API src

Found 641 results.

Related terms

Die Biosynthese der pflanzlichen Cellulose

Das Projekt "Die Biosynthese der pflanzlichen Cellulose" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Mainz, Fachbereich Chemie und Pharmazie.Cellulose stellt den am häufigsten vorkommenden Naturstoff unseres Planeten dar. Mit einer pflanzlichen Weltjahresproduktion von ca. 180 Milliarden Tonnen (Engelhardt, j. Carbohydr. Eur. 12, 5-14 (1995)) ist Cellulose der bedeutendste nachwachsende Rohstoff. Dieses Biopolymer findet außer in der Papier-, Pharma- und Textilindustrie in vielen anderen Bereichen (z.B. Medizin, Kosmetik, Kunststoff-Industrie) reichliche Verwendung. Trotz der großen wirtschaftlichen Bedeutung und über drei Jahrzehnten intensiver Forschung ist bisher nicht bekannt, wie Cellulose in der Pflanze gebildet wird. Informationen über die Gene und die dazugehörigen Enzyme, die die Cellulose synthetisieren, würden neue Möglichkeiten eröffnet bis hin zu transgenen Pflanzen mit erhöhtem Cellulosegehalt, einer verbesserten Qualität, aber auch der Entwicklung ganz neuer Herbizide, die gezielt die Cellulosebiosynthese z. B. von Unkräutern inhibieren können. Die Zielsetzung dieses Projektes ist es, die Proteine die an der Cellulosesynthese beteiligt sind, unter Aktivitätserhalt zu isolieren und zu charakterisieren sowie die entsprechenden Gene zu identifizieren, um so erstmals den molekularen Mechanismus der pflanzlichen Cellulosebiosynthese aufzuklären.

Bioökonomie International 2021: GelSus

Das Projekt "Bioökonomie International 2021: GelSus" wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) - Institut für Datenwissenschaften.

Neue Wege der Strom-basierten Konversion von biogenen Rohstoffen und der elektrochemischen Herstellung von biobasierten Produkten

Das Projekt "Neue Wege der Strom-basierten Konversion von biogenen Rohstoffen und der elektrochemischen Herstellung von biobasierten Produkten" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Ruhr-Universität Bochum, Institut für Thermo- und Fluiddynamik, Lehrstuhl Carbon Sources and Conversion.Lignin ist ein nachwachsender Rohstoff (Bestandteil von Holz, in etwa 30 % Gewichtsanteil der Trockenmasse), der als Biopolymer aus hoch funktionalisierten, phenolischen Makromolekülen aufgebaut ist. Dieser biogene Rohstoff fällt in der Holz- und Zellstoffverarbeitenden Industrie in großen Mengen als Neben- beziehungsweise Reststoff an und wird bis heute nur wenig stofflich genutzt. Ein Großteil wird verbrannt und energetisch genutzt. Im Sinne einer ressourceneffizienten Kreislaufwirtschaft und einer bestmöglichen Wertschöpfung soll in ElektrALig ein innovativer Weg aufgezeigt werden, wie die regenerative Kohlenstoffquelle Lignin großtechnisch als chemischer Grundstoff für die Herstellung von Polymerbausteinen genutzt werden kann. In einem zweistufigen Produktionsverfahren sollen dazu die im Lignin enthaltenen aromatischen Polymerbausteine chemisch aufgeschlossen, über eine konvergente elektrochemische Umsetzung zu definierten Zielstrukturen umgesetzt und so für Anwendungen in der Produktion von Polymerharzen zugänglich gemacht werden. Zusammenarbeit der Industriepartner Mercer Rosenthal, Borregaard, Covestro und Heraeus und der Ruhr-Universität Bochum mit dem Lehrstuhl CSC und der Arbeitsgruppe Apfel als ausführenden Stellen vereint eine einzigartige Expertise im Bereich der Ausgangsstoffe, der chemischen Verfahrenstechnik, der elektrochemischen Reaktionstechnik und der Polymeranwendungen. So kann eine effiziente Strategie zur stofflichen Nutzung von Lignin umgesetzt werden, die von einem grundlegenden chemischen Verständnis des Aufbaus von technisch verfügbaren Ligninen, über konkrete Teilschritte zu einem ausgefeilten verfahrenstechnischen Konzept der strom-basierten Konversion des biogenen Rohstoffes Lignin reicht.

