für GEMIS anteilig zu je 50 % unter den beiden Prozeßeinheiten der Chlor- und Natronlaugeherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 117% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Fabrik\H2-CA-2020

Wasserstoff-Elektrolyseur zur H2-Herstellung, inkl. Strombedarf für Wasseraufbereitung nach #1 Das gängige Verfahren ist die konventionelle alkalische Elektrolyse bei Temperaturen bis etwa 90°C und "leichtem" Überdruck bis etwa 10 bar. Druckelektrolyseure (ab etwa 30 bar) haben den Vorteil, den Kompressionsaufwand für den Pipelinetransport oder die Verflüssigung zu reduzieren; sie sind für 35 bis 100 bar verfügbar, aber aufwendig. Seit geraumer Zeit mit wechselnder Intensität in der Entwicklung sind Hochtemperatur(HT)elektrolyseure, bei denen der Strombedarf reduziert wird, indem die Dissoziationsenergie (Gibbs-Energie, Freie Enthalpie) des Wassers thermisch (T um 800°C) reduziert wird. Bei der Membranelektrolyse schließlich soll der Verbrauch durch direkt auf der Membran angebrachte Elektroden reduziert werden. Der Einfluss der Größe auf die Effizienz von Elektrolyseanlagen ist nach [LBST 2001] und [concawe 2006] gering. Zwischen zentralen und dezentralen Anlagen bestünde danach energetisch kein großer Unterschied. Die Datengenerierung orientiert sich am Konzept der Druckelektrolyse (#2 folgend Ausgangsdruck 30 bar), die bereits relativ ausgereift und effizient ist. Die drucklose Elektrolyse hat dagegen eine geringere Effizienz, die Hochtemperaturelektrolyse bedarf noch erheblicher Entwicklungsarbeit. Wichtige Literaturdaten und die hier abgeschätzten Rechenwerte sind in folgender Tabelle zusammengefasst. Erläuterungen Energieverbrauch: [Bossel et al. 2005] und [LBST 2001] dokumentieren und verwenden sehr ähnliche Werte. Die Rechenwerte orientieren sich wie folgt an den Quellen: zentral 2005: Maximum der Bandbreite 2020: Minimum der Bandbreite 2030: 2020 reduziert um die Hälfte der Reduktion 05/20 Verluste: über den Energieverbrauch erfasst Weitere Luftschadstoffemissionen: keine Betriebsstoffe, feste Reststoffe: Es werden wahrscheinlich zur Wasseraufbereitung geringe Menge verschiedener Chemikalien und bei der Elektrolyse selbst geringe Mengen KaOH eingesetzt. Mengenangaben dazu bzw. zu den Reststoffen liegen nicht vor. Hilfsweise wird der Einsatz an NaOH pro kg Cl2 bei der Chlor-Alkali-Elektrolyse gemäß [ecoinvent 2004] angesetzt. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Flächenbedarf: [LBST 2001] enthält Flächenangaben, die hier für zentrale und dezentrale Anlagen und für alle Bezugsjahre identisch übernommen werden. Materialvorleistungen: [LBST 2001] gibt Massenangaben zu verfügbaren und in Entwicklung befindlichen Elektrolysemodulen (25 bzw. 11 t / 68 kg H2 / h) sowie für einen Puffer-Druckspeicher. Für die Bezugsjahre werden nur die Elektrolyseurmassen variiert (20, 15, 12,5 t). Mit Lebensdauer und Volllaststunden wird der Einsatz pro MJ berechnet. Die Materialanteile werden gemäß [ecoinvent 2004] für generische Chemieanlagen angesetzt. Kosteninformationen (Investitions- und Betriebskosten) Investitionskosten: In [Nitsch 2003] werden für alkalische Elektrolyseanlagen für "heute" (2003, hier = 2005) und 2020 Investitionskosten angegeben, die hier übernommen werden (Umrechnung Bezug Kapazität in Menge mit 25 Jahren Lebensdauer und 90% Verfügbarkeit). 