Das Programm "Wohnen in Nachbarschaften (WiN) - Stadtteile für die Zukunft entwickeln" ist ein kommunales Handlungsprogramm, das die Stadt Bremen 1998 ins Leben gerufen hat, um einer zunehmenden Spaltung der städtischen Gesellschaft entgegenzuwirken. Es versteht sich als Teil einer langfristig angelegten integrierten Stadtentwicklungspolitik, in der mehrere Programme gebündelt werden, um Stadtteile in ihrer Entwicklung zu fördern. WiN-Gebiete mit einer Basisfördersumme von 100%: Gröpelingen Neue Vahr Osterholz-Tenever Kattenturm Huchting Lüssum-Bockhorn Hemelingen Schweizer Viertel WiN-Gebiete mit einer Basisfördersumme von 50%: Huckelriede Oslebshausen Grohn Blumenthal Marßel Weitere Informationen unter: https://www.bauumwelt.bremen.de/sixcms/detail.php?gsid=bremen213.c.5209.de und https://www.sozialestadt.bremen.de/programme/win___wohnen_in_nachbarschaften-3534
Das Programm Soziale Stadt ist ein Städtebauförderungsprogramm. Es wurde zwischen1999 und 2019 eingesetzt, um einer zunehmenden sozialräumlichen Spaltung in deutschen Städten entgegenzuwirken. Benachteiligte Stadtteile und Quartiere mit besonderen sozialen, wirtschaftlichen und städtebaulichen Problemen sollten durch das Programm in ihrer Entwicklung gefördert, aufgewertet und stabilisiert werden. Zu den Soziale Stadt-Gebieten der Stadt Bremen gehören derzeit: Neue Vahr Osterholz-Tenever Kattenturm Huchting Hemelingen Schweizer Viertel Huckelriede Grohn Zu den ehemaligen Soziale Stadt-Gebieten der Stadt Bremen gehören: Lüssum-Bockhorn Gröpelingen Oslebshausen
TERENO Eifel-Rur Observatory. TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. The central monitoring site of the TERENO Eifel/Lower Rhine Valley Observatory is the catchment area of the River Rur. It covers a total area of 2354 km² and exhibits a distinct land use gradient: The lowland region in the northern part is characterised by urbanisation and intensive agriculture whereas the low mountain range in the southern part is sparsely populated and includes several drinking water reservoirs. Furthermore, the Eifel National Park is situated in the southern part of the Rur catchment serving as a reference site. Intensive test sites are placed along a transect across the Rur catchments in representative land cover, soil, and geologic settings. The Rollesbroich site is located in the low mountain range “Eifel” near the German-Belgium border and covers the area of the small Kieselbach catchment (40 ha) with altitudes ranging from 474 to 518 m.a.s.l.. The climate is temperate maritime with a mean annual air temperature and precipitation of 7.7 °C and 1033 mm, respectively, for the period from 1981 to 2001. Soils are dominated by (stagnic) Cambisols and Stagnosols on Devonian shales with occasional sandstone inclusions that are covered by a periglacial solifluction clay–silt layer. The mountainous grassland vegetation is dominated by perennial ryegrass (Lolium perenne) and smooth meadow grass (Poa pratensis). The study site is highly instrumented. All components of the water balance (e.g. precipitation, evapotranspiration, runoff, soil water content) are continuously monitored using state-of-the-art instrumentation, including weighable lysimeters, runoff gauges, cosmic-ray soil moisture sensors, a wireless sensor network that monitors soil temperature, and soil moisture at 189 locations in different depths (5, 20 and 50 cm) throughout the study site. Periodically also different chamber measurements were made to access soil or plant gas exchange. This data set contains weekly updated flux-, meteorological and soil measurements of the permanent operating EC/Climate station Rollesbroich 1 (50.621°N, 6.304°E,515 m a.s.l.), which was installed in spring 2011 at the border of two fields of grassland (5.8 and 7.8 ha) within the study site. Management of both fields is typical for the low mountain range of the Eifel region with one fertilizer application and three cuts per year. The area within the fetch of the eddy covariance tower is relatively flat with slopes ranging between 0.35° and 3.12°. The station is equipped with a CSAT3 sonic anemometer and LI7500 gas analyser. Besides flux measurements and typical climate parameters (radiation, air temperature, air humidity, soil moisture, soil temperature etc.) also the plant height and farming activities are recorded. Meteorological and soil data was at least controlled by visual inspection by using common plausibility ranges and cross checks with nearby stations. Afterwards the data was flagged according to it's quality (O.K., suspect, moderate, bad etc.). Flux data was processed and checked according to the TERENO QC scheme (Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, HP., Schmidt, M., Steinbrecher, R., 2012. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural and Forest Meteorology 169, 122-135, 2013).
