In this research we analyzed nocturnal temperature inversions in Haean Basin. Inversions are important phenomena for understanding meteorological and hydrological character of the basin region. Three automatic weather station data and tethered balloon soundings were used to analyze inversion strength, depth, and occurrence of inversions. Stronger and deep inversion was found during early summer while weaker but frequent inversions occurred during late September and early October. A significant influence of fog layer was found. The fog layer acts as a break during a cooling process. The fog appears usually in early mornings. During our experiment, average potential temperature change at the surface was -1.08 K/h without fog presence. When the fog appeared six hours average decreased to -0.23K/h. The most deep and strongest inversion of the studied period was 0.19 °C/m temperature gradient.
In tropischen und subtropischen Kuestenwuesten treten wiederholt Nebeloasen auf. Die Nebeloasen Namibias werden vor allem von verschiedenen Flechtenarten besiedelt, zu denen sich nur wenige Spezialisten unter den Hoeheren Pflanzen gesellen. Die Arbeiten zeigen, dass die namibischen Nebeloasen zum Teil durch die feuchte Luft des benachbarten Meeres und zum Teil durch Kaltluftstroeme aus dem Inland verursacht werden. Je nach Intensitaet und Dauer der Nebel-Wetterlagen ergeben sich unterschiedliche Flechten-Gesellschaften, deren mittlere Bio- Produktion ebenso bestimmt wird wie die CO2-Assimilation in Abhaengigkeit von Anfeuchtung und Salzeintrag. Ausserdem werden der Transport und die Erosion der Flechten durch den Wind untersucht. Hieraus ergeben sich Empfehlungen fuer Nutzung und Naturschutz. Die hier lebenden Hoeheren Pflanzen sind auch Gegenstand der Untersuchungen. Von Interesse ist ihre Anatomie, Cuticula-Struktur, Wasseraufnahme und -leitung sowie ihre Bioproduktion in Abhaengigkeit vom zeitlichen Verlauf der Wasseraufnahme.
Nebel als meteorologisches Phänomen kann große Auswirkungen für die Wirtschaft, aber auch auf die persönliche Sicherheit haben, indem er die Sichtweite in der atmosphärischen Grenzschicht reduziert. Wirtschaftliche Verluste für den Luft-, See-, und Landvekehr als Folge von Nebel sind dabei vergleichbar zu Verlusten durch Winterstürme. Trotz der Fülle an Literatur über Nebel bleibt unser Verständnis der physikalischen Prozesse die zu Nebelbildung und seiner Mikrophysik beitragen unvollständig. Dies ist dadurch begründet, dass mehrere komplexe Prozesse, wie z.B. Strahlungsabkühlung, turbulentes Durchmischen und die mikrophysikalischen Prozesse nichtlinear miteinander interagieren. Zusätzlich verkomplizieren Bodenheterogenitäten bezüglich Vegetation und Bodeneigenschaften die Vorhersagbarkeit von Nebel. Die Fähigkeit von numerischen Wettervorhersagemodellen Nebel vorherzusagen ist in Folge dessen noch dürftig. In diesem Projekt werden hochaufgelöste Grobstruktursimulationen (Large-Eddy Simulationen, LES) verwendet um den Effekt von Turbulenz auf nächtliche Strahlungsnebel zu untersuchen. Das LES Modell PALM wird dazu mit einer sehr hohen Auflösung von etwa 1 m verwendet. Dabei werden in den LES sowohl ein Euler'sches Bulk Wolkenphysikschema, als auch ein Lagrange'sches Partikelmodell, welches die explizite Behandlung von Aerosolen und Nebeltropfen erlaubt, verwendet. Dieser innovative Ansatz erlaubt die Nebeltropfen-Turbulenz-Interaktion zum ersten Mal mit LES zu untersuchen. Das Ziel dieser Studie ist es, einen umfassenden Überblick über die Schlüsselparameter zu erhalten, welche den Lebenszyklus sowie die dreidimensionale Makro- und Mikrostruktur von Strahlungsnebel bestimmen. Weiterhin wird der Effekt von nächtlichem Strahlungsnebel auf die morgendliche Übergangszeit und die Grenzschicht am Tag untersucht. Der Effekt von Bodenheterogenitäten auf nächtlichen Strahlungsnebel wird mit Hilfe von aufgeprägten regelmäßigen idealisierten und unregelmäßigen beobachteten Bodenheterogenitäten in den LES untersucht. Die LES Daten werden anhand von Messdaten der meteorologischen Messstandorte in Cabauw (Niederlande) und Lindenberg (Deutschland) validiert und mit Simulationsdaten des eindimensionalen Grenzschicht- und Nebelvorhersagemodells PAFOG (Universität Bonn) verglichen.