2030 wird aus 2020 mit der Hälfte der Reduktion 2005/20 abgeschätzt. Betriebskosten: Es liegen keine Daten vor. In erster Näherung können sie aus dem Energieverbrauch und dem Personaleinsatz abgeschätzt werden. Für die Stromkosten werden für 2005 und 2020 die Mittelwerte Windkraft offshore küstennah und küstenfern jeweils für mittlere Windverhältnisse aus [DLR et al. 2004] angesetzt, 2030 wird gleich 2020 gesetzt. Für den Personalstundensatz wird der Wert nach [StatBA 2007] für den Sektor Energie- und Wasserversorgung angesetzt. Personaleinsatz (Personen je Anlage bzw. Durchsatz): Hierzu liegen keine direkten Informationen vor. Eine grobe Abschätzung erfolgt über den Personaleinsatz in der Stromerzeugung in Deutschland 2005 [BMWi 2007]: Arbeitszeit / MJ Brutto-Strom = Arbeitszeit / MJ H2. Es erfolgt keine Differenzierung nach Bezugsjahren (hohe Unsicherheiten des Basiswertes bei absehbar geringen Änderungen). Auslastung: 7000h/a Brenn-/Einsatzstoff: Elektrizität Flächeninanspruchnahme: 8400m² gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 25a Leistung: 75MW Nutzungsgrad: 67,8% Produkt: Brennstoffe-Sonstige

2. Behandlung von Speise- und Kesselwasser

2. Behandlung von Speise- und Kesselwasser Zur Verbesserung der Speise- und Kesselwasserqualität ist eine chemische Konditionierung erforderlich. Hierbei müssen Bedingungen eingehalten werden, unter denen Korrosion bereits in denjenigen Systemen weitgehend unterbunden wird, die dem Dampferzeuger vorgeschaltet sind. Die Konditionierung muss unter Beachtung der nachfolgenden Hinweise demnach so erfolgen, z. B. durch Chemikaliendosierung vor Niederdruckvorwärmern, dass der Gehalt an Korrosionsprodukten im Speisewasser vor Kesseleintritt so gering wie möglich ist. Bei allen in Frage kommenden Fahrweisen ist die Einhaltung des in den Tafeln angegebenen pH -Bereiches im Speise- bzw. Kesselwasser notwendig. Die obere Begrenzung des pH-Wertes kann zusätzlich durch Anlagenteile bestimmt werden, die außerhalb des Gültigkeitsbereiches dieses Kapitels liegen und die aus anderen metallischen Werkstoffen als Stahl, z. B. aus Kupfer- oder Aluminiumwerkstoffen, gefertigt sind. 2.1 Konditionierung mit Alkalisierungsmitteln (alkalische Fahrweise) 2.1.1 Betrieb mit salzfreiem Speisewasser Der pH-Wert im Speisewasser soll > 9 sein. Er darf bei Durchlaufkesseln nur mit flüchtigen Alkalisierungsmitteln, z. B. mit Ammoniak, eingestellt werden, die gleichzeitig eine Alkalisierung des Kondensates bewirken. Im Speisewasser von Umlaufkesseln ist ebenfalls ein pH-Wert > 9 einzustellen; der pH-Wert des Kesselwassers soll druckstufenabhängig bei 10,0 ± 0,2 bzw. 9,5 ± 0,2 liegen. Diese Bedingung ist durch Einstellung des pH-Wertes > 9 mit flüchtigen Alkalisierungsmitteln im Speisewasser jedoch nicht erreichbar, sondern sie kann nur durch zusätzliche Dosierung fester Alkalisierungsmittel - z. B. Natriumhydroxid, Trinatriumphosphat - in das Speisewasser hinter der Abnahme des Einspritzwassers für Dampfkühler oder in das Kesselwasser erfüllt werden. Die kombinierte Anwendung flüchtiger und fester Alkalisierungsmittel ist das empfohlene Konditionierungsverfahren für Speise- und Kesselwasser von Umlauf- und Großwasserraumkesseln. Wegen unvermeidbarer Anreicherungsvorgänge bei Großwasserraumkesseln kann bei Dosierung von Natrium- oder