Das Projekt "SP 1.2 Optimisation of soil organic matter management under intensive cropping in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Intensive maize-wheat double cropping is a common plant production system at the North China Plains. More than 600 kg N/ha as mineral N fertiliser are applied annually while only 300 to 350 kg N/ha are removed with plant products. Despite of this extraordinarily high level of N-fertilisation, the yield potential in the common wheat-maize cropping system is by far not fully taped yet. Beside low N utilization efficiencies (partly less than 30 percent), frequent lodging and environmental pollution including leaching and gaseous losses of N are the results of the excessive use of fertiliser-N. Within this study, different N-fertilisation, tillage and cropping strategies shall be investigated with their potential to maintain high levels of SOM and to guaranty high and stable yields in the long term in the North China Plain. Future developments like climate change and increasing demand for energy production from plant residues shall be considered. Special emphasis will be put on the fate of (fertilised) N which preferably should be available for plant uptake and built up of organic matter but may also disappear by leaching and gaseous losses. A combination of lab experiments, existing and newly established long term field experiments combined with computer modelling shall be used to extrapolate short and medium term findings into the future and up to a regional scale.
Das Projekt "Field and laboratory studies of aerosol formation from halogenated precursor gases" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Technischen Umweltschutz durchgeführt. This project was part of the HaloProc research unit on natural halogenation processes, and explored the impact of reactive halogen species on aerosol formation in field and laboratory experiments. Field studies were focused on the Lake King salt lake area in Western Australia. New particle formation events were frequently observed and characterized by measuring the temporal evolution of the submicron aerosol size distributions, and collecting aerosol samples for subsequent chemical analysis. 9 out of 11 measurement days in 2013 showed secondary aerosol formation with particle growth rates from 2.9 to 25.4 nm h^-1. Raman spectroscopy and ultrahigh resolution mass spectrometry revealed a contribution of organohalogen compounds (mostly organochlorine) to the secondary organic aerosol, however, organosulfate and organonitrate formation seemed to play a larger role in the studied environment. Nevertheless, a new experimental approach that made use of a mobile Teflon chamber set up above the salt crust and the organic-rich mud layer of various salt lakes directly linked new particle formation to the hypersaline environment of Western Australia. For more detailed process studies, these field results provided realistic scenarios and constraints for simulation experiments in the laboratory. Salt lake conditions were successfully simulated in aerosol chamber experiments and showed secondary aerosol formation in the presence of light and organic precursor compounds. The particle formation dynamics and the chemical speciation of aerosol samples, which were collected from the chamber experiments and analyzed by Raman spectroscopy and mass spectrometry, indicated a coupling of aqueous phase chemistry and secondary aerosol formation. In particular, the Fe(II) concentrations of the simulated salt lakes were a key control for the intensity of new particle formation. In saline environments with low pH values and high solar radiation, Fe(II) might be converted to Fe(III) in the presence of organic matter in a Fenton-like reaction, which can act as a major source for highly reactive OH radicals in the aqueous phase. On the one hand, this expands the potential oxidation pathways for organic compounds, which led to a larger chemical diversity. On the other hand, Fe(II)-controlled aqueous phase chemistry competes with secondary aerosol formation in the gas phase, which led to reduced particle formation in our experiments. While it is premature to fully incorporate these findings in chemistry box models, additional laboratory studies provided experimental data that will guide the development of model parameterizations, e.g., for the organic aerosol yield from the oxidation of organic compounds by chlorine and bromine, or for reactive bromine loss due to uptake in secondary organic aerosol. In conclusion, this project bridged gaps between field studies of halogen-influenced new particle formation in the real world and laboratory experiments within the HaloProc research u
Das Projekt "Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie durchgeführt. Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.