Großtechnische Umsetzung eines Bioökonomie-Prozesses zur Verknüpfung von Agrarindustrie und Kunststoffverarbeitern durch die kontinuierliche Produktion eines neuartigen Biopolymers

Das Projekt "Großtechnische Umsetzung eines Bioökonomie-Prozesses zur Verknüpfung von Agrarindustrie und Kunststoffverarbeitern durch die kontinuierliche Produktion eines neuartigen Biopolymers" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz. Es wird/wurde ausgeführt durch: traceless materials GmbH.Die traceless materials GmbH ist ein Bioökonomie Start-up Unternehmen, das im Jahr 2020 als Ausgründung der TU Hamburg hervorgegangen ist. Das Hauptgeschäftsfeld stellt die Entwicklung und Produktion des traceless Materials (rückstandslos biologisch abbaubares Material) für den Kunststoffverarbeitungsmarkt dar. Erklärtes Ziel ist, einen messbaren Beitrag zur Lösung der weltweiten Verschmutzung durch Kunststoffe zu leisten. Die traceless materials GmbH stellt mittels eines innovativen Verfahrens ein Material her, welches vergleichbare Eigenschaften wie Kunststoff besitzt. Es handelt sich dabei aber um eine neuartige Materialkategorie. Konventioneller Kunststoff wird in einem synthetischen Verfahren und zum Großteil aus fossilen Rohstoffen hergestellt. Der Rohstoff in diesem Projekt hingegen sind pflanzliche Reststoffe, welche nach der Extraktion der natürlichen Polymere noch als Futtermittel oder zur energetischen Verwertung genutzt werden können. Im Vorhaben soll eine Demonstrationsanlage mit einer Kapazität von mehreren Tausend Tonnen pro Jahr errichtet und betrieben werden. Im Herstellungsprozess des traceless Materials wird als Rohstoff ein pflanzlicher Reststoff verwendet, der als Nebenprodukt der industriellen Getreideverarbeitung anfällt. Mit einem zum Patent angemeldeten Verfahren werden daraus natürliche Polymere extrahiert und zu einem Granulat verarbeitet. Dieses Granulat kann mit gängigen Technologien der Kunststoffverarbeitung zu verschiedenen Produktanwendungen weiterverarbeitet werden, beispielsweise im Spritzguss oder der Extrusion. Das hergestellte Material könnte z.B. zur Herstellung von Einwegverpackungen und -produkten, welche leicht in die Umwelt gelangen oder sich nicht recyceln lassen, eingesetzt werden und so zur Verbrauchsminderung fossiler Rohstoffe beitragen. Damit soll auch die Umweltverschmutzung zurückgehen, da das Material sich rückstandslos abbaut und nicht schädlich für Flora und Fauna ist, wenn es unsachgemäß in der Umwelt entsorgt werden sollte. Produkte, die aus dem Material hergestellt werden, sind entweder über den Restmüll oder bei Verpackungen über den gelben Sack/die gelbe Tonne/Wertstofftonne zu entsorgen. In beiden Fällen werden sie energetisch verwertet, da der Marktanteil für eine sortenreine Sammlung und mechanisches Recycling derzeit zu gering ist. Eine Entsorgung über die Bioabfallsammlung ist nicht zulässig, auch wenn das Material zertifiziert gartenkompostierbar ist. Bei einer Kompostierung würde auch der energetische Nutzen verloren gehen. Bei einer jährlichen Produktionskapazität von mehreren Tausend Tonnen können nicht nur substantiell CO2-Emissionen und fossile Energieträger, sondern auch Wasser und Landressourcen eingespart werden. Das Verfahren ist für eine Vielzahl von Unternehmen der Chemie- und Kunststoffindustrie übertragbar. Da das Material auf den gängigen Anlagen der kunststoffverarbeitenden Industrie eingesetzt werden kann, ist eine Übertragbarkeit ohne (hohen) Aufwand möglich. Weiterhin wird an der Übertragbarkeit dieses Verfahrens der Polymerextraktion auf andere Reststoffe von Getreide geforscht.

Bioökonomie International 2021: GelSus, Bioökonomie International 2020: GelSus - Entwicklung von nachhaltigen, antimikrobiellen Cellulose-Aerogelen aus landwirtschaftlichen Bioabfällen als Alternative zu Kunststoff'

Das Projekt "Bioökonomie International 2021: GelSus, Bioökonomie International 2020: GelSus - Entwicklung von nachhaltigen, antimikrobiellen Cellulose-Aerogelen aus landwirtschaftlichen Bioabfällen als Alternative zu Kunststoff'" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) - Institut für Datenwissenschaften.