Kaliumhydroxid infolge hoher lokaler Laugekonzentration Spannungsrisskorrosion auftreten. Deshalb wird als festes Alkalisierungsmittel für Großwasserraumkessel Trinatriumphosphat empfohlen. Die pH-Wert-Grenzen können allein durch entsprechende Dosierung gehalten werden, ohne dass die Absalzrate beeinflusst wird. Die Anwendung fester Alkalisierungsmittel erlaubt erhöhte Leitfähigkeit des Kesselwassers. Bei Erhaltung extrem niedriger Kesselwasser-Leitfähigkeiten ist die Konditionierung ausschließlich mit flüchtigen Alkalisierungsmitteln möglich, obwohl die angegebenen pH-Werte im Kesselwasser dann nicht erreicht werden. 2.1.2 Betrieb mit salzhaltigem Speisewasser Der für das Speisewasser erforderliche pH-Wert > 9 muss, wenn er nicht bereits vom Zusatzwasser her vorgegeben ist, durch Dosierung von Alkalisierungsmitteln eingestellt werden. Im Allgemeinen sind hierzu feste Alkalisierungsmittel notwendig; sofern der Verwendungszweck des Dampfes es zulässt, werden im Hinblick auf eine Alkalisierung im Kondensatbereich zusätzlich flüchtige Alkalisierungsmittel, z. B. Ammoniak, empfohlen. Im Kesselwasser ist eine Mindestalkalität entsprechend einem pH-Wert 9,5 einzuhalten, die über die Speisewasser-Alkalität beeinflussbar ist. Andererseits darf zwecks Verhütung von Laugeanreicherung und Schutzschichtzerstörung sowie Unterdrückung des Kesselwasserschäumens ein maximaler pH-Wert nicht überschritten werden. Die zulässige Höchstgrenze ist umso niedriger anzusetzen, je höher der Betriebsüberdruck ist. Bewirkt das durch Zersetzung von Hydrogencarbonaten aus enthärtetem oder teilentsalztem Zusatzwasser entstehende Natriumhydroxid eine unzulässig hohe Kesselwasseralkalität, so ist die Einhaltung bzw. das Unterschreiten der oberen pH-Wert-Begrenzung durch Absetzen von Kesselwasser sicherzustellen. Durch lokal unvermeidbare Anreicherungsvorgänge in Großwasserraum-Dampferzeugern kann bei Verwendung salzarmen Speisewassers durch eine zu hohe Konzentration an Natriumhydroxid im Kesselwasser, bevorzugt im Einwalzbereich von Rauchrohren, alkaliinduzierte Spannungsrisskorrosion auftreten. Um dieser Gefahr entgegenzuwirken, ist die genannte Mindestkonzentration an Phosphat im Kesselwasser einzuhalten und der zulässige pH-Bereich eingeschränkt. 2.2 Konditionierung mit Oxidationsmitteln (neutrale Fahrweise) Die Konditionierung mit Sauerstoff oder Wasserstoffperoxid ist bei Durchlaufkesseln in Verbindung mit dem für diese Kesselbauart erforderlichen salzfreien Speisewasser anwendbar. Die Dosierung von Oxidationsmitteln ermöglicht unter diesen Voraussetzungen den Verzicht auf eine Alkalisierung des Speisewassers. Der pH-Wert des Speisewassers soll > 6,5 sein. Diese Bedingung ist erfüllt, wenn die Leitfähigkeit des Speisewassers vor und hinter Probenahme-Kationenaustauscher gleich ist und derjenigen von salzfreiem Speisewasser entspricht. Die Dosierung des Oxidationsmittels muss so erfolgen, dass bei Sauerstoffkonzentrationen zwischen 0,050 und 0,25 mg/l die Korrosionsproduktkonzentration im Speisewasser vor Kesseleintritt das Minimum erreicht. 