Standprobelaeufe von Strahltriebwerken werden immer mehr in Laermschutzhallen verlagert, um die Geraeuschemission zu verringern. Neben der akustischen Auslegung der Laermschutzhalle sind die aerodynamischen Aspekte nicht zu vernachlaessigen, die einen problemlosen Betrieb der Triebwerke in der Halle gewaehrleisten. Fuer die aerodynamische Konzeption werden vorab Modellversuche im Massstab 1:50 durchgefuehrt. Der Aufbau besteht aus einer massstabsgerechten Modellhalle aus Plexiglas, den Triebwerkssimulatoren, dem Flugzeugmodell und einer Windmaschine fuer Versuche mit Querwindeinfluss. Die Triebwerkssimulatoren bilden das Kernstueck der Versuche. Ueber eine vorhandene Luftversorgungseinrichtung wird Luft ueber den Simulatoreintritt angesaugt, verdichtet und ueber getrennte Rohrleitungen dem Simulator als Primaer- und Sekundaerluft wieder zugefuehrt. Regelorgane in den Rohrleitungen sind fuer die Einstellung bestimmter Betriebspunkte zustaendig. In der Modellhalle wird die Stroemung mit Faeden und mit Nebel sichtbar gemacht, um Rueckstroemgebiete oder Wirbelgebiete zu detektieren. Durch geeignete bauliche Veraenderungen gilt es, diese Gebiete zu vermeiden bzw so stark einzuschraenken, dass aus aerodynamischer Sicht ein gefahrloser Betrieb der Triebwerke erfolgen kann.
Dieser Inhalt von ODL-INFO zeigt und beschreibt Stundenmesswerte und Tagesmittelwerte der Gamma-Ortsdosisleistung an der Messstelle Nebel / Amrum.
Untersucht werden in erster Linie Wirkungen von Ozon allein oder in Kombination mit saurem Nebel unter kontrollierten Bedingungen. Als Arbeitshypothese liegt das Wirkungsschema der LIS zur Entstehung der neuartigen Waldschaeden zugrunde (siehe LIS-Bericht Nr. 28). Zur experimentellen Untersuchung der O3-Wirkung werden Waldbaeume in Plexiglaskammern mit gefilterter Luft unter Zusatz von Ozon begast und die verschiedenen physiologischen Parameter verfolgt. Dabei konnte festgestellt werden, dass unter O3-Einfluss a) die Photosyntheserate reduziert wird, b) die Atmungsrate ansteigt, c) der Chlorophyllgehalt abnimmt. Es laesst sich eine vorlaeufige Rangfolge der Sensitivitaet wie folgt aufstellen 1) Buchen 2) Ahorn 3) Fichte 4) Tanne. Zur Wirkung der kombinierten Behandlung von Fichten mit Ozon und saurem Nebel werden vor allem die aus den Baeumen ausgewaschenen Naehrstoffe analysiert. In Abhaengigkeit von der Ozonkonzentration werden Ca++, Mg++, K+, Mn+, NO3- und SO4-- verstaerkt ausgewaschen, Cl- dagegen nicht. Mit sinkendem pH-Wert in der Nebelloesung nimmt die Menge ausgewaschener Ionen ebenfalls zu.
Fuer den Nebelwarndienst und zur Beweissicherung eines vom Deutschen Wetterdienst erstellten Dampfnebelgutachtens.