Bioökonomie International 2021: BioPolyCol

Das Projekt "Bioökonomie International 2021: BioPolyCol" wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Textiltechnik.

Leichte Verbundelemente aus Dünnglas mit 3D-gedrucktem Biopolymerkern für materialeffiziente Isolierverglasungen in der Gebäudehülle, Teilvorhaben: Herstellung von Biopolymeren für den 3D-Druck

Das Projekt "Leichte Verbundelemente aus Dünnglas mit 3D-gedrucktem Biopolymerkern für materialeffiziente Isolierverglasungen in der Gebäudehülle, Teilvorhaben: Herstellung von Biopolymeren für den 3D-Druck" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Verein zur Förderung von Innovationen durch Forschung, Entwicklung und Technologietransfer e.V. (Verein INNOVENT e.V.).

Biogene Folien, Verbundklebstoffe und Verbunde aus Stärkeestern für Lebensmittelverpackungen, Teilvorhaben 5: Folienverbundherstellung

Das Projekt "Biogene Folien, Verbundklebstoffe und Verbunde aus Stärkeestern für Lebensmittelverpackungen, Teilvorhaben 5: Folienverbundherstellung" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Papierfabrik Adolf Jass GmbH & Co. KG.In den letzten Jahrzehnten gewinnen Biopolymere als Ersatz für synthetische Kunststoffe zunehmend an wirtschaftlicher und ökologischer Bedeutung. Die Biopolymere Cellulose und Stärke gehören dabei zu den wichtigsten nachwachsenden Rohstoffen, die stofflich für die Entwicklung und Produktion von Funktionspolymeren verwendet werden. Aufgrund ihres historisch schon sehr langen Gebrauchs, stehen sie in gleichbleibender Qualität und Reinheit zur Verfügung. Längst ist jedoch nicht das gesamte Potential dieser Naturstoffe bekannt und ausgeschöpft. Ihre molekular und übermolekular strukturell bedingten Eigenschaften lassen sich über eine gezielte chemische Modifizierung der Hydroxylgruppen breit variieren und für die unterschiedlichsten Anwendungsbereiche spezifisch anpassen. Durch die erhältlichen wasserbindenden, verdickenden, klebenden und haftvermittelnden Eigenschaften erfüllen sie wichtige Funktionen, beispielsweise in Nahrungsmitteln, Pharma- und Kosmetikprodukten sowie in Baustoffen, Farben und Verpackungsmaterialien. Stärkeester sind dabei besonders interessante Produkte, da diese durch die chemische Modifizierung thermoplastische Eigenschaften gewinnen können. Wie aus aktuellen Arbeiten hervorgeht, sind insbesondere Stärkeester, die durch die Umsetzung mit langkettigen Fettsäuren erhalten werden, für die Verformung zu Folien und Filmen geeignet. Ziel des Vorhabens ist es, aus thermoplastischen Stärkeestern Folien und Klebstoffe zu entwickeln, die bezüglich ihrer chemischen, physikalischen und biologischen Eigenschaften für Anwendungen im Bereich Lebensmittelverpackung etabliert werden können. Zur Modifizierung wird das vorhandene Know-how der Antragsteller weiterentwickelt, um neue Produkte mit hoher Wertschöpfung durch die Einführung spezifischer Funktionalitäten zu schaffen und diese auch in einen technisch nutzbaren Maßstab zu überführen.

Biogene Folien, Verbundklebstoffe und Verbunde aus Stärkeestern für Lebensmittelverpackungen, Teilvorhaben 7: Überführung der Stärkeresterherstellung in großtechnische Anlagen