2.3 Konditionierung mit Alkalisierungs- und Oxidationsmitteln (kombinierte Fahrweise) Die kombinierte Dosierung von Ammoniak und Sauerstoff als Konditionierungsmittel ist bei Durchlaufkesseln in Verbindung mit dem für diese Kesselbauart erforderlichen salzfreien Speisewasser anwendbar. Bei gleichwertigem Korrosionsschutz für Stahl wie bei alternativen Fahrweisen bietet die kombinierte Konditionierung verbesserten Korrosionsschutz für Kupferwerkstoffe in Anlagenteilen außerhalb des Dampferzeugers. Die Einstellung des pH-Wertes zwischen 8,0 und 9,0 im Speisewasser mit Ammoniak gewährleistet noch keinen hinreichenden Korrosionsschutz für Stahl. Deshalb wird die Sauerstoffkonzentration zwischen 0,03 und 0,15 mg/l so bemessen, dass die Korrosionsproduktkonzentration im Speisewasser vor Kesseleintritt das Minimum erreicht. Stand: 14. März 2018

2. Begriffsbestimmungen

2. Begriffsbestimmungen 2.1 Salzfreies Speisewasser ist Wasser mit einem Elektrolytgehalt entsprechend einer Leitfähigkeit < 0,2 µS/cm , gemessen hinter starksaurem Probenahme-Kationenaustauscher 1) , und einer Kieselsäurekonzentration < 0,2 mg/l . 2.2 Salzarmes Speisewasser ist Wasser mit einem Elektrolytgehalt entsprechend einer Leitfähigkeit < 50 µS/cm, gemessen ohne starksauren Probenahme-Kationenaustauscher. 2.3 Salzhaltiges Speisewasser ist Wasser mit einem Elektrolytgehalt entsprechend einer Leitfähigkeit ≥ 50 µS/cm, gemessen ohne starksauren Probenahme-Kationenaustauscher. 2.4 Konditionierung im Sinne dieser Anforderungen ist die Verbesserung bestimmter Qualitätsmerkmale des Speisewassers und Kesselwassers durch Anwendung von Konditionierungsmitteln 2) , nach deren Art zwischen drei Fahrweisen unterschieden wird. 2.4.1 Konditionierung mit Alkalisierungsmitteln (alkalische Fahrweise) ist der Betrieb mit Speisewasser und Kesselwasser, deren pH -Wert durch Alkalisierungsmittel angehoben ist. 2.4.2 Konditionierung mit Oxidationsmitteln (neutrale Fahrweise) ist der Betrieb mit neutralem salzfreiem Speisewasser, dem als Oxidationsmittel Sauerstoff oder Wasserstoffperoxid zugegeben wird. 2.4.3 Konditionierung mit Alkalisierungs- und Oxidationsmitteln (kombinierte Fahrweise) ist der Betrieb mit salzfreiem Speisewasser, dessen pH-Wert mit Ammoniak angehoben und dem zusätzlich Sauerstoff zudosiert wird. 2.5 Kreislaufwasser ist Wasser, das in einer Heißwasseranlage zwischen dem Heißwassererzeuger und den Wärmeverbrauchern umgewälzt wird. 2.5.1 Salzarmes Kreislaufwasser ist Wasser mit einem Elektrolytgehalt entsprechend einer direkt gemessenen Leitfähigkeit ≤ 100 µS/cm. 2.5.2 Salzhaltiges Kreislaufwasser ist Wasser mit einem Elektrolytgehalt entsprechend einer direkt gemessenen Leitfähigkeit > 100 µS/cm. 2.6 Füll- und Ergänzungswasser ist das für die Erstbefüllung oder zum Ersatz von Verlusten zugeführte Wasser. 1) Diese Begriffsbestimmung setzt voraus, dass keine freien Basen, z. B. Natriumhydroxid, als Verunreinigung vorhanden sind. 2) Falls Hydrazin zur Anwendung gelangt, sind die berufsgenossenschaftlichen Merkblätter "Hydrazin" (ZH 1/127) und "Grundsätze für die Anerkennung von geschlossenen Umfüll- und Dosieranlagen für wässrige Lösungen von Hydrazin" (ZH 1/109) zu beachten. Stand: 14. März 2018

8 - Chemische Erzeugnisse