<p>Nährstoffeinträge (vor allem Stickstoff) aus der Luft belasten Land-Ökosysteme und gefährden die biologische Vielfalt. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Trotz rückläufiger Stickstoffbelastungen in Deutschland besteht weiterhin Handlungsbedarf – vor allem bei den Ammoniak-Emissionen.</p><p>Situation in Deutschland</p><p>Im Jahr 2019 (letzte verfügbare Daten) wurden die ökologischen Belastungsgrenzen für <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a> durch Stickstoff in Deutschland auf 69 % der Flächen empfindlicher Ökosysteme überschritten (siehe Karte „Überschreitung des Critical Load für Eutrophierung durch die Stickstoffeinträge im Jahr 2019“). Die zur Flächenstatistik dieser Überschreitung herangezogenen Ökosystemtypen stammen aus dem CORINE-Landbedeckungsdatensatz von 2012 und bilden vor allem Waldökosysteme ab (ca. 96 %). Besonders drastisch sind die Überschreitungen in Teilen Nordwestdeutschlands. Aufgrund der dort ansässigen Landwirtschaft und intensiv betriebenen Tierhaltung ist der Stickstoffeintrag dort besonders hoch. So sind etwa zwei Drittel der Stickstoffeinträge auf Ammoniakemissionen zurückzuführen.</p><p>Im Rahmen eines <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-Vorhabens zur Modellierung der Stickstoffdeposition (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000 bis 2019) rückgerechnet werden. Die nationalen Zeitreihendaten zeigen, dass der Anteil der Flächen in Deutschland, auf denen die ökologischen Belastungsgrenzen überschritten wurden, von 84 % im Jahr 2000 auf 69 % im Jahr 2019 zurückging (siehe Abb. „Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung“). Die Abnahme der Belastungen spiegelt größtenteils den Rückgang der Emissionen durch Luftreinhaltemaßnahmen wider.</p><p>Handlungsbedarf trotz sinkender Stickstoffeinträge</p><p>Auch in den nächsten Jahren ist wegen der bisher nur unwesentlich abnehmenden<a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen">Ammoniak-Emissionen</a>– vornehmlich aus der Tierhaltung – mit einer weiträumigen <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a> naturnaher Ökosysteme zu rechnen. Bei der Minderung von diffusen Stickstoffemissionen in die Luft besteht daher erheblicher Handlungsbedarf.</p><p>Was sind ökologische Belastungsgrenzen für Eutrophierung?</p><p>Zur Bewertung der Stoffeinträge werden ökologische Belastungsgrenzen (<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Critical_Loads#alphabar">Critical Loads</a>) ermittelt. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. <a href="https://www.umweltbundesamt.de/service/glossar/%C3%B6?tag=kologische_Belastungsgrenzen#alphabar">Ökologische Belastungsgrenzen</a> sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen atmosphärischen Stoffeinträgen.</p><p>Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Im Rückschluss ist auch die Erholung des Ökosystems auf vorindustrielles Niveau sehr langwierig, wenn nicht sogar eine irreversible Schädigung des Ökosystems vorliegt. Beide Prozesse sind abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie von chemischen Ökosystemeigenschaften. Daher sind absolute Schadprognosen mittels der Überschreitungen der ökologischen Belastungsgrenzen prinzipiell nicht möglich.</p><p>Stickstoffdepositionen – ein Treiber des Biodiversitätsverlusts</p><p>Ein übermäßiger atmosphärischer Eintrag (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>) von Nährstoffen (vor allem Stickstoff) und deren Anreicherung in Land-Ökosystemen kann auf lange Sicht Ökosysteme stark beeinträchtigen. So kann es zu chronischen Schäden der Ökosystemfunktionen (wie der Primärproduktivität und des Stickstoffkreislaufs) kommen. Auch Veränderungen des Pflanzenwachstums und der Artenzusammensetzung zugunsten stickstoffliebender Arten (<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>) können hervorrufen werden. Außerdem wird die Anfälligkeit vieler Pflanzen gegenüber Frost, <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> und Schädlingsbefall erhöht.</p><p>Atmosphärische Einträge führen zu einer weiträumigen Angleichung der Stickstoffkonzentrationen im Boden auf einem nährstoffreichen Niveau. Die derzeit hohen Stickstoffeinträge in natürliche und naturnahe Land-Ökosysteme sind eine Folge menschlicher Aktivitäten, wie Landwirtschaft oder Verbrennungsprozesse. Diese sind mit hohen Emissionen von chemisch und biologisch wirksamen (reaktiven) Stickstoffverbindungen in die Luft verbunden. Aus der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> werden diese Stickstoffverbindungen über Regen, Schnee, Nebel, Raureif, Gase und trockene Partikel wieder in Land-Ökosysteme eingetragen. Die resultierende Überdüngung ist eine der Hauptursachen für den Rückgang der <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>. Fast die Hälfte der in der Roten Liste für Deutschland aufgeführten Farn- und Blütenpflanzen sind durch Stickstoffeinträge gefährdet.</p><p>Ziele und Maßnahmen zur Verringerung der Stickstoffeinträge</p><p>Ein langfristiges Ziel der Europäischen Union (EU) und der Genfer Luftreinhaltekonvention (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a> Convention on Long-Range Transboundary Air Pollution, CLRTAP) ist die dauerhafte und vollständige Unterschreitung der ökologischen Belastungsgrenzen für <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>. International wurden deshalb in der sog. neuen <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a> (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1542011736987&uri=CELEX:32016L2284">Richtlinie (EU) 2016/2284</a>vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungen der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> von reaktiven Stickstoffverbindungen (NHx, Stickstoffoxide (NOx)) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Emissionsminderungsverpflichtungen für Stickstoff für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005:</p><p>(siehe auch<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">„Emissionen von Luftschadstoffen“</a>).<br>Konkrete nationale Maßnahmen, die zum Erreichen der oben genannten Minderungsverpflichtungen geeignet sind, werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Begrenzung der negativen Auswirkungen des reaktiven Stickstoffs, zu denen auch die Eutrophierung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes"Reaktiver Stickstoff in Deutschland"enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) verfolgt den Ansatz einer nationalenStickstoffminderungsstrategie. Weitere Informationen bietet auch das Sondergutachten des SRU„Stickstoff: Lösungen für ein drängendes Umweltproblem“. Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet derBerichtzum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.