Das Projekt "Biogene Folien, Verbundklebstoffe und Verbunde aus Stärkeestern für Lebensmittelverpackungen, Teilvorhaben 7: Überführung der Stärkeresterherstellung in großtechnische Anlagen" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: SE Tylose GmbH & Co. KG.In den letzten Jahrzehnten gewinnen Biopolymere als Ersatz für synthetische Kunststoffe zunehmend an wirtschaftlicher und ökologischer Bedeutung. Die Biopolymere Cellulose und Stärke gehören dabei zu den wichtigsten nachwachsenden Rohstoffen, die stofflich für die Entwicklung und Produktion von Funktionspolymeren verwendet werden. Aufgrund ihres historisch schon sehr langen Gebrauchs, stehen sie in gleichbleibender Qualität und Reinheit zur Verfügung. Längst ist jedoch nicht das gesamte Potential dieser Naturstoffe bekannt und ausgeschöpft. Ihre molekular und übermolekular strukturell bedingten Eigenschaften lassen sich über eine gezielte chemische Modifizierung der Hydroxylgruppen breit variieren und für die unterschiedlichsten Anwendungsbereiche spezifisch anpassen. Durch die erhältlichen wasserbindenden, verdickenden, klebenden und haftvermittelnden Eigenschaften erfüllen sie wichtige Funktionen, beispielsweise in Nahrungsmitteln, Pharma- und Kosmetikprodukten sowie in Baustoffen, Farben und Verpackungsmaterialien. Stärkeester sind dabei besonders interessante Produkte, da diese durch die chemische Modifizierung thermoplastische Eigenschaften gewinnen können. Wie aus aktuellen Arbeiten hervorgeht, sind insbesondere Stärkeester, die durch die Umsetzung mit langkettigen Fettsäuren erhalten werden, für die Verformung zu Folien und Filmen geeignet. Ziel des Vorhabens ist es, aus thermoplastischen Stärkeestern Folien und Klebstoffe zu entwickeln, die bezüglich ihrer chemischen, physikalischen und biologischen Eigenschaften für Anwendungen im Bereich Lebensmittelverpackung etabliert werden können. Zur Modifizierung wird das vorhandene Know-how der Antragsteller weiterentwickelt, um neue Produkte mit hoher Wertschöpfung durch die Einführung spezifischer Funktionalitäten zu schaffen und diese auch in einen technisch nutzbaren Maßstab zu überführen.

Bilanzierung des Beitrags mikrobieller Biomasse zur Bildung refraktärer organischer Substanz im Boden mittels Isotopentracertechniken (Zellen, Zellbestandteile, CO2 und NH4)

Das Projekt "Bilanzierung des Beitrags mikrobieller Biomasse zur Bildung refraktärer organischer Substanz im Boden mittels Isotopentracertechniken (Zellen, Zellbestandteile, CO2 und NH4)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Umweltforschungszentrum Leipzig-Halle, Sektion Sanierungsforschung.Beim mikrobiellen Umsatz von organischen Verbindungen wird ein beträchtlicher Anteil des Kohlenstoffs zunächst zum Aufbau von Biomasse durch Bakterien genutzt. Diese Biomasse unterliegt nach ihrem Absterben wieder einem Abbau durch andere Mikroorganismen. In diesem Prozess werden Fragmente der abgestorbenen Zellen entweder selbst wieder zum Substrat für andere Organismen oder direkt in der Bodenmatrix festgelegt. Damit tragen sie substanziell zur Bildung der organischen Bodensubstanz (SOM) bei. Im Rahmen der geplanten Arbeiten sollen vorwiegend durch Markierungsexperimente mit stabilen und radioaktiven Isotopen die mikrobiellen Umsatzraten und die Bildung von Huminstoffen aus bakterieller Biomasse und fraktionierten Zellbestandteilen wie auch aus mikrobiellen Mineralisationsprodukten wie CO2 und NH4 in Modellböden des Schwerpunktprogrammes detailliert untersucht werden. Dazu wird die Transformation isotopisch markierter Biomassebestandteile (14C; 13C; 15N) in Bodenbioreaktoren untersucht. Die festgelegten und umgewandelten Produkte der markierten Biomasse sollen in den verschiedenen Partikel- und Huminstofffraktionen des Bodens bilanziert und mit isotopenchemischen und strukturchemischen Methoden charakterisiert werden. Damit können der stoffliche Beitrag der Biomasse an der Bildung von Huminstoffen im Boden bilanziert und Konversionsfaktoren sowie Raten für die Stoffverteilung abgeschätzt werden. Ergebnisse aus ersten Versuchen lassen zudem auf einen signifikanten Einbau von Kohlenstoff aus CO2 in die SOM schließen. Daraus könnte sich eine Neubewertung von Tracerexperimenten zur Bildung von gebundene Resten aus Xenobiotika ergeben. Im zweiten Schritt sollen Methoden zur Ermittlung der Struktur und Funktionalität der festgelegten Biopolymere entwickelt werden. Besonderes Augenmerk wird auf die Festlegung von Zellwandbestandteilen, Strukturproteinen und Nukleinsäuren gelegt.

1 2 3 4 563 64 65