8 - Chemische Erzeugnisse 81 Chemische Grundstoffe (ausgenommen Aluminiumoxid und - hydroxid) Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 811 Schwefelsäure 8110 Schwefelsäure (Oleum), Abfallschwefelsäure X X S 812 Ätznatron 8120 Ätznatron (Natriumhydroxid, fest), Ätznatronlauge (Natriumhydroxid) in Lösung, Natronlauge, Sodalauge A 813 Natriumcarbonat 8130 Natriumcarbonat (kohlensaures Natrium), Natron, Soda A 814 Calciumcarbid 8140 Calciumcarbid (Vorsicht: Bei Kontakt mit Wasser Explosionsgefahr!) X X S 819 Sonstige chemische Grundstoffe (ausgenommen Aluminiumoxid und -hydroxid) 8191 Acrylnitril, Alaune, Aluminiumfluorid, Äthylenoxid, verflüssigt, Bariumcarbonat, Bariumchlorid (Chlorbarium), Bariumnitrat, Bariumnitrit, Bariumsulfat, Bariumsulfid, Benzolkohlenwasserstoffderivate ( z. B. Äthylbenzol), Bleiglätte, Bleioxid, Bleiweiß (Bleicarbonat), Calciumhypochlorit (Chlorkalk), Caprolactam, Chlor, verflüssigt (Chlorlauge), Chlorbenzol, Chloressigsäure, Chlorkohlenwasserstoffe, nicht spezifiziert, Chlormethylglykol, Chloroform (Trichlormethan), Chlorothene, Chlorparaffin, Chromalaun, Chromlauge, Chromsulfat, Cumol, Cyanide (Cyansalz), Dimethyläther (Methyläther), Dichloräthylen, EDTA (Ethylendiamintetraessigsäure), ETBE (Ethyl-tertButylether), Flusssäure, Glykole, nicht spezifiziert, Hexachloräthan, Hexamethylendiamin, Kaliumchlorat, Kaliumhypochloritlauge (Kalibleichlauge), Kaliumsilikat (Wasserglas), Kalkstickstoff (Calciumcyanamid), Kohlensäure, verdichtet, verflüssigt, Kresol, Mangansulfat, Melamin, Methylchlorid (Chlormethyl), Methylenchlorid, Monochlorbenzol, MTBE (Methyl-tertButylether), Natriumchlorat, Natriumfluorid, Natriumnitrit (salpetrigsaures Natrium), Natriumnitritlauge, Natriumsilikat (Wasserglas), Natriumsulfid (Schwefelnatrium), Natriumsulfit (schwefligsaures Natrium), Natronbleichlauge, NTA (Nitrilotriessigsäure), Perchloräthylen, Phenol, Phosphorsäure, Phtalsäureanhydrid, Retortenkohle, Ruß, Salpetersäure, -abfallsäure, Salzsäure, -abfallsäure, Schwefel, gereinigt, Schwefeldioxid, schwefelige Säure, Schwefelkohlenstoff, Styrol, Surfynol ( TMDD = 2,4,7,9-Tetramethyldec-5-in-4,7-diol), Tallöl, Tallölerzeugnisse, Terpentinöl, Tetrachlorbenzol, Tetrachlorkohlenstoff, Trichloräthylen, Trichlorbenzol, Triphenylphosphin, Vinylchlorid, Waschrohstoffe, Zinkoxid, Zinksulfat X X S 8192 Aceton, Adipinsäure, Alkohol, rein (Weingeist), Aluminiumacetat (essigsaure Tonerde), Aluminiumformiat (ameisensaure Tonerde), Aluminiumsulfat (schwefelsaure Tonerde), Ameisensäure, Ammoniakgas (Salmiakgeist), Ammoniumchlorid (Salmiak), Ammonsalpeter (Ammoniumnitrat, salpetersaures Ammoniak), Ammoniumphosphat, Ammoniumphosphatlösung, Äthylacetat, Ätzkali (Kaliumhydroxid, Kalilauge), Branntwein (Spiritus), vergällt, Butanol, Butylacetat, Calciumchlorid (Chlorcalcium), Calciumformiat (ameisensaurer Kalk), Calciumnitrat (Kalksalpeter), Calciumphosphat, Calciumsulfat (Anhydrit, synthetisch), Citronensäure, Eisenoxid, Eisensulfat, Essigsäure, Essigsäureanhydrid, Fettalkohole, Glykole (Äthylenglykol, Butylenglykol, Propylenglykol), Glyzerin, Glyzerinlaugen, Glyzerinwasser, Harnstoff, künstlich (Carbamid), Holzessig, Isopropylalkohol (Isopropanol), Kaliumcarbonat (Pottasche), Kaliumnitrat, Kaliumsulfatlauge, Magnesiumcarbonat, Magnesiumsulfat (Bittersalz), Methanol (Holzgeist, Methylalkohol), Methylacetat, Natriumacetat, (essigsaures Natrium), Natriumbicarbonat (doppelkohlensaures Natrium), Natriumbisulfat (doppelschwefelsaures Natrium), Natriumformiat, Natriumnitrat (Natronsalpeter), Natriumphosphat, Propylacetat, Titandioxid (z. B. künstliches Rutil) X A 8193 Graphit, Graphitwaren, Silicium, Siliciumcarbid (Carborundum) A 8199 Sonstige chemische Grundstoffe und Gemische, nicht spezifiziert X X S 82 Aluminiumoxid und -hydroxid Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 820 Aluminiumoxid und -hydroxid 8201 Aluminiumoxid A 8202 Aluminiumhydroxid (Tonerdehydrat) A 83 Benzol, Teere u. ä. Destillationserzeugnisse Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 831 Benzol 8310 Benzol X X S 839 Peche, Teere, Teeröle u. ä. Destillationserzeugnisse 8391 Nitrobenzol, Benzolerzeugnisse, nicht spezifiziert X X S 8392 Öle und andere Erzeugnisse von Steinkohlenteer, z. B. Anthracen, Anthracenschlamm, Decalin, Naphthalin, raffiniert, Tetralin, Xylenol, Solventnaphtha, Toluol, Xylol (Ortho-, Meta- und Paraxylol und Mischungen davon) X X S 8393 Pech und Teerpech aus Steinkohlen- und anderen Mineralteeren, z. B. Braunkohlenteerpech, Holzteerpech, Mineralteerpech, Petroleumpech, Steinkohlenteerpech, Teerpech, Torfpech, Torfteerpech, Kreosot X X S 8394 Pech- und Teerkoks aus Steinkohlen- und anderen Mineralteeren, z. B. Braunkohlenteerkoks, Steinkohlenpechkoks, Steinkohlenteerkoks, Teerkoks X X S 8395 Gasreinigungsmasse X X S 8396 Steinkohlen-, Braunkohlen- und Torfteer, Holzteer, Holzteeröl, z. B. Imprägnieröl, Karbolineum, Kreosotöl, Mineralteer, Naphthalin, roh X X S 8399 Sonstige Destillationserzeugnisse, z. B. Rückstände von Braunkohlen- und Steinkohlenteerschweröl X X S 84 Zellstoff und Altpapier Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 841 Holzschliff und Zellstoff 8410 Holzstoff (Holzschliff), Holzzellulose, Zellulose, -abfälle X A 842 Altpapier und Papierabfälle 8420 Altpapier, Altpappe X A 89 Sonstige chemische Erzeugnisse ( einschl. Stärke) Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 891 Kunststoffe 8910 Kunstharze, Kunstharzleim, Mischpolimerisat aus Acrylnitril, aus Butadien, aus Styrol, Polyester, Polyvinylacetat, Polyvinylchlorid X X S 8911 Kunststoffabfälle, Kunststoffrohstoffe, nicht spezifiziert X X S 892 Farbstoffe, Farben und Gerbstoffe 8921 Farbstoffe, Farben, Lacke, z. B. Eisenoxid zur Herstellung von Farben, Emailmasse, Erdfarben, zubereitet, Lithopone, Mennige, Zinkoxid X X S 8922 Kitte X X S 8923 Gerbstoffe, Gerbstoffauszüge, Gerbstoffextrakte X X S 893 Pharmazeutische Erzeugnisse, ätherische Öle, Reinigungs- und Körperpflegemittel 8930 Apothekerwaren (Arzneimittel), pharmazeutische Erzeugnisse X X S 8931 Kosmetische Erzeugnisse, Reinigungsmittel, Seife, Waschmittel, Waschpulver X A 894 Munition und Sprengstoffe 8940 Munition und Sprengstoffe X X S 896 Sonstige chemische Erzeugnisse 8961 Abfälle von Chemiefäden, -fasern, -garnen, von Kunststoffen, auch geschäumt, auch thermoplastisch, nicht spezifiziert, Abfallmischsäuren aus Schwefel- und Salpetersäure, Elektrodenkohlenabfälle, -reste, Kohlenstoffstampfmasse X X S 8962 Abfälle und Rückstände der chemischen Industrie, der Glasindustrie, eisenoxidhaltig, Sulfitablauge X X S 8963 Sonstige chemische Grundstoffe, Härtemittel für Eisen, für Stahl, Entkalkungsmittel für die Lederbereitung, Härtergemische für Kunststoffe, Kabelwachs, Leime, Lösungsmittel, Pflanzenschutzmittel, nicht spezifiziert, radioaktive Stoffe, nicht spezifiziert, Weichmachergemische für Kunststoffe X X S 8969 Chemikalien, chemische Erzeugnisse, nicht spezifiziert X X S Stand: 01. Januar 2018

1 2 3 4 512 13 14