Das Projekt "The European aeroemissions network (AERONET)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Antriebstechnik durchgeführt. One of the major problems that civil aeronautics will have to face over the next twenty or thirty years is to accommodate the predicted growth in demand of air transport without creating unacceptable adverse environmental effects. It is to be expected that new scientific results, increasing public concerns over the environment and future restrictive regulations with respect to aircraft emissions will force airline companies to take ecological considerations much more into account than it does at present. Consequently, for European aircraft manufacturers it is of high importance to react early and to guide their research and development resources into the most important and efficient direction. The aim of the AERONET project is to support coordination ' a postiori' of existing European and national projects or programmes dealing with the contribution of air traffic emissions to anthropogenic climate and atmospheric changes. For this purpose AERONET seeks to : - bring together experts from engine technology, atmospheric research and operations as well as programme responsible to exchange knowledge and opinions and to discuss necessary future actions on the basis of jointly defined goals and time scales, - produce competitive advantage for Europe through enhanced information echoing in the field of atmospheric effects of air traffic emissions, - strengthen a common European position in global technical and political discussions - support the Commission in identifying topics for the 5th Framework Programme, - identify gaps and help prepare a coordinated submission of proposals. European Dimension and Partnership: Europe is, beside the US, one of the two biggest aircraft manufacturers. One supposition for the economic success of European aircraft industry is not only to fulfill the existing regulations but, due to the long development times of 5-10 years and the long lifetimes of aircraft of more than 20 years, also to take the trend of future regulations development into account at a very early stage. This needs continuous and fast information exchange and discussions between atmospheric scientists, aircraft engineers and regulatory organisations. To be successful with an effort of this dimension, optimal coordination of national and European programmes in all three fields is required. Thus the network brings together representatives of all programmes and institutions concerned, helps to integrate activities through better information exchange, tries to identify the most urgent themes for R&D activities and intends to give recommendations for the Fifth Framework Programme. Potential Applications: Understanding the atmospheric impacts, the technical consequences and development perspectives, and the operational impacts as a whole is absolutely necessary to strengthen the European position in global regulatory committees on the on side and to gain competitive advantages for the European aircraft and airline industries on the other side. usw
Das Projekt "Steady-State Dilution and Mixing-Controlled Reactions in Three-Dimensional Heterogeneous Porous" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. Understanding transport of contaminants is fundamental for the management of groundwater re-sources and the implementation of remedial strategies. In particular, mixing processes in saturated porous media play a pivotal role in determining the fate and transport of chemicals released in the subsurface. In fact, many abiotic and biological reactions in contaminated aquifers are limited by the availability of reaction partners. Under steady-state flow and transport conditions, dissolved reactants come into contact only through transverse mixing. In homogeneous porous media, transverse mixing is determined by diffusion and pore-scale dispersion, while in heterogeneous formations these local mixing processes are enhanced. Recent studies investigated the enhancement of transverse mixing due to the presence of heterogeneities in two-dimensional systems. Here, mixing enhancement can solely be attributed to flow focusing within high-permeability inclusions. In the proposed work, we will investigate mixing processes in three dimensions using high-resolution laboratory bench-scale experiments and advanced modeling techniques. The objective of the proposed research is to quantitatively assess how 3-D heterogeneity and anisotropy of hydraulic conductivity affect mixing processes via (i) flow focusing and de-focusing, (ii) increase of the plume surface, (iii) twisting and intertwining of streamlines and (iv) compound-specific diffusive/dispersive properties of the solute species undergoing transport. The results of the experimental and modeling investigation will allow us to identify effective large-scale parameters useful for a correct description of conservative and reactive mixing at field scales allowing to explain discrepancies between field observations, bench-scale experiments and current stochastic theory.
Das Projekt "Nachhaltige Nutzung Mariner Ressourcen (Submariner) - Interreg IVB BSR Project" wird vom Umweltbundesamt gefördert und von Instytut Morski w Gdansku durchgeführt. The Baltic Sea Region (BSR) faces enormous challenges including growing transport, new installations, fishery declines, severe marine pollution with excessive nutrient input and the effects of climate change. But the future is not all bleak: novel technologies and growing knowledge provide opportunities for new uses of marine ecosystems, which may in the future not only have commercial appeal but also contribute to solve environmental problems. Algae and mussel cultivation reduce nutrient inflow while providing a source for bioenergy; offshore wind farms can smartly be combined with mariculture or wave energy installations; blue biotechnology utilises substances from marine organisms for development of new products that can improve overall BSR health. All these uses and technologies have, however, not been tested sufficiently within the fragile conditions of the Baltic Sea and their cumulative impacts on the environment, economic feasibility and regional applicability are not yet fully understood. It is thus currently difficult for decision-makers to judge which uses are most desirable and what actions are necessary to create a framework beneficial to their development while discouraging potentially damaging uses. SUBMARINER builds the road for furthering those environmentally friendly as well as economically appealing innovative uses within the BSR, thus contributing toward its aim to become a model region for sustainable sea management.
Origin | Count |
---|---|
Bund | 807 |
Land | 2 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 805 |
unbekannt | 4 |
License | Count |
---|---|
offen | 807 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 807 |
Englisch | 766 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 1 |
Keine | 601 |
Webdienst | 2 |
Webseite | 206 |
Topic | Count |
---|---|
Boden | 698 |
Lebewesen & Lebensräume | 765 |
Luft | 605 |
Mensch & Umwelt | 809 |
Wasser | 621 |
Weitere | 809 |