In der Arktis ist aktuell die stärkste Temperaturerhöhung im Zuge des Klimawandels zu beobachten. Diese Tatsache beruht auf einer komplexen Kette von Prozessen und Rückkopplungen, in denen Aerosolpartikel durch ihren Einfluss auf Strahlungsbilanz und Wolkenbildung eine wesentliche Rolle spielen. Um die Auswirkungen der sich ändernden Eisbedeckung abschätzen zu können, müssen die Wechselwirkungen zwischen Ozean sowie Eis und der Atmosphäre besser verstanden werden. Grundsätzlich mangelt es besonders im Bereich des arktischen Ozeans an atmosphärischen Messungen, die zum Verständnis der Prozesse aber auch zur Vorhersage der zu erwartenden Änderungen dringend benötigt werden. Austauschprozesse zwischen Ozean/Eis und Atmosphäre sind in diesen Regionen ebenfalls wenig untersucht. Im Rahmen dieses Projektes sollen mithilfe der RV Polarstern vertikale Austauschprozesse oberhalb von Wasser und Eis im Detail betrachtet werden und damit verbundene Quellen für Aerosolpartikel lokalisiert werden. Dazu ist eine Reihe von kontinuierlichen Aerosolmessungen an Bord des Schiffes geplant, die die Anzahlgrößenverteilungen, optische Parameter (Streuung, Absorption), das Mischungsverhältnis von Partikeln, die schwarzen Kohlenstoff (BC) enthalten, die Konzentration von eisbildenden Partikeln (INP) sowie die chemische Zusammensetzung der Aerosolpartikel umfassen. Weiterhin werden in den im Sommer häufig auftretenden Nebelphasen Nebelwasserproben gesammelt, sowie während der gesamten Kampagne täglich Wasserproben aus dem Ozean entnommen. Diese Proben werden nach der Kampagne auf die Konzentration von INP und BC untersucht. Weiterhin sollen erstmals mit Laser-Inkandeszenz Methoden die BC-Konzentrationen sowohl im luftgetragenen Aerosol als auch in Wasserproben gemessen werden. Zur Vorbereitung der Wasserproben mit hoher Salinität werden neuartige Methoden angewandt. Durch diese Kombination der parallelen Untersuchung von Bestandteilen in Luft und Wasser sollen Transport- und Austauschprozesse dieser Aerosolpartikel quantifiziert werden. Während langsamer Fahrt des Schiffes oder Drift mit dem Eis wird Messtechnik zur Bestimmung von vertikalen Partikelflüssen am vorderen Ausleger des Schiffes eingesetzt. Damit werden Zeitreihen des Windvektors und der Partikelkonzentration erfasst, mit deren Hilfe im Anschluss der vertikale, turbulente Partikelfluss über unterschiedlichen Oberflächen durch die Eddy Kovarianz Methode bestimmt werden soll. Kombiniert mit diesen Messungen wird die Konzentration der INP erfasst, um deren Ursprung und Quellen lokalisieren zu können. Ein weiteres Messsystem, das aus einer eindimensionalen Windmessung und einem Partikelzähler besteht, wird am Kranhaken des vorderen Auslegers befestigt und bestimmt Vertikalprofile der Partikelkonzentration, aus denen ebenfalls eine Abschätzung des Vertikalflusses von Partikeln möglich ist. Diese Methoden sind erprobt und etabliert, wurden nur bisher noch nie in dieser Form über dem arktischen Ozean angewendet.
Origin | Count |
---|---|
Bund | 336 |
Kommune | 3 |
Land | 66 |
Wirtschaft | 1 |
Wissenschaft | 14 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Daten und Messstellen | 14 |
Ereignis | 3 |
Förderprogramm | 198 |
Gesetzestext | 1 |
Taxon | 13 |
Text | 47 |
WRRL-Maßnahme | 90 |
unbekannt | 32 |
License | Count |
---|---|
geschlossen | 62 |
offen | 325 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 376 |
Englisch | 134 |
Resource type | Count |
---|---|
Bild | 11 |
Datei | 8 |
Dokument | 41 |
Keine | 297 |
Multimedia | 1 |
Unbekannt | 2 |
Webdienst | 2 |
Webseite | 54 |
Topic | Count |
---|---|
Boden | 202 |
Lebewesen und Lebensräume | 258 |
Luft | 395 |
Mensch und Umwelt | 395 |
Wasser | 235 |
Weitere